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Microwave cavity perturbation measurements have been performed on several n-
type silicon samples with different depolarization factors due to sample geometries.
The general solution for the complex frequency shift in slab geometry is discussed
for the specific case of semiconductors. The depolarization crossovers predicted by
the theory have been experimentally observed. Their relative intensities suggest
that the imaginary part of the complex conductivity of semiconductors has to be
taken into account. Electron scattering time has been inferred from the microwave
measurements.
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1. Introduction

Investigation of samples with variable dielectric, magnetic or conducting prop-
erties at microwave frequencies is very useful for the determination of their material
parameters. Microwave experiments based on resonant cavities or other resonant
structures are widely used since they offer the best signal/noise ratios. Usually, a
small sample is introduced into a microwave cavity as a perturbation. The measured
quantities are changes of the Q-factor and the resonant frequency of the cavity, com-
bined in a single complex quantity named complex frequency shift. In our recent
paper[1], we have developed a general solution for the complex frequency shift of a
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resonant cavity perturbed by a small sample with a slab geometry. Although the
solution is general for samples with different electric and magnetic properties, the
experimental verification and analysis given in Ref. [1] was restricted to supercon-
ducting films.

Semiconductors, with their huge changes in conductivity with temperature, of-
fer a suitable system to check the validity of the general solution. If the proper
sample thickness and geometry is chosen, the sample should change from effec-
tively insulating to conducting regime. In the microwave response, one may expect
two depolarization crossovers in the temperature range 4 – 300 K. In this paper, we
provide the experimental verification of the validity of the general solution [1] using
silicon samples whose conductivities vary with temperature over several orders of
magnitude.

2. Complex frequency shift

In a cavity loaded with a sample, losses occur in the cavity walls and in the
sample. They can be represented by introducing the time dependence of the fields
in a form exp(iω̃t), where ω̃ = ω(1+i/2Q) is the complex frequency which includes
losses through the Q-factor of the cavity. Generally, one is interested in the change
of ω̃

∆ω̃

ω
=

∆f

f
+ i∆

(
1

2Q

)
, (1)

due to the changes of sample properties while keeping the losses in the cavity
walls constant. It is readily achieved if the cavity temperature is fixed and if the
sample volume is small compared to the cavity volume. Under these conditions, the
complex frequency shift is given by the surface integral over the sample surface [1]

δω̃p

ω
=

i

ωWc

∮

Ss

[E∗ × δH − H
∗ × δE] · nsdS , (2)

where Wc is the energy stored in the cavity, and ns is the unit vector normal to
the sample surface and points into the sample. Therefore, for the determination of
the complex frequency shift it suffices to determine electric and magnetic fields at
the surface.

If the sample is platelike and placed in the maximum of the microwave electric
field, the field solutions for the slab geometry may serve as a good approximation

Ẽ(z) = Ẽs
cosh(ik̃z)

cosh(ik̃d/2)
, (3)

B̃(z) =
k̃

ω
Ẽs

sinh(ik̃z)

cosh(ik̃d/2)
, (4)
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where d is the thickness of the slab, Ẽs = Ẽ(d/2) is the field at the surface. k̃ is
the complex wave vector given by

k̃ = k0

√
µ̃r

(
ǫ̃r − i

σ̃

ǫ0ω

)
, (5)

where k0 = ω
√

µ0ǫ0 is the vacuum wave vector. The complex wave vector describes
generally any set of material parameters.

It is, however, nontrivial to relate surface fields of Eqs. (3) and (4) with the
driving field E0. The problem can be solved in the quasistatic limit with an effective
complex dielectric permitivity ǫ̃s. One has to take into account the finite width and
length of the sample in addition to its thickness. The geometry effect is introduced
through the depolarization factor N . It was shown that the relation between the

surface field Ẽs and the driving field E0 is given by

Ẽs =
E0

1 + (ǫ̃s − 1) N
, (6)

where the complex valued ǫ̃s is given by

ǫ̃s =
k̃2

µ̃rk2
0

tanh(ik̃d/2)

ik̃d/2
. (7)

If one takes an idealized perfect conductor as the initial state of the sample, the
complex frequency shift to an arbitrary state is given by

∆ω̃p

ω
=

Γ

N

[
1 +

(
k̃2

k2
0

tanh(ik̃d/2)

ik̃d/2
− 1

)
N

]
−1

, (8)

where Γ is the dimensionless filling factor of the sample in the cavity. Up to now,
the consideration was quite general for any type of material.

In the remainder of the paper, we shall consider this general result for the
case of a platelike semiconductor. Let us consider a model sample – a piece of
a semiconductor similar to those which have been used in our experiments. We
set ǫr = 12, close to the value of silicon. Typical geometry of the sample was
d = 0.2mm, Ly = 2mm and Lx = 1mm. Approximating the sample by an ellipsoid,
the depolarization factor can be calculated using an integral [2]

Ne = NLy
=

LxLyd

2

∞∫

0

ds
(
s + L2

y

)√(
s + Lx

2
) (

s + Ly
2
)
(s + d2)

, (9)

which can be evaluated numerically. For the given geometry, its value is N = 0.054.
For a sample with this geometry, we plot in Fig. 1a and b the imaginary and real
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parts of the complex frequency shift. The salient feature is the depolarization peak
observed in the imaginary part of ∆(1/2Q). It marks the crossover from practically
insulating to conducting regime of the semiconductor. The position of the peak
depends on the depolarization factor N of the particular sample and is given by
the condition σ∗ ≈ [1 + (ǫr − 1)N ]ǫ0ω/N .

3. Conductivity of silicon

Semiconducting samples change their conductivity by several orders of magni-
tude in the temperature range from 4 K to the room temperature. It is of interest to
analyze a simulated complex frequency shift due to a model semiconductor sample.
In the present case, we use n-type silicon samples with Eg = 1.12 eV, Ed = 0.044 eV,
me = 0.40m and mh = 0.41m [3]. The conductivity is given by

σ(T ) = eµe(T )n(T ) , (10)

where n(T ) is the electron concentration given by [4]

n(T ) =
1

4

[(
−Nc(T )e−Ed/kT

)
+

√(
Nc(T )e−Ed/kT

)2
+ 8NdNc(T )e−Ed/kT

]

+ ni(T )e−Eg/2kT . (11)

The temperature dependence of the mobility µe(T ) is determined by the scat-
tering time τ . We assume that in the saturation regime and at higher temper-
atures, electron-phonon scattering dominates and the mobility is then given by
µe(T ) = AT−3/2, where the constant A is determined from the conductivity at
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room temperature. Our model sample has a donor concentration Nd = 2 · 1020m−3

and the room temperature conductivity σ(270K) = 10 Ω−1m−1. The conductivity
σ(T ) can be readily calculated, and Fig. 2a shows the logarithm of conductivity
vs. 1/T for given parameters. Fig. 2b shows the same conductivity vs. T in the
temperature range up to the room temperature. If this conductivity is inserted in
Eq. (8), for a sample with d = 0.2mm and N = 0.054 (the same as in Fig. 1), one
obtains the temperature dependence of the imaginary and real parts of the com-
plex frequency shift shown in Fig. 3. The depolarization crossover occurs when the
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Fig. 2 (left). Temperature dependence of the conductivity calculated from Eqs.
(10) and (11) for a silicon sample with donor concentration Nd = 2 · 1020m−3 and
conductivity σ(270K) = 10Ω−1m−1. The dashed line indicates the conductivity σ∗

where depolarization crossover is expected in the microwave response.

Fig. 3. Temperature dependence of the complex frequency shift of a silicon sample
with conductivity shown in Fig. 2 and geometry parameters as in Fig. 1. The two
depolarization crossovers are indicated in compliance with Fig. 2.

conductivity crosses the value σ∗ ≈ [1 + (ǫr − 1)N ]ǫ0ω/N = 15.21Ω−1m−1. This
value is indicated as a dashed line in Fig. 2b. Therefore, one expects two depo-
larization crossovers. The sample is first crossing σ∗ as the conductivity increases
due to the ionization of donor levels. This crossover yields the low-temperature
peak of 1/2Q in Fig. 3. When the conductivity in Fig. 2 reaches its maximum, the
decrease of 1/2Q in Fig. 3 stops. At higher temperatures, the number of carriers is
saturated and the conductivity is lowered due to the increased phonon scattering.
The sample crosses again to the insulating side at σ∗. This is seen as a broad max-
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imum of 1/2Q in Fig. 3. Of course, one would expect the third crossover at much
higher temperatures when the carrier concentration increases due to the intrinsic
ionization.

4. Experimental results

In this section we shall describe experimental demonstrations of some features
discussed in the preceeding sections. We have cut the samples from three different
commercially obtained wafers of n-type silicon. Wafer A had a nominal concentra-
tion of donors Nd ≈ 6 × 1020m−3 and the conductivity σ(270K) ≈ 16Ω−1m−1.
Wafer B had a nominal concentration of donors Nd ≈ 1.5 × 1020m−3 and the con-
ductivity σ(270K) ≈ 5Ω−1m−1. Wafer C had a nominal concentration of donors
Nd ≈ 4 × 1019m−3 and the conductivity σ(270K) ≈ 1Ω−1m−1. DC conductivities
of wafers A and C have been measured by a four-contact method in the temper-
ature range from 77 K to 290 K. They can be well fitted by Eqs. (10) and (11) if
the temperature dependence of the mobility is assumed to be µe(T ) = AT−1.8.

For the microwave measurements, samples were cut out from the wafers. Table 1.
lists dimensions of all pieces that were measured, together with the depolarization
factors calculated using Eq. (9).

TABLE 1. Geometric parameters of the samples used in the microwave measure-
ments.

Wafer
Length
(mm)

Width
(mm)

d
(mm)

N

1.7 1.1 0.16 0.057

1.9 1.6 0.25 0.084

A 1.8 1.6 0.25 0.089

2.2 1.0 0.45 0.093

2.3 1.9 0.45 0.115

1.9 0.7 0.15 0.038

1.9 1.2 0.22 0.068

B 1.7 0.8 0.4 0.104

1.9 1.2 0.4 0.110

1.7 0.8 0.6 0.137

C 1.8 1.6 0.25 0.085

An elliptical copper cavity resonating in the eTE111 mode at ≈ 9.3GHz was used.
The samples were mounted on a sapphire holder in the centre of the cavity, along
the microwave electric field. We used a BRUKER microwave bridge operating at 9 –
10 GHz. The Q factor was measured by a modulation technique described elsewhere
[5, 6]. The empty cavity absorption (1/2Q) was substracted from the measured
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data and the presented experimental curves are due to the samples themselves. An
automatic frequency control (AFC) system was used to track the klystron frequency
so as to keep it always in resonance with the cavity. Thus, the frequency shift can
be measured as the temperature of the sample is varied.

Figure 4 shows the temperature dependence of absorption (1/2Q) and real
frequency shift (∆f/f) of a silicon sample from wafer B with d = 0.4 mm and
N = 0.104. One can clearly observe two depolarization crossovers. However, a closer
insight reveals two distinctions with respect to the simulations given in Fig. 3. First,
the height of the absorption peaks is not equal at the two crossovers in Fig. 4. If
the absorption were determined by a single real parameter (σ), one would expect
equal heights of the two peaks as shown in Fig. 3a. The real part of the frequency
shift also shows a difference with respect to the shape shown in Fig. 3b. A small
maximum in the real frequency shift occurs at a temperature just below the first
crossover.
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Fig. 4 (left). Measured complex frequency shift of a silicon sample from wafer B
with d = 0.4mm and N = 0.104.

Fig. 5. Measured imaginary parts of complex frequency shift of all samples.

Figure 5 shows the measured imaginary parts (1/2Q) of the complex frequency
shifts for all sample pieces. Clearly, the positions of the depolarization peaks and
their relative intensities strongly depend on the sample thicknesses d and static
depolarization factors N . Furthermore, the intensity of the low-temperature peak
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is always higher than that of the high-temperature one for the same sample. Two
of the samples even don’t show the depolarization crossover (the thinnest sample
of wafer B and the sample of wafer C). They never reach the crossover condition
for σ∗, and stay at the insulating side of the depolarization crossover in the whole
measured temperature range.

5. Discussion

In order to explain the features observed in Fig. 4, one has to introduce one more
parameter that defines the shape of a complex frequency shift. For the purpose of
simulation in Fig. 3, the conductivity was taken as a real quantity, implying that
the current density and the electric field are in phase. However, the observations
in Fig. 4 suggest that the microwave conductivity of the semiconductor could not
be treated as a real quantity in the whole temperature range. Although the DC
conductivity is the same at ≈ 140 K and at ≈ 50 K, the concentration of carri-
ers is very different. Smaller concentration of carriers at 50 K is compensated by
a larger mobility since the scattering time becomes larger. When the scattering time
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Fig. 6 (left). Complex frequency shift of the model sample calculated using the
complex conductivity as explained in the text.

Fig. 7. (a) Measured imaginary part of the complex frequency shift (circles) and
the fit with τ = 2.92 · 10−12 T−3/2 s K−1 (line); (b) Scattering time evaluated from
the measurement (circles) and the fit with τ = 2.92 · 10−12 T−3/2 s K−1 (line).
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babić et al.: depolarization crossovers in the microwave response of silicon . . .

becomes comparable to the period of the driving microwave field, i.e. τω ≈ 1, the
conductivity has to be treated as a complex quantity. It can be written in the
form[7]

σ̃(ω) = σ(0)
1 − iωτ

1 + (ωτ)2
. (12)

We can calculate the values of τω for our model sample described in Sect. 3. At
the temperatures of absorption peaks, we obtain ωτ(197K) ≈ 0.07 and ωτ(46K) ≈
0.59. Therefore, while the imaginary part of the conductivity is negligible at higher
temperatures, it brings about a considerable contribution to the absorption am-
plitude at the low-temperature peak. Figure 6 shows the complex frequency shift
of the model sample when the complex conductivity with τ ∝ T−3/2 is taken into
account. Qualitatively, one can see that all observed features from Fig. 4 can be
reproduced in that way, especially the difference in amplitudes of the absorption
peaks, and the existence of a small peak in the real part of the complex frequency
shift at low temperatures.

For a real sample, one can deduce the scattering rate of the carriers from the
shape of the microwave signal. For example, the signal of the sample from wafer A
with d = 0.25mm and N = 0.089 can be well fitted with τ = 2.92·10−12 T−3/2 s K−1

as shown in Fig. 7a. It is also possible to use the experimental data and Eq. (8) to
solve numerically for σ̃, and then evaluate the scattering time τ . Figure 7b shows
the results compared with the function used in the fit in Fig. 7a. Some discrepancy
is noticed at lower temperatures indicating that phonon scattering alone cannot
account for the complete scattering process.

6. Conclusions

We have analysed the cavity perturbation due to a semiconducting sample.
The formula for the complex frequency shift [1] may predict the signal shapes for
samples whose conductivities vary for several orders of magnitude, from insulating
to conducting. The signal shapes depend not only on the conductivity, but also on
the geometric parameters. We have demonstrated that the correct interpretation of
signal shapes requires a complex conductivity at lower temperatures. It is achieved
when the scattering rate in semiconductors becomes comparable with the period of
the driving microwave field. In such cases, the present technique is suitable for the
determination of the scattering rate.
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DEPOLARIZACIJSKI PRIJELAZI U MIKROVALNOM ODZIVU PLOČICA
SILICIJSKOG KRISTALA

Načinili smo mjerenja učinka umetanja nekoliko silicijskih pločica tipa n u
mikrovalni rezonator s različitim depolarizacijskim faktorima uzrokovanim oblikom
pločica. Raspravljamo opće rješenje za kompleksan pomak frekvencije za pose-
ban slučaj poluvodičke pločice. Teorijski predvid–ene depolarizacijske prijelaze smo
eksperimentalno opazili. Njihove relativne jakosti ukazuju da se u poluvodičima
mora uzeti u obzir imaginarni dio kompleksne vodljivosti. Na osnovi mikrovalnih
mjerenja izveli smo vrijeme elektronskog raspršenja.
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