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We report the first study of restoration of rotational symmetry and fluctuations of the quadrupole deformation in
the framework of relativistic mean-field models. A model is developed that uses the generator coordinate method
to perform configuration mixing calculations of angular-momentum-projected wave functions, calculated in a
relativistic point-coupling model. The geometry is restricted to axially symmetric shapes, and the intrinsic wave
functions are generated from the solutions of the constrained relativistic mean-field + BCS equations in an axially
deformed oscillator basis. A number of illustrative calculations are performed for the nuclei 194Hg and 32Mg, in
comparison with results obtained in nonrelativistic models based on Skyrme and Gogny effective interactions.
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I. INTRODUCTION

The rich variety of nuclear shapes far from stability has been
the subject of extensive experimental and theoretical studies.
The variation of ground-state shapes in an isotopic chain, for
instance, is governed by the evolution of shell structure. Far
from the β-stability line, in particular, the energy spacings
between single-particle levels change considerably with the
number of neutrons and/or protons. This can result in reduced
spherical shell gaps and modifications of shell structure, and
in some cases spherical magic numbers may disappear. For
example, in neutron-rich nuclei N = 6, 16, 34, . . . can become
magic numbers, whereas N = 8, 20, 28, . . . disappear. The
reduction of a spherical shell closure is associated with the
occurrence of deformed ground states and, in a number of
cases, with the phenomenon of shape coexistence.

Both the global shell-model approach and self-consistent
mean-field models have been employed in the description
of shell evolution far from stability. The basic advantages
of the shell model are its ability to describe simultaneously
all spectroscopic properties of low-lying states for a large
domain of nuclei, its use of effective interactions that can
be related to two- and three-nucleon bare forces, and its
description of collective properties in the laboratory frame.
However, since effective interactions strongly depend on the
choice of active shells and truncation schemes, there is no
universal shell-model interaction that can be used for all nuclei.
Moreover, because numerous two-body matrix elements have
to be adjusted to data, extrapolations to exotic systems far
from stability cannot be very reliable. Heavy exotic nuclei
with very large valence spaces require calculations with matrix
dimensions that are far beyond the limits of current shell-model
variants.

Properties of heavy nuclei with a large number of active
valence nucleons are best described in the framework of
self-consistent mean-field models. A variety of structure
phenomena, not only in medium-heavy and heavy stable

nuclei but also in regions of exotic nuclei far from the line
of β stability and close to the nucleon driplines, have been
successfully described with mean-field models based on the
Gogny interaction, the Skyrme energy functional, and the rel-
ativistic meson-exchange effective Lagrangian [1,2]. The self-
consistent mean-field approach to nuclear structure repre-
sents an approximate implementation of Kohn-Sham density
functional theory, which enables a description of the nuclear
many-body problem in terms of a universal energy density
functional. This framework, extended to take into account the
most important correlations, provides a detailed microscopic
description of structure phenomena associated with shell
evolution in exotic nuclei. When compared to the interacting
shell model, important advantages of the mean-field approach
include the use of global effective nuclear interactions, the
treatment of arbitrarily heavy systems including superheavy
nuclei, and the intuitive picture of intrinsic shapes.

A quantitative description of shell evolution, and in
particular the treatment of shape coexistence phenomena,
necessitates the inclusion of many-body correlations beyond
the mean-field approximation. The starting point is usually a
constrained Hartree-Fock plus BCS (HF + BCS) or Hartree-
Fock-Bogoliubov (HFB) calculation of the potential energy
surface with the mass quadrupole components as constrained
quantities. In most studies calculations have been restricted
to axially symmetric, parity-conserving configurations. The
erosion of spherical shell closures in nuclei far from stability
leads to deformed intrinsic states and, in some cases, mean-
field potential energy surfaces with almost degenerate prolate
and oblate minima. To describe nuclei with soft potential
energy surfaces and/or small energy differences between
coexisting minima, it is necessary to explicitly consider
correlation effects beyond the mean-field level. The rotational
energy correction (i.e., the energy gained by the restoration
of rotational symmetry) is proportional to the quadrupole
deformation of the intrinsic state and can reach several MeV
for a well-deformed configuration. Fluctuations of quadrupole
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deformation also contribute to the correlation energy. Both
types of correlations can be included simultaneously by mixing
angular-momentum-projected states corresponding to differ-
ent quadrupole moments. The most effective approach for
configuration mixing calculations is the generator coordinate
method (GCM), with multipole moments used as coordinates
that generate the intrinsic wave functions.

In a series of recent papers [3–6], the angular-momentum-
projected GCM with the axial quadrupole moment as the
generating coordinate, and intrinsic configurations calculated
in the HFB model with the finite-range Gogny interaction,
has been applied in studies of shape-coexistence phenomena
that result from the erosion of the N = 20 and N = 28
spherical shells in neutron-rich nuclei. Good agreement with
experimental data has been obtained for the 2+ excitation
energies and B(E2) transition probabilities of the N = 28
neutron-rich isotones [3]. The systematic study of the ground
and low-lying excited states of the even-even 20−40Mg [4] is
particularly interesting, because this chain of isotopes includes
three spherical magic numbers: N = 8, 20, 28. It has been
shown that the N = 8 shell closure is preserved, whereas
deformed ground states are calculated for N = 20 and N = 28.
In particular, the ground state of 32Mg becomes deformed
as a result of a fine balance between the energy correction
associated with the restoration of rotational symmetry and
the correlations induced by quadrupole fluctuations. In a
similar analysis of the chain of even-even isotopes 20−34Ne
[5], it has been shown that the ground state of the N = 20
nucleus 30Ne is deformed, but less than the ground state of
its isotone 32Mg. The model has recently been applied in an
analysis of shape coexistence and quadrupole collectivity in
the neutron-deficient Pb isotopes [6]. A good qualitative agree-
ment with available data has been found, especially for rota-
tional bands built on coexisting low-lying oblate and prolate
states.

Another very sophisticated model [7], which extends the
self-consistent mean-field approach by including correlations,
is based on constrained HF + BCS calculations with Skyrme
effective interactions in the particle-hole channel and a density-
dependent contact force in the pairing channel. Particle num-
bers and rotational symmetry are restored by projecting self-
consistent mean-field wave functions on the correct numbers
of neutrons and protons, and on angular momentum. Finally,
a mixing of the projected wave functions corresponding to
different quadrupole moments is performed with a discretized
version of the GCM. The model has been successfully tested
in the study of shape coexistence in 16O [8] and in the analysis
of the coexistence of spherical, deformed, and superdeformed
states in 32S, 36Ar, 38Ar, and 40Ca [9]. For the doubly magic
nucleus 16O this parameter-free approach provides a very
good description of those low-spin states, which correspond
to axially and reflection-symmetric shapes, and allows the
interpretation of their structure in terms of self-consistent
np-nh states. A very important recent application is the study
of low-lying collective excitation spectra of the neutron-
deficient lead isotopes 182−194Pb [10,11]. A configuration
mixing of angular-momentum- and particle-number-projected
self-consistent mean-field states, calculated with the Skyrme
SLy6 effective interaction, qualitatively reproduces the coexis-

tence of spherical, oblate, prolate, and superdeformed prolate
structures in neutron-deficient Pb nuclei.

Even though the self-consistent relativistic mean-field
(RMF) framework has been employed in many studies of
deformed nuclei, applications of meson-exchange and point-
coupling models have so far been restricted to the mean-field
level. In this work we report the first study of restoration
of rotational symmetry and fluctuations of the quadrupole
deformation in the framework of RMF models. We perform a
GCM configuration mixing of angular-momentum-projected
wave functions that are calculated in a relativistic point-
coupling model.

In Sec. II we present an outline of the relativistic point-
coupling model that will be used to generate mean-field wave
functions with axial symmetry, introduce the formalism of the
GCM, and describe in detail the procedure of configuration
mixing of angular-momentum-projected wave functions. In
Sec. III our model for GCM configuration mixing is investi-
gated in a study of quadrupole dynamics in the nucleus 194Hg,
and 32Mg is used as a test case for the configuration mixing
calculation of angular-momentum-projected states. Section IV
summarizes the results of the present investigation and ends
with an outlook for future studies.

II. CONFIGURATION MIXING OF
ANGULAR-MOMENTUM-PROJECTED MEAN-FIELD

WAVE FUNCTIONS

In this section we review the self-consistent relativistic
point-coupling model that will be used to generate constrained
mean-field states and the solution of the corresponding single-
nucleon Dirac equation in an axially symmetric harmonic
oscillator basis. Starting with a short outline of the GCM,
we describe the technical details of the configuration mixing
of angular-momentum-projected wave functions.

A. The relativistic point-coupling model

Most applications of the self-consistent RMF framework
have used the finite-range meson-exchange representation, in
which the nucleus is described as a system of Dirac nucleons
coupled to exchange mesons and the electromagnetic field
through an effective Lagrangian. A medium dependence of
the effective nuclear interaction can be introduced either
by including nonlinear meson self-interaction terms in the
Lagrangian or by assuming an explicit density dependence
for the meson-nucleon couplings [2]. An alternative represen-
tation is formulated in terms of point-coupling (PC) (contact)
nucleon-nucleon interactions [12–16]. In RMF-PC models the
medium dependence of the effective interaction can be taken
into account by the inclusion of higher order interaction terms,
for instance six-nucleon vertices (ψ̄ψ)3 and eight-nucleon
vertices (ψ̄ψ)4 and [(ψ̄γµψ)(ψ̄γ µψ)]2, or it can be encoded
in the effective couplings (i.e., in the strength parameters of
the interaction in the isoscalar and isovector channels). When
employed in studies of ground-state properties of finite nuclei,
the two representations produce results of comparable quality.
The PC formulation, however, avoids some of the constraints
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imposed in the meson-exchange picture such as, for instance,
the use of the fictitious σ meson in the isoscalar-scalar channel.
The self-consistent PC models are also closer in spirit to
nuclear density functional theory, in which the exact energy
functional, including higher order correlations, is approxi-
mated with powers and gradients of ground-state nucleon
densities. The PC representation, with medium-dependent
vertex functions, provides a natural framework in which chiral
effective field theory can be employed to construct the nuclear
energy density functional, thus establishing a link between the
rich nuclear phenomenology and the underlying microscopic
theory of low-energy QCD [17,18].

A detailed description of the PC model that we use in this
work can be found, for instance, in Ref. [16], together with a
thorough discussion of the choice of various parameter sets that
determine the effective interactions. Here we only outline the
essential features of the model and of its mean-field solution
for a deformed axially symmetric nucleus.

The relativistic PC Lagrangian is built from basic densities
and currents bilinear in the Dirac spinor field ψ of the nucleon:

ψ̄Oτ�ψ, Oτ ∈ {1, τi}, � ∈ {1, γµ, γ5, γ5γµ, σµν}. (1)

Here τi are the isospin Pauli matrices and � generically denotes
the Dirac matrices. The interaction terms of the Lagrangian
are products of these bilinears. Although a general effective
Lagrangian can be written as a power series in the currents
ψ̄Oτ�ψ and their derivatives, it is well known from numerous
applications of RMF models that properties of symmetric and
asymmetric nuclear matter, as well as empirical ground-state
properties of finite nuclei, constrain only the isoscalar-scalar
(S), the isoscalar-vector (V), the isovector-vector (TV), and
to a certain extent the isovector-scalar (TS) channels. In this
work we consider a model with four-, six-, and eight-fermion
point couplings (contact interactions) [16], defined by the
Lagrangian density:

L = Lfree + L4f + Lhot + Lder + Lem,

Lfree = ψ̄(iγµ∂µ − m)ψ,

L4f = − 1
2αS(ψ̄ψ)(ψ̄ψ) − 1

2 αV(ψ̄γµψ)(ψ̄γ µψ)

− 1
2αTS(ψ̄ �τψ) · (ψ̄ �τψ)

− 1
2αTV(ψ̄ �τγµψ) · (ψ̄ �τγ µψ),

Lhot = − 1
3βS(ψ̄ψ)3 − 1

4 γS(ψ̄ψ)4 (2)

− 1
4γV[(ψ̄γµψ)(ψ̄γ µψ)]2,

Lder = − 1
2 δS(∂νψ̄ψ)(∂νψ̄ψ) − 1

2δV(∂νψ̄γµψ)(∂νψ̄γ µψ)

− 1
2δTS(∂νψ̄ �τψ) · (∂νψ̄ �τψ)

− 1
2δTV(∂νψ̄ �τγµψ) · (∂νψ̄ �τγ µψ),

Lem = −eAµψ̄[(1 − τ3)/2]γ µψ − 1
4FµνF

µν.

Vectors in isospin space are denoted by arrows, and bold-faced
symbols will indicate vectors in ordinary three-dimensional
space. In addition to the free-nucleon Lagrangian Lfree, the
four-fermion interaction terms are contained in L4f , and

higher order terms are collected in Lhot. When applied to
finite nuclei the model must include the coupling Lem of
the protons to the electromagnetic field Aµ, and derivative
terms contained in Lder. In the terms that contain ∂ν(ψ̄�ψ) the
derivative is understood to act on both ψ̄ and ψ . One could, of
course, construct many more higher order interaction terms, or
derivative terms of higher order, but in practice only a relatively
small set of free parameters can be adjusted from the data set
of ground-state nuclear properties.

The single-nucleon Dirac equation is derived from the
variation of the Lagrangian equation (2) with respect to ψ̄ :

{α[−i∇ − V (r)] + V (r) + β(m + S(r))}ψi(r) = εiψi(r).
(3)

The scalar and vector potentials

S(r) = �S(r) + τ3�TS(r), (4)

and

V µ(r) = �µ(r) + τ3�
µ

TV(r), (5)

contain the nucleon isoscalar-scalar, isovector-scalar,
isoscalar-vector, and isovector-vector self-energies defined by
the following relations:

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (6)

�TS = αTSρTS + δTS�ρTS, (7)

�µ = αV jµ + γV (jνj
ν)jµ + δV �jµ − eAµ 1 − τ3

2
, (8)

�
µ

TV = αTVj
µ

TV + δTV�j
µ

TV, (9)

respectively. Because of charge conservation, only the 3 − rd

component of the isovector densities and currents contributes
to the nucleon self-energies. The local densities and currents
are calculated in the no-sea approximation:

ρS(r) =
A∑

i=1

ψ̄i(r)ψi(r), (10)

ρTS(r) =
A∑

i=1

ψ̄i(r)τ3ψi(r), (11)

jµ(r) =
A∑

i=1

ψ̄i(r)γ µψi(r), (12)

j
µ

TV(r) =
A∑

i=1

ψ̄i(r)γ µτ3ψi(r). (13)

For a nucleus with A nucleons, the summation runs over
all occupied states in the Fermi sea; that is, only occupied
single-nucleon states with positive energy explicitly contribute
to the nucleon self-energies. The energy momentum tensor
determines the total energy of the nuclear system:

ERMF =
∫

d r ERMF(r)

=
∑

i

∫
d r ψ̄i(r)(−iγ∇ + m)ψi(r)
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+
∫

d r
(

αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jµjµ + γV

4
(jµjµ)2 + δV

2
jµ�jµ

+ αTV

2
j

µ

TV(jTV)µ + δTV

2
j

µ

TV�(jTV)µ

+ αTS

2
ρ2

TS + δTS

2
ρTS�ρTS + e

2
ρpA0

)
, (14)

where ρp denotes the proton density, and A0 is the Coulomb
potential.

In this work we only consider even-even nuclei that can
be described by axially symmetric shapes. It is therefore
convenient to work in cylindrical coordinates,

x = r⊥ cos φ, y = r⊥ sin φ, and z. (15)

In addition, parity, symmetry with respect to the operator
e−iπĴy , and time-reversal invariance are imposed as self-
consistent symmetries. Time-reversal invariance implies that
the spatial components of the currents vanish in the nuclear
ground state. The resulting single-nucleon Dirac equation
reads

{−iα∇ + V (r) + β[m + S(r)]}ψi(r) = εiψi(r). (16)

The eigensolutions are characterized by the projection of the
total angular momentum along the symmetry axis (�i), the
parity (πi), and the z component of the isospin (ti). The Dirac
spinor has the following form:

ψi(r, t) =
(

fi(r, s, t)

igi(r, s, t)

)

= 1√
2π




f +
i (z, r⊥)ei(�i−1/2)φ

f −
i (z, r⊥)ei(�i+1/2)φ

ig+
i (z, r⊥)ei(�i−1/2)φ

ig−
i (z, r⊥)ei(�i+1/2)φ


 χti (t). (17)

For each solution with positive �,

ψi ≡ {f +
i , f −

i , g+
i , g−

i ; �i}, (18)

the corresponding degenerate time-reversed state

ψī = T ψi = {−f −
i , f +

i , g−
i ,−g+

i ; −�i} (19)

is obtained by acting with the time-reversal operator T =
iσyK . For even-even nuclei, the time-reversed states i and
ī have identical occupation probabilities.

The single-nucleon Dirac eigenvalue equation is solved
by expanding the spinors fi and gi [Eq. (17)] in terms of
eigenfunctions of an axially symmetric harmonic oscillator
potential [19]:

Vosc(z, r⊥) = 1
2Mω2

zz
2 + 1

2Mω2
⊥r2

⊥. (20)

Imposing volume conservation, the two oscillator frequencies
h̄ωz and h̄ω⊥ can be expressed in terms of the deformation
parameter β0 and the oscillator frequency h̄ω0:

h̄ωz = h̄ω0e
−
√

5/4πβ0 and h̄ω⊥ = h̄ω0e
1
2

√
5/4πβ0 . (21)

The corresponding oscillator-length parameters are bz =√
h̄/Mωz and b⊥ =

√
h̄/Mω⊥. Because of volume conser-

vation, b2
⊥bz = b3

0. The basis is now specified by the two
constants h̄ω0 and β0, and basis states are characterized by
the set of quantum numbers

|α〉 = |nz, n⊥,�,ms〉, (22)

where nz and n⊥ denote the number of nodes in the z and r⊥
directions, respectively. � and ms are the components of the
orbital angular momentum and the spin along the symmetry
axis, respectively. The eigenvalue of jz is the z projection of
the total single-nucleon angular momentum

� = � + ms, (23)

and the parity is determined by

π = (−1)nz+�. (24)

The eigenfunctions of the axially symmetric harmonic
oscillator potential read

�α(r, s) = Nnz√
bz

Hnz
(ξ )e−ξ 2/2 N�

n⊥

b⊥

√
2η�/2

×L�
n⊥ (η)e−η/2 1

2π
ei�φχms

(s), (25)

with ξ = z/bz and η = r2
⊥/b2

⊥. The Hermite polynomials
Hn(ξ ) and the associated Laguerre polynomials L�

n (η) are
defined in Ref. [20]. The normalization factors are given by

Nnz
= 1√√

π2nznz!
and N�

n⊥ =
√

n⊥!

(n⊥ + |�|)! . (26)

The large and small components of the single-nucleon Dirac
spinor [Eq. (17)] are expanded in terms of the eigenfunctions
[Eq. (25)]:

fi(r, s, t) = 1√
2π

(
f +

i (z, r⊥)ei(�−1/2)φ

f −
i (z, r⊥)ei(�+1/2)φ

)

=
αmax∑
α

f α
i �α(r, s)χti (t), (27)

gi(r, s, t) = 1√
2π

(
g+

i (z, r⊥)ei(�−1/2)φ

g−
i (z, r⊥)ei(�+1/2)φ

)

=
α̃max∑
α̃

gα̃
i �α̃(r, s)χti (t). (28)

To avoid the onset of spurious states, the quantum numbers
α̃max and αmax are chosen in such a way that the corresponding
major oscillator quantum numbers N = nz + 2n⊥ + � are not
larger than Nsh + 1 for the expansion of the small components,
and not larger than Nsh for the expansion of the large
components [19] in order to define Nsh.

For an axially deformed nucleus the map of the energy
surface as a function of the quadrupole moment is obtained
by imposing a constraint on the expectation value of the mass
quadrupole operator. The method of quadratic constraint uses
an unrestricted variation of the function

〈H 〉 + C

2
(〈Q̂〉 − q)2, (29)
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where 〈H 〉 is the total energy, 〈Q̂〉 denotes the expectation
value of the mass quadrupole operator, q is the deformation
parameter, and C is the stiffness constant [21].

In addition to the self-consistent mean-field potential, for
open-shell nuclei pairing correlations have to be included
into the energy functional. In this work we do not consider
nuclear systems very far from the valley of β stability, and
therefore a good approximation for the treatment of pairing
correlations is provided by the BCS formalism. Following the
prescription from Ref. [16], we use a δ force in the pairing
channel, supplemented with a smooth cutoff determined by
a Fermi function in the single-particle energies. The pairing
contribution to the total energy is given by

Ep(n)
pair =

∫
Ep(n)

pair (r)d r = Vp(n)

4

∫
κ∗

p(n)(r)κp(n)(r)d r, (30)

for protons and neutrons, respectively. κp(n)(r) denotes the
local part of the pairing tensor, and Vp(n) is the pairing strength
parameter. Of course, for open-shell nuclei Eqs. (10)–(13) for
the local densities and currents include the occupation factors
of single-nucleon states. Finally, the expression for the total
energy reads

Etot =
∫ [

ERMF(r) + Ep
pair(r) + En

pair(r)
]
d r. (31)

The center-of-mass correction has been included by adding
the expectation value

Ec.m. = −
〈
P̂

2
c.m.

〉
2mA

(32)

to the total energy, where Pc.m. is the total momentum of a
nucleus with A nucleons.

B. The generator coordinate method

The GCM is based on the assumption that, starting from
a set of mean-field states |φ(q)〉 that depend on a collective
coordinate q, one can build approximate eigenstates of the
nuclear Hamiltonian,

|�α〉 =
∑

j

fα(qj )|φ(qj )〉. (33)

A detailed review of the GCM can be found in Chapter 10 of
Ref. [21]. In the present study the basis states |φ(q)〉 are Slater
determinants of single-nucleon states generated by solving
the constrained RMF + BCS equations, as described in the
previous section. This means that we use the mass quadrupole
moment as the generating coordinate q. The axially deformed
mean field breaks rotational symmetry, so that the basis states
|φ(q)〉 are not eigenstates of the total angular momentum.
Of course, to be able to compare theoretical predictions with
data, it is necessary to construct states with good angular
momentum, ∣∣�JM

α

〉 =
∑
j,K

f JK
α (qj )P̂ J

MK|φ(qj )〉, (34)

where P̂ J
MK denotes the angular-momentum-projection opera-

tor, given by

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK(�)R̂(�). (35)

Integration is performed over the three Euler angles α, β, and
γ . DJ

MK(�) = e−iMαdJ
MK(β)e−iKγ is the Wigner function [22],

and R̂(�) = e−iαĴz e−iβĴy e−iγ Ĵz is the rotation operator. The
weight functions f JK

α (qj ) are determined from the variation

δEJ = δ

〈
�JM

α

∣∣Ĥ ∣∣�JM
α

〉
〈
�JM

α

∣∣�JM
α

〉 = 0, (36)

that is, by requiring that the expectation value of the energy
is stationary with respect to an arbitrary variation δf JK

α . This
leads to the Hill-Wheeler equation,∑

j,K

f JK
α (qj )

(〈φ(qi)|Ĥ P̂ J
MK|φ(qj )〉

−EJ
α 〈φ(qi)|P̂ J

MK|φ(qj )〉) = 0. (37)

The restriction to axially symmetric configurations
(Ĵz |φ(q)〉 = 0) simplifies the problem considerably, because
in this case the integrals over the Euler angles α and γ can
be performed analytically. For an arbitrary multipole operator
Q̂λµ one thus finds

〈φ(qi)|Q̂λµP̂ J
MK|φ(qj )〉 = 2J + 1

2
δM−µδK0

∫ π

0
sin βdJ∗

−µ0(β)

×〈φ(qi)|Q̂λµe−iβĴy |φ(qj )〉dβ.

(38)

By using the identity eiβĴy = e−iπĴz e−iβĴy eiπĴz , together with
parity, and the symmetry with respect to the operator e−iπĴy ,
the integration interval in Eq. (38) can be reduced from [0, π ]
to [0, π/2]:

〈φ(qi)|Q̂λµP̂ J
MK|φ(qj )〉 = (2J + 1)

1 + (−1)J

2
δM−µδK0∫ π/2

0
sin βdJ∗

−µ0(β)〈φ(qi)|

× Q̂λµe−iβĴy |φ(qj )〉dβ. (39)

We notice that this expression vanishes for odd values of
angular momentum J (i.e., the projected quantities are defined
only for even values of J ).

The norm overlap kernel

N J (qi, qj ) = 〈φ(qi)|P̂ J
MK|φ(qj )〉

= (2J + 1)
1 + (−1)J

2
δM0δK0

∫ π/2

0
sin βdJ∗

00 (β)

×〈φ(qi)|e−iβĴy |φ(qj )〉dβ, (40)

can be evaluated by employing the generalized Wick theorem
[7,23–25]:

n(qi, qj ; β) ≡ 〈φ(qi)|e−iβĴy |φ(qj )〉 = ±√
detNab(qi, qj ; β).

(41)
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The overlap matrix is defined as

Nab(qi, qj ; β) = ua(qi)Rab(qi, qj ; β)ub(qj )

+ va(qi)Rab(qi, qj ; β)vb(qj ), (42)

where u and v denote the BCS occupation probabilities, and
the matrix R reads

Rab(qi, qj ; β) =
∫

ψ†
a (r; qi)e

−iβĴy ψb(r; qj )d r. (43)

If Eqs. (27) and (28) are inserted in Eq. (43), the evaluation
of the matrix R reduces to the calculation of matrix elements
of the rotation operator in the basis of the axially symmetric
harmonic oscillator:

Rab(qi, qj ) =
∑
α,β

f α
a (qi)f

β

b (qj )〈α|e−iβĴy |β〉

+
∑
α̃,β̃

gα̃
a (qi)g

β̃

b (qj )〈α̃|e−iβĴy |β̃〉. (44)

The simplest way to evaluate these matrix elements is to
express the eigenfunctions of the axially symmetric harmonic
oscillator in the spherically symmetric oscillator basis. The
transformation from the spherical to the axially deformed basis
is given by the following expression:∣∣�α�αn⊥αnα

z
〉 =

∑
nlj

S
nlj

�α�αnα
⊥nα

z
|nlj�α〉, (45)

with the transformation coefficients S
nlj

�α�αnα
⊥nα

z
given in

Ref. [26]. It must be emphasized that this transformation is
only possible if ωz = ω⊥ [i.e., β0 = 0 in Eq. (21)] [27,28].
In addition, the same oscillator frequency h̄ω0 has to be
used for each value of the generating coordinate q to avoid
completeness problems in the GCM calculations [27]. We
have used h̄ω0 = 41A−1/3. Since the choice of the two basis
parameters h̄ω0 and β0 cannot be optimized, the convergence
of the results should be carefully checked as a function of the
number of oscillator shells used in the expansion of the Dirac
spinors. The expression for the matrix elements is simply

〈α|e−iβĴy |β〉 =
∑
nlj

S
nlj

�α�αnα
⊥nα

z
S

nlj

�β�βn
β

⊥n
β
z

d
j

�α�β
(β), (46)

where d
j

�α�β
(β) denotes the Wigner rotation matrix [22].

More general transformation coefficients have been derived in
Ref. [29] for the case ω⊥ 
= ωz, but they are rather complicated
and have not been used in the present analysis.

The Hamiltonian kernel

HJ (qi, qj ) = 〈φ(qi)|Ĥ P̂ J
MK|φ(qj )〉

= (2J + 1)
1 + (−1)J

2
δM0δK0

∫ π/2

0
sin βdJ∗

00 (β)

×〈φ(qi)|Ĥ e−iβĴy |φ(qj )〉dβ (47)

can be calculated from the mean-field energy functional
[Eq. (14)] [7,23–25], provided the modified densities

τ (r; qi, qj , β) =
∑
a,b

va(qi)vb(qj )N−1
ba (qi, qj ; β)ψ̄a(r; qi)

× (−iγ∇ + m)e−iβĴy ψb(r; qj ), (48)

ρS(r; qi, qj , β) =
∑
a,b

va(qi)vb(qj )N−1
ba (qi, qj ; β)

× ψ̄a(r; qi)e
−iβĴy ψb(r; qj ), (49)

ρTS(r; qi, qj , β) =
∑
a,b

va(qi)vb(qj )N−1
ba (qi, qj ; β)

× ψ̄a(r; qi)τ3e
−iβĴy ψb(r; qj ), (50)

jµ(r; qi, qj , β) =
∑
a,b

va(qi)vb(qj )N−1
ba (qi, qj ; β)

× ψ̄a(r; qi)γ
µe−iβĴy ψb(r; qj ), (51)

j
µ

TV(r; qi, qj , β) =
∑
a,b

va(qi)vb(qj )N−1
ba (qi, qj ; β)

× ψ̄ (
a r; qi)γ

µτ3e
−iβĴy ψb(r; qj ), (52)

are used when evaluating the expression

h(qi, qj ; β) ≡ 〈φ(qi)|Ĥ e−iβĴy |φ(qj )〉=
∫

Etot(r;qi, qj ,β)d r.

(53)
The computational task of evaluating the Hamiltonian and
norm overlap kernels can be reduced significantly if one
realizes that states with very small occupation probabilities
give negligible contributions to the kernels. Such states can be
excluded from the calculation, and the details of this procedure
can be found in Refs. [7,25].

An additional problem arises from the fact that the basis
states |φ(qj )〉 are not eigenstates of the proton and neutron
number operators Ẑ and N̂ . The adjustment of the Fermi
energies in a BCS calculation ensures only that the average
value of the nucleon number operators corresponds to the
actual number of nucleons. Consequently, the wave functions
|�JM

α 〉 are generally not eigenstates of the nucleon number
operators and, moreover, the average values of the nucleon
number operators are not necessarily equal to the number of
nucleons in a given nucleus. This happens because the binding
energy increases with the average number of nucleons and,
therefore, an unconstrained variation of the weight functions
in a GCM calculation will generate a ground state with the
average number of protons and neutrons larger than the actual
values in a given nucleus. To restore the correct mean values
of the nucleon numbers, we follow the standard prescription
[25,30] and modify the Hill-Wheeler equation by replacing
h(qi, qj ; β) with

h′(qi, qj ; β) = h(qi, qj ; β) − λp[z(qi, qj ; β) − z0]

− λn[n(qi, qj ; β) − n0], (54)

where

z(qi, qj ; β) = 〈φ(qi)|Ẑe−iβĴy |φ(qj )〉
and (55)

n(qi, qj ; β) = 〈φ(qi)|N̂e−iβĴy |φ(qj )〉.
λp(n) is the proton (neutron) Fermi energy, and z0 and n0 denote
the desired number of protons and neutrons, respectively.
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The Hill-Wheeler equation,∑
j

HJ (qi, qj )f J
α (qj ) = EJ

α

∑
j

N J (qi, qj )f J
α (qj ), (56)

presents a generalized eigenvalue problem, and thus the weight
functions f J

α (qi) are not orthogonal and cannot be interpreted
as collective wave functions for the variable q. It is useful to
re-express Eq. (56) in terms of another set of functions, gJ

α (qi),
defined by

gJ
α (qi) =

∑
j

(N J )1/2(qi, qj )f J
α (qj ). (57)

With this transformation the Hill-Wheeler equation defines an
ordinary eigenvalue problem∑

j

H̃J (qi, qj )gJ
α (qj ) = EαgJ

α (qi), (58)

with

H̃J (qi, qj ) =
∑
k,l

(N J )−1/2(qi, qk)HJ (qk, ql)(N J )−1/2(ql, qj ).

(59)
The functions gJ

α (qi) are orthonormal and play the role of
collective wave functions.

In practice, the first step in the solution of Eq. (56) is
the diagonalization of the norm overlap kernel N J (qi, qj )
[Eq. (40)]: ∑

j

N J (qi, qj )uk(qj ) = nkuk(qi). (60)

Since the basis functions |φ(qi)〉 are not linearly independent,
many of the eigenvalues nk are very close to zero. The
corresponding eigenfunctions uk(qi) are rapidly oscillating
and carry very little physical information. However, owing to
numerical uncertainties, their contribution to H̃J (qi, qj ) can be
large, and these states should be removed from the basis. From
the remaining states one builds the collective Hamiltonian

HJc
kl = 1√

nk

1√
nl

∑
i,j

uk(qi)H̃J (qi, qj )ul(qj ), (61)

which is subsequently diagonalized:∑
k,l

HJc
kl gJα

l = EJ
α gJα

k . (62)

The solution determines both the ground-state energy and
the energies of excited states, for each value of the angular
momentum J. The collective wave functions gJ

α (q) and the
weight functions f J

α (q) are calculated from the norm overlap
eigenfunctions

gJ
α (qi) =

∑
l

gJα
l ul(qi) (63)

and

f J
α (qi) =

∑
l

gJα
l√
nl

ul(qi). (64)

Once the weight functions f J
α (q) are known, it is straight-

forward to calculate all physical observables, such as transition

probabilities and spectroscopic quadrupole moments [4]. The
reduced transition probability for a transition between an initial
state (Ji, αi) and a final state (Jf , αf ) reads

B(E2; Jiαi → Jf αf )

= e2

2Ji + 1

∣∣∣∣∣∣
∑
qf ,qi

f
Jf ∗
αf

(qf )〈Jf qf ||Q̂2||Jiqi〉f Ji

αi
(qi)

∣∣∣∣∣∣
2

, (65)

and the spectroscopic quadrupole moment for a state (J, α) is
defined as

Qspec(J, α) = e

√
16π

5

(
J 2 J

J 0 −J

)

×
∑
qi ,qj

f J∗
α (qi)〈Jqi ||Q̂2||Jqj 〉f J

α (qj ). (66)

Since these quantities are calculated in the full configuration
space, there is no need to introduce effective charges; hence e
denotes the bare value of the proton charge. To evaluate tran-
sition probabilities and spectroscopic quadrupole moments,
we will need the reduced matrix element of the quadrupole
operator,

〈Jf qf ||Q̂2||Jiqi〉 = (2Ji + 1)(2Jf + 1)
∑

µ

(
Ji 2 Jf

−µ µ 0

)

×
∫ π/2

0
sin βd

Ji∗
−µ0(β)

×〈φ(qf )|Q̂2µe−iβĴy |φ(qi)〉. (67)

III. ILLUSTRATIVE CALCULATIONS

In this section we perform several illustrative configuration
mixing calculations that will test our implementation of the
GCM as well as the angular momentum projection. The
intrinsic wave functions that are used in the configuration
mixing calculation have been obtained as solutions of the
self-consistent RMF equations, subject to constraint on the
mass quadrupole moment. The interaction in the particle-hole
channel is determined by the effective PC Lagrangian [Eq. (2)],
and a density-independent δ force is used as the effective
interaction in the particle-particle channel. Pairing correlations
are treated within the BCS framework.

Among a number of self-consistent RMF-PC models that
have been considered over the past 10 years, a few reliable
and accurate phenomenological parametrizations have been
adjusted and applied in the description of ground-state proper-
ties of finite nuclei on a quantitative level. In particular, based
on an extensive multiparameter χ2 minimization procedure,
Bürvenich et al. have adjusted the PC-F1 set of coupling
constants for an effective PC Lagrangian with higher order
interaction terms [16]. whereas the Lagrangian of Eq. (2)
contains 11 adjustable coupling constants, the PC-F1 effective
interaction corresponds to a restricted set of 9 coupling
parameters and does not include the isovector-scalar channel.
In addition, the effective pairing interaction is determined
by the strength parameters Vp and Vn, for protons and
neutrons, respectively. The parameters in the particle-hole and

034308-7
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FIG. 1. The binding energy curves for
194Hg, as functions of the mass quadrupole
moment, calculated by expanding the Dirac
spinors in 10, 12, 14, 16, and 18 oscillator shells.

particle-particle channels have been adjusted to ground-state
observables (binding energies, charge radii, diffraction radii,
surface thickness, and pairing gaps) of 17 spherical nuclei [16].

The PC-F1 interaction has been tested in the analysis of
the equations of state of symmetric nuclear matter and neutron
matter, binding energies and form factors, and shell-structure-
related ground-state properties of several isotopic and isotonic
chains. This interaction has also been employed in relativistic
quasiparticle random phase approximation calculations of
multipole giant resonances [31]. A comparison with data has
shown that the RMF-PC model with the PC-F1 interaction can
compete with the best phenomenological finite-range meson-
exchange interactions. It should be noted, however, that PC-F1
exhibits a relatively large volume asymmetry at saturation,
resulting in a very stiff equation of state for neutron matter and
values that are too large for the neutron skin in finite nuclei.
Modern meson-exchange effective interactions, in contrast,
include an explicit medium dependence in both isoscalar
and isovector channels [32–34] and thus provide an im-
proved description of asymmetric nuclear matter and neutron
matter and realistic values of the neutron skin in finite nuclei.

A. Test of the generator coordinate method: 194Hg

Our first example is a test of the GCM in configuration
mixing calculations for the nucleus 194Hg. At this stage we
do not consider angular momentum projection yet. The results
of the test for the ground and excited states will be directly
compared with the classical analysis of the GCM in the
study of shape isomerism in 194Hg by Bonche et al. [25].
It has to be emphasized, however, that the calculated GCM
energies cannot be compared with data on a quantitative level,
because, without angular momentum projection, not only is
the rotational energy correction missing, but also the overlaps
between states that belong to prolate and oblate minima are
significantly reduced [35].

The GCM basis is constructed from self-consistent solution
of the constrained single-nucleon Dirac equation on a regular
mesh in the generating coordinate—the mass quadrupole

moment: from q = −40 b to q = 80 b, with a spacing of
�q = 2 b. The GCM basis thus consists of 61 intrinsic states.
The large and small components of Dirac spinors are expanded
in terms of the axially symmetric oscillator eigenfunctions. As
already pointed out in Sec. III B, the same oscillator frequency
h̄ω0 is used for each value of the generating coordinate q, and
additionally the condition ωz = ω⊥ is imposed. Since the basis
parameters are fixed to h̄ω0 = 41A−1/3 and β0 = 0, rather
then optimized, the convergence of the results with respect
to the number of major oscillator shells used in the expansions
Eqs. (27) and (28) has to be checked carefully.

In Fig. 1 we display the binding energy curves for 194Hg,
as functions of the mass quadrupole moment, calculated by
expanding the Dirac spinors in 10, 12, 14, 16, and 18 oscillator
shells. Obviously, at least 14 oscillator shells are necessary to
obtain convergence for deformations smaller than q = 35 b.
Larger deformations require at least 16 major oscillator shells.
The absolute minimum of the binding energy curve corre-
sponds to a slightly oblate shape (q = −10 b). An additional
shallow minimum at excitation energy ≈1.5 MeV is found on
the prolate side (q = 6 b). At much larger deformation (q =
45 b) we find a third, superdeformed minimum 4.2 MeV above
the first minimum of the binding energy curve. The deforma-
tions at which the three minima occur are in quantitative agree-
ment with those calculated with the nonrelativistic constrained
HF + BCS model of Ref. [25], using the SIII Skyrme effective
interaction. The excitation energy of the second minimum
is ≈1.5 MeV in both models, whereas the superdeformed
minimum calculated with the SIII interaction is more than
2 MeV higher than in the present calculation. Unless stated
otherwise, all calculations presented in this section have been
performed in the deformed oscillator basis with Nsh = 16
oscillator shells.

The first step in the solution of the modified Hill-Wheeler
equation is the construction and diagonalization of the norm
overlap kernel

N (qi, qj ) = 〈φ(qi)|φ(qj )〉; (68)
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FIG. 2. The eigenvalues of the norm overlap
kernel, calculated using four different values for
the mesh spacing: �q = 2, 4, 6, and 8 b (left
panel). The energies of the 12 lowest GCM states
plotted as functions of the dimension of the GCM
basis (right panel).

see Eq. (60). Since the GCM basis states are not linearly
independent, many of the norm overlap kernel eigenvalues nk

are close to zero. This is illustrated in the left panel of Fig. 2,
where we display the eigenvalues nk for four different values
of the mesh spacing, ranging from �q = 2 b to �q = 8 b. For
�q = 2 b the overlaps between neighboring states are typically
≈0.8, and in the corresponding set of 61 eigenvalues we find
13 values smaller then 10−3. If the mesh spacing is increased
to �q = 4 b and �q = 6 b, the overlaps between neighboring
states are reduced approximately by factors of 2 and 8,
respectively. A further increase of the mesh spacing results
in very small overlaps between neighboring states (≈0.05);
that is, basis states become almost orthogonal. Except in a
few test cases that will be specified explicitly, all calculations
in this section have been carried out with the mesh spacing
�q = 2 b.

In the next step the GCM basis space is truncated by
eliminating those eigenvectors of the norm overlap kernel,
which correspond to eigenvalues smaller than a given positive
constant εn. This is necessary to eliminate numerical insta-
bilities in the diagonalization of the collective Hamiltonian
[Eq. (61)]. In the right panel of Fig. 2, the energies of the 12
lowest GCM states are plotted as functions of the number of
basis states. We notice that the spectrum is stable for a broad
range of basis dimensions, between 25 (εn = 0.2) and 55 (εn =
5 × 10−4) vectors. These results can be directly compared with
Fig. 4 of Ref. [25]. In the following calculations, eigenvectors
of the norm overlap kernel with eigenvalues smaller than
εn = 5 × 10−4 are eliminated from the basis.

In Fig. 3 we plot the energies of the 15 lowest GCM states
as functions of the average quadrupole moment

〈qk〉 =
∑

j

g2
k (qj )qj , (69)

calculated in oscillator bases with 10, 12, 14, and 16 oscillator
shells, together with the corresponding mean-field binding
energy curves. The GCM ground states are normalized to zero
energy. In all four cases the average deformation of the ground

state is close to the minimum of the binding energy curve, and
the gain in correlation energy that results from configuration
mixing is ≈0.8 MeV. The energies of the ground state and the
two first excited states basically converge already for a basis
with 12 shells. Higher excited states, however, contain sizable
admixtures of basis states with larger deformations, and the
corresponding energy spectrum is sensitive to the number of
oscillator shells.

The GCM states can be analyzed in more detail if one
plots their collective wave functions gk(q) as functions of the
quadrupole moment. In Fig. 4 we display the collective wave
functions for the first 14 GCM states in 194Hg. The vertical
dashed line denotes the position of the barrier between the
main potential well and the superdeformed well. Except for
the fifth state, the wave functions of the lowest nine states
are concentrated in the main potential well. The fifth state
obviously belongs to the superdeformed minimum; hence
its energy displays a strong dependence on the number of
oscillator shells (see also Fig. 3). For states with k � 10 the
wave functions are generally spread over a wide region of
deformations, both in the main and in the superdeformed well.

In Fig. 5 we plot the GCM energy spectra, calculated
with 16 oscillator shells, for four values of the mesh spacing,
ranging from �q = 2 b to �q = 8 b. The corresponding mean-
field binding energy curves are also included in the figure, and
their minima are placed at zero energy. Comparing with our
standard value of �q = 2 b, we notice that the low-energy
part of the spectrum is accurately calculated also for �q = 4 b.
By increasing the mesh spacing to �q = 6 b, accurate energies
are obtained only for the two lowest states. With a further
increase of �q, the overlaps between neighboring states
become so small that there is hardly any configuration mixing.
The resulting GCM energies are very close to the energies of
the basis states |φ(q)〉.

Several additional tests, carried out in comparison with
the results of Ref. [25], have shown that our implementation
of the GCM is numerically stable and, therefore, it can also
be used for configuration mixing calculations with angular-
momentum-projected states.
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FIG. 3. The energies of the 15 lowest GCM states in 194Hg, plotted as functions of the average quadrupole moment, together with the
corresponding mean-field binding energy curves. The four panels correspond to calculations in oscillator bases with 10, 12, 14, and 16 major
oscillator shells.

B. Test of angular momentum projection: 32Mg

For a quantitative description of structure phenomena,
especially in transitional deformed nuclei characterized by a
coexistence of spherical and intruder configurations, calcula-
tions must explicitly include correlations related to restoration
of broken symmetries. In particular, the rotational energy
correction (i.e., the gain in energy obtained by projection on
states with good angular momentum) can be of the order of
2–4 MeV for the ground state. Here we perform several tests of
the angular momentum projection for the isotope 32Mg. This

nucleus belongs to the island of inversion at N = 20, which is
characterized by the melting of the neutron shell closure and
the predominance of intruder state configurations in ground
states of neutron-rich systems. The structure of 32Mg has been
the subject of numerous experimental and theoretical studies.
Several modern theoretical approaches have recently been
employed in extensive studies of the erosion of the spherical
N = 20 shell closure in this neutron-rich nucleus: the shell
model [36,37], the quantum Monte Carlo shell model [38],
and the angular-momentum-projected GCM based on the
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g k(q
)

-40 -20 0 20 40 60 80
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194
Hg k=1-7 k=8-14Nsh=16

FIG. 4. GCM collective wave functions
gk(q) [Eq. (57)] for the lowest 14 states in
194Hg. The vertical dashed line denotes the
position of the barrier separating the main and
the superdeformed potential wells.
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FIG. 5. The mean-field binding energy curves for 194Hg, together with the energies and average quadrupole moments of the 15 lowest GCM
states. Calculations have been performed using four values of the mesh spacing: �q = 2, 4, 6, and 8 b. Zero energy is placed at the position of
the minimum of the binding energy curve.

nonrelativistic Gogny interaction [4,39]. Although virtually
all self-consistent mean-field models, nonrelativistic as well
as relativistic, predict a spherical ground state for 32Mg, the
GCM calculation with the Gogny force has shown that the
ground state becomes deformed as a result of the inclusion of
a rotational energy correction. Both the excitation energies
E(2+

1 ) [40] and E(4+
1 ) [41,42], as well as the transition

probability B(E2, 0+
1 → 2+

1 ) [43,44], have been measured for
32Mg. When compared to data from neighboring nuclei, the rel-
atively low excitation energy of the first excited state, E(2+

1 ) =
885 keV, the large transition probability B(E2, 0+

1 → 2+
1 ), and

the ratio E(4+
1 )/E(2+

1 ) = 2.6 indicate that the ground state of
32Mg is deformed.

In Fig. 6 we display the mean-field binding energy
curves for 32Mg as functions of the quadrupole moment,
calculated with the PC-F1 relativistic PC effective interaction.
The constrained mean-field equation has been solved self-
consistently on a regular mesh ranging from q = −2.2 b to
q = 4.0 b, with mesh spacing �q = 0.2 b. The three curves
correspond to calculations with Nsh = 8, 10, and 12 major
oscillator shells. For such a light system and for this range of
deformations, it appears that already 10 oscillator shells are
sufficient to obtain a reasonably converged mean-field binding
energy curve. In the following calculations we expand the
Dirac spinors in the axially deformed oscillator basis with
Nsh = 10 major shells. This choice is also supported by the
results of Ref. [4], where correlations beyond the mean-field
approximation have been studied in the framework of the
angular-momentum-projected GCM with the Gogny force. In
addition to a spherical ground state, the PC-F1 binding energy
curves display a prolate deformed shoulder at q = 1.5 b,
at an excitation energy of ≈3.5 MeV above the ground state.

The binding energy curve calculated with the Gogny force is
similar (see Fig. 6 of Ref. [4]), but the prolate shoulder is
somewhat more pronounced and is located only ≈1.9 MeV
above the spherical ground state. Of course, if the shoulder is
too high above the spherical ground state, correlations related
to the restoration of rotational symmetry and quadrupole
fluctuations might not be strong enough to deform the nucleus.
The different predictions for the location of the shoulder can
be related to the single-particle levels calculated with the
PC-F1 interaction, displayed in Fig. 7, and with the Gogny
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FIG. 6. The binding energy curves for 32Mg, calculated from the
constrained solutions of the self-consistent relativistic mean-field
equations in axially deformed oscillator bases with 8, 10, and 12
major shells.
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thick dashed curve denotes the position of the
Fermi energy.

interaction (Fig. 5 of Ref. [4]). In these figures the eigenvalues
of the corresponding mean-field Hamiltonians are plotted as
functions of the quadrupole deformation. The ratio between the
neutron spherical gap (7.2 MeV) and the gap at deformation
q = 1.5 b (2.9 MeV), is ≈2.5 for the PC-F1 interaction,
whereas the Gogny force gives a much smaller value for this
ratio, ≈1.8. This leads to a more pronounced prolate shoulder
at lower excitation energy.

The essential step in the procedure of angular momentum
projection is the evaluation of the projected norm overlap
kernel

N J (q, q) = 〈φ(q)|P J
00|φ(q)〉 = (2J + 1)

1 + (−1)J

2

×
∫ π/2

0
sin βdJ∗

00 (β)n(q; β)dβ, (70)

where

n(q; β) = 〈φ(q)|e−iβĴy |φ(q)〉. (71)

In several studies [35,39,45,46] it has been shown that the
ansatz

napp(q; β) = e− 1
2 〈Ĵ 2

y 〉sin2β, (72)

presents an excellent approximation for the function n(q; β), at
both small and large deformations. The expectation value 〈Ĵ 2

y 〉
as a function of the quadrupole moment is plotted in Fig. 8.
This curve is in agreement with the one obtained with the
Gogny interaction (see the right panel in Fig. 5 of Ref. [39]).
In Fig. 9 we display the function n(q; β) for several values of
the quadrupole moment. The solid curves correspond to the
approximate expression Eq. (72), whereas dots denote values
obtained with the exact calculation. The comparison between
the exact and approximate results provides a very useful
test of the numerical procedure used in angular momentum
projection. The projected norm overlap kernels, shown in
Fig. 10 for the four lowest angular momenta, can be compared

with those obtained using the Gogny effective interaction (see
Fig. 7 of Ref. [4]). We notice that the spherical configuration
is a pure 0+ state [N J=0(0, 0) = 1]. The maxima of the
projected norm overlap kernels for higher angular momenta
are correspondingly shifted to larger deformations.

In Fig. 11 the energies of the angular-momentum-projected
states are analyzed. At this stage we do not consider configu-
ration mixing yet, and the projected energy of the |φ(q)〉 state
reads

EJ (q) = HJ (q, q)

N J (q, q)
. (73)

The angular-momentum-projected energy curves for Jπ =
0+, 2+, 4+, 6+, and 8+ are plotted, together with the corre-
sponding mean-field binding energy curves, as functions of the
quadrupole deformation. The curves obtained from solutions
in axially deformed oscillator bases with Nsh = 8, 10, and
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FIG. 8. The expectation value 〈Ĵ 2
y 〉 for 32Mg, as a function of the

mass quadrupole moment.
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FIG. 9. A comparison between the exact val-
ues of the function n(q; β) [Eq. (71) (dots)] and
the approximate expression [Eq. (72) (curves)]
for several values of the mass quadrupole mo-
ment.

12 major shells are almost identical. Since the spherical
configuration is already a pure 0+ state, there is no energy
gain for Jπ = 0+ at q = 0. Notice that the spherical point
q = 0 is not included in plots of EJ (q) for J � 2. Namely,
for J 
= 0 the quantities HJ (0, 0) and N J (0, 0) are so small
that their ratio [Eq. (73)] cannot be determined accurately.
For higher values of the angular momentum (Jπ = 6+, 8+
in Fig. 11) several additional configurations close to the
spherical point are also characterized by very small values
of the projected norm overlap kernel. These configurations
can be safely omitted from the projected energy curves,
because on the one hand the angular momentum projection
becomes inaccurate at these points and on the other hand the
corresponding angular momentum projected states would not
play any role in configuration mixing calculations.

It is interesting to compare the projected energy curves
with those obtained using the Gogny effective interaction (see
Fig. 6 of Ref. [4]). The principal difference is seen already
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FIG. 10. Projected norm overlap kernel N J (q, q) as a function
of the mass quadrupole moment for 32Mg.

for the J = 0+ projected energy. The PC-F1 interaction
predicts two almost degenerate minima at small oblate and
prolate deformations. The occurrence of degenerate oblate
and prolate minima, symmetrical with respect to the spherical
configuration, is a feature common to all nuclei for which
the mean-field calculation predicts a spherical ground state
[39]. As compared to the mean-field energy, the prolate
deformed shoulder is more pronounced for the EJ=0(q)
curve, and its excitation energy has been lowered from 3.5
to 1.2 MeV by angular momentum projection. However, at
the mean-field level the Gogny interaction predicts a more
pronounced shoulder, only ≈1.9 MeV above the spherical
minimum. With angular momentum projection the shoulder
becomes the absolute minimum of the J = 0 projected energy
curve; that is, when calculated with the Gogny interaction,
the inclusion of the rotational energy correction leads to a
deformed ground state in 32Mg. In addition, the degenerate
oblate and prolate minima, symmetrical with respect to q = 0,
are predicted at slightly higher excitation energy. In the present
calculation with the PC-F1 interaction, the gain in rotational
energy is too small to deform the ground state of 32Mg. The
rotational energy correction EREC (i.e., the difference between
the mean-field and the Jπ = 0+ projected energy curves) is
plotted in Fig. 12. EREC is zero for the spherical intrinsic state,
and generally it increases rather steeply for small deformations
(see also Fig. 11). Our result for EREC is very similar to the
curve obtained from the Gogny mean-field potential energy
(see Fig. 6 of Ref. [39]). This means that the deviation between
the Jπ = 0+ projected energy curves can indeed be attributed
to the difference between the PC-F1 and Gogny interactions
on the mean-field level.

C. Angular momentum projection and
configuration mixing: 32Mg

As a final test of our implementation of the GCM for RMF
models, we have performed configuration mixing calculations
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0+,2+,4+,6+, and 8+) potential energy curves
for 32Mg, as functions of the mass quadrupole
moment. The mean-field energies are also in-
cluded (thick dotted curves). The three panels
correspond to solutions in axially deformed
oscillator bases with 8, 10, and 12 major shells.

of the angular-momentum-projected intrinsic states for 32Mg.
The solution of the Hill-Wheeler matrix equation (62), with
the collective Hamiltonian [Eq. (61)], determines both the
ground-state energy and the energies of excited states for
each value of the angular momentum J. The collective wave
functions gJ

α (q) and the weight functions f J
α (q) are calculated

from the norm overlap eigenfunctions, Eqs. (63) and (64),
respectively. As we have shown in Fig. 10, for J � 2 several
points on the energy surfaces close to q = 0 correspond to
configurations with very small values of the projected norm
kernel. Since the numerical evaluation of the norm overlap
and Hamiltonian kernels is not accurate in such cases, we have
excluded from the configuration mixing calculation all those
intrinsic configurations for which N J (q, q) < 0.001.

The energies and the average quadrupole moments
[Eq. (69)] of the two lowest GCM states for each angular
momentum are displayed in Fig. 13, together with the
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FIG. 12. Rotational energy correction as a function of the mass
quadrupole moment for 32Mg.

corresponding projected energy curves. The spectrum can
be compared with the available data, and with the angular-
momentum-projected GCM results obtained using the Gogny
effective interaction (see Fig. 11 of Ref. [4]). Configuration
mixing between the two essentially degenerate oblate and
prolate minima of the J = 0+ energy curve, symmetrical with
respect to q = 0, results in the almost spherical ground state
0+

1 . When calculated with the Gogny interaction, however,
the ground state is prolate deformed. The relatively large
deformation is a result of a fine balance between the energy cor-
rection associated with the restoration of rotational symmetry
(which favors larger deformation) and the correlations induced
by quadrupole fluctuations (with mixing between oblate and
prolate configurations reducing the deformation of the lowest
0+ state).

The excitation energies of the 2+
1 , 4+

1 , and 6+
1 GCM states

are included in Table I, together with the corresponding
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TABLE I. The excitation energies (in MeV) of the 2+
1 , 4+

1 , and 6+
1

GCM states for 32Mg.

E (PC-F1) E (Gogny) E (exp.)

2+
1 2.04 1.4 0.885

4+
1 4.42 3.6 1.437

6+
1 7.41 5.5

energies obtained with the Gogny force and the available ex-
perimental excitation energies. Obviously, the PC-F1 interac-
tion predicts yrast states at excitation energies that are too high,
compared with the Gogny interaction or with the experimental
values. In Table II we display the spectroscopic quadrupole
moments of the 2+

1 , 4+
1 and 6+

1 GCM states for the PC-F1 and
Gogny effective interactions. Although comparable in size,
the quadrupole moments calculated with the PC-F1 interaction
are systematically smaller. This is, of course, consistent
with the lower excitation energies predicted by the Gogny
force. Since the ground state is almost spherical, the cal-
culated transition probability B(E2; 0+

1 → 2+
1 ) = 15.5 e2 fm4

is far too small when compared to the experimental value
([447(57) e2 fm4] [44] or to the value obtained with the
Gogny interaction (395 e2 fm4) [47]. It should be noted that
calculations with many nonrelativistic interactions, as for
instance the Sly4 effective interaction, also exhibit similar
problems [48].

The differences in the spectra predicted by the PC-F1
and Gogny interactions originate in the deviation of the
corresponding mean-field binding energy curves or, more
precisely, in the different neutron single-particle levels (Nils-
son diagrams) calculated with the two effective interactions.
Because of the large spherical gap predicted by the PC-F1
interaction, the magic number N = 20 persists even in such
a neutron-rich system, and 32Mg exhibits structure properties
typical for other magic nuclei (e.g., 48Ca) [3]. This is further
illustrated in Fig. 14, where we display the amplitudes of
the collective wave functions |gJ

k (q)|2 for the two lowest
GCM states of each angular momentum, together with the
corresponding projected energy curves. For instance, |g0

1(q)|2
obviously reflects a configuration mixing of the prolate and
oblate minima with almost equal weights, resulting in a ground
state with an average quadrupole moment close to zero. The
rotational energy correction for the ground state (i.e., the
energy gain from angular momentum projection) is ≈1 MeV.
Configuration mixing provides an additional gain of 0.3 MeV.
Both values are in agreement with the corresponding quantities
calculated for the magic 48Ca nucleus [3]. The amplitudes

TABLE II. The spectroscopic quadrupole moments (in e fm2) of
the 2+

1 , 4+
1 , and 6+

1 GCM states for 32Mg.

Q
spec
2 (PC-F1) Q

spec
2 (Gogny)

2+
1 −17.51 −19.15

4+
1 −19.28 −26.31

6+
1 −21.19 −30.09
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FIG. 14. Squares of the collective wave functions |gJ
k (q)|2 of the

two lowest GCM states for each value of the angular momentum in
32Mg, together with the corresponding projected energy curves.

|gJ
1 (q)|2 for J = 2, 4, and 6 are localized in the prolate wells

of the corresponding projected energy curves and, therefore,
the average quadrupole moments of the states 2+

1 , 4+
1 , and 6+

1
are close to the prolate minima. The collective wave functions
gJ

2 (q), for J = 2, 4, and 6, correspond to a band based on the
β vibrational state 0+

2 .

IV. SUMMARY AND OUTLOOK

The framework of self-consistent relativistic mean-field
models has been very successfully employed in analyses of
a variety of nuclear structure phenomena, not only in nuclei
along the valley of β stability but also in exotic nuclei
with extreme isospin values and close to the particle drip
lines. Applications have reached a level of sophistication
and accuracy comparable to the nonrelativistic Hartree-Fock
(Bogoliubov) approach based on Skyrme or Gogny effective
interactions. Although mean-field and pairing correlations are
treated very carefully in modern RMF models, additional
correlations, related to the restoration of broken symmetries
and to fluctuations, have either been neglected or taken into
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account in an implicit way. In this work we have introduced
a model in which restoration of rotational symmetry and
fluctuations of the quadrupole deformation are explicitly
included in the relativistic framework.

In the specific model been developed in this work, the
generator coordinate method is employed to perform config-
uration mixing calculations of angular-momentum-projected
wave functions, calculated in a relativistic PC model. The
geometry has been restricted to axially symmetric shapes,
and the mass quadrupole moment is used as the generating
coordinate. The intrinsic wave functions are generated from
the solutions of the constrained RMF+BCS equations in an
axially deformed oscillator basis.

To test our implementation of the GCM and angular
momentum projection, a number of illustrative calculations
have been carried out for the nuclei 194Hg and 32Mg. The
PC-F1 parameter set [16] has been used for the effective PC
Lagrangian, and the effective interaction in the particle-particle
channel has been approximated by a density-independent δ

force. The test of the GCM has been performed in a study
of quadrupole dynamics in the nucleus 194Hg, and the results
have been compared with the classical analysis of the GCM
in the investigation of shape isomerism in 194Hg by Bonche
et al. [25], based on the nonrelativistic constrained HF+BCS
model with the SIII Skyrme effective interaction. Angular
momentum projection and, finally, configuration mixing of
angular-momentum-projected states, have been tested in the
example of the neutron-rich nucleus 32Mg, in comparison with
results obtained with the angular-momentum-projected GCM
based on the nonrelativistic HFB with the Gogny interaction
[4,39]. The tests have been very successful, and the results
obtained for the binding energy curves, projected energy
curves, rotational energy corrections, ground and low-lying
excited states, and collective wave functions for 194Hg and
32Mg are generally in very good agreement with the predictions
of GCM calculations based on nonrelativistic Skyrme and
Gogny interactions, respectively.

The choice of the PC-F1 relativistic effective interaction,
however, does not lead to a deformed solution for the ground
state of 32Mg, even after the inclusion of the rotational
energy correction. This result is in contrast with available

data and with the configuration mixing calculation of angular-
momentum-projected configurations based on the Gogny in-
teraction. The different predictions for the ground state of 32Mg
can be related to the corresponding mean-field binding energy
curves and, more specifically, to the different results for the size
of the spherical N = 20 neutron gap, obtained with the Gogny
and PC-F1 interactions. Even though the spherical ground state
of 32Mg, predicted by the PC-F1 effective interaction, is not
crucial in the context of the present analysis, it points to an
important problem, namely, the choice of effective interactions
to be used in self-consistent calculations that go beyond the
mean-field approximation and explictly include correlations,
such as those considered in the present work. Virtually all
global effective interactions have been adjusted to data (e.g.,
masses and radii) that already include correlations. However,
those correlations that we wish to treat explicitly should not
be included in the effective interaction in an implicit way. The
solution is to adjust global effective interactions to pseudodata,
obtained by subtracting correlation effects from experimental
masses and radii. Approximate methods for the calculation of
correlations have recently been developed [35] that will enable
a systematic evaluation of correlation energies for the nuclear
mass table.

Before proceeding with realistic applications of the model
introduced in this work, our first task is to adjust a new
global effective PC interaction that will not contain rotational
energy corrections and quadrupole fluctuation correlations
in an implicit way. Further developments will include the
treatment of pairing fluctuations by particle number projection,
the use of different generating coordinates for the neutron
and proton density distributions, the description of nonaxial
shapes, and the extension to odd nuclei.
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