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Incoherent white-light solitons in nonlinear periodic lattices
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We predict the existence of lattice solitons made of incoherent white light: lattice solitons made of light
originating from an ordinary incandescent light bulb. We find that the intensity structure and spatial power
spectra associated with different temporal frequency constituents of incoherent white-light lattice solitons
�IWLLSs� arrange themselves in a characteristic fashion, with the intensity structure more localized at higher
frequencies, and the spatial power spectrum more localized at lower frequencies; the spatial correlation dis-
tance is larger at lower frequency constituents of IWLLSs. This characteristic shape of incoherent white-light
lattice solitons reflects the fact that diffraction is stronger for lower temporal frequency constituents, while
higher frequencies experience stronger effective nonlinearity and deeper lattice structure.

DOI: 10.1103/PhysRevE.73.056608 PACS number�s�: 42.65.Tg

I. INTRODUCTION

The behavior of partially coherent light in nonlinear pho-
tonic lattices depends on the threefold interplay between the
nonlinearity, the lattice properties, and the coherence proper-
ties of the light. This direction of research is motivated by
the following facts: �i� the behavior of light in periodic sys-
tems is driven by interference, which crucially depends on
the coherence of the light, and �ii� most of the light sources
encountered in nature �e.g., the Sun� emit partially coherent
light. Partial coherence of light becomes important when the
coherence length scale�s� become comparable with the char-
acteristic length scales of the periodic system, e.g., the lattice
spacing. Several studies have addressed this direction of re-
search recently, starting with the prediction �1� and the ob-
servation �2� of random-phase �incoherent� lattice solitons
�RPLSs�, and the development of an experimental technique
for Brillouin-zone spectroscopy of nonlinear photonic lat-
tices �3�. Following the experimental findings of Ref. �2�, a
subsequent theoretical study of the evolution of a simple
incoherent beam into a RPLS �4� was carried out. Later on,
random-phase gap-lattice solitons, arising from the Bloch
modes associated with the anomalous diffraction regions,
were studied in one-dimensional ��1+1�D� nonlinear wave-
guide arrays, under nonlinear self-defocusing conditions
�5,6�. Such gap RPLSs were demonstrated experimentally
and studied theoretically very recently, in a �2+1�D geom-
etry �7�.

The interest in the dynamics of partially incoherent light
beams in nonlinear photonic lattices stems from two direc-
tions of research that have attracted considerable attention
over the past decade. The first one is the area of lattice soli-
tons �often called “discrete solitons”�. In optics, these entities
were mostly studied through propagation of coherent light
beams in nonlinear photonic lattices �8–23�. The second is

the area of incoherent solitons and related nonlinear phenom-
ena such as modulation instability �MI� �24–42�. These phe-
nomena were studied through the propagation dynamics of
incoherent light beams in noninstantaneous nonlinear homo-
geneous media �24–35,37–40�.

Let us now briefly address the background in both areas.
The first area has started with the 1988 prediction of coher-
ent optical solitons in nonlinear arrays of coupled
waveguides �10�, which were observed ten years later �12�.
The dynamics of coherent light in linear and nonlinear peri-
odic lattices was subsequently addressed in many studies, to
name a few �e.g., see Refs. �8,9� and references therein�: the
observations of Bloch oscillations �13�, diffraction manage-
ment �14�, studies of gap solitons �11,16�, multiband solitons
�18,19�, higher-band Floquet-Bloch solitons �20�, soliton
trains �21�, and modulational instability in nonlinear wave-
guide arrays �22�. Important progress has been made recently
with the optical induction technique �15,17�, which is used to
construct �2+1�D nonlinear waveguide arrays. This system
was utilized for the first observation of �2+1�D lattice soli-
tons in any two-dimensional periodic system in nature �17�.

The second area started with the 1996 experimental ob-
servation of incoherent solitons �25�, which was carried out
in a homogeneous nonlinear medium with a noninstanta-
neous response. This was followed by a number of experi-
ments �e.g., see Ref. �24� and references therein� in several
types of nonlinear media �e.g., photorefractives �25�, liquid
crystals �35�, etc.�. Several theoretical approaches were used
to describe the evolution of incoherent light in noninstanta-
neous nonlinear media. The frequently used theories are the
coherent density theory �27�, the modal theory �28�, and the
mutual coherence theory �29�, which are formally equivalent
�30�. Other theories include the geometric optics approach
�applicable in the ray-optics limit� �31�, and the statistical
physics approach based on the Wigner transform �32�. The
discovery of incoherent solitons raised fundamental ques-

PHYSICAL REVIEW E 73, 056608 �2006�

1539-3755/2006/73�5�/056608�9� ©2006 The American Physical Society056608-1

http://dx.doi.org/10.1103/PhysRevE.73.056608


tions about the existence of the closely related phenomenon
of modulation instability with incoherent light. Following
this motivation, theoretical and experimental studies have
demonstrated that incoherent modulation instability indeed
occurs, but only if the nonlinearity exceeds a specific thresh-
old value, which in turn is determined by the coherence
properties of the light �33,34�. In their original concept
�24–26�, incoherent solitons were studied with a noninstan-
taneous nonlinearity, with a response time of the nonlinearity
much longer than the characteristic time of random fluctua-
tions of the optical field. However, it has been pointed out
that other mechanisms �36,42� may provide support for in-
coherent solitons in instantaneous media as well.

The incoherent light source that was used in the first ex-
periment on incoherent solitons �25� was a laser beam sent
through the rotating diffuser, that is, the light was spatially
incoherent but quasi-monochromatic. The next experiment
�26� went further and used an ordinary incandescent light
bulb as a light source; such light is both spatially and tem-
porally incoherent �incoherent white light�. Theoretically,
several characteristic features of incoherent white-light soli-
tons �37� and modulation instability �38,39� of such light in
noninstantaneous nonlinear media were subsequently stud-
ied. In such a system, the evolution of a broad band of fre-
quencies is coupled with the nonlinearity giving rise to inter-
esting features such as collective threshold for the onset of
MI �38,39� and many others. More recently, incoherent white
light solitons were studies in nonlocal media as well �41�.

Here we study the properties of incoherent white-light
lattice solitons �IWLLSs� in �1+1�D nonlinear waveguide
arrays with a noninstantaneous nonlinearity. The motivation
for this study is twofold. First, the propagation of nonmono-
chromatic light in periodic structures is inherently interest-
ing, because even in the linear case, each frequency constitu-
ent behaves differently in the lattice �e.g., the Bragg angle
depends on the wavelength�. Second, when the lattice is non-
linear, the various components of the temporal spectrum are
coupled in their propagation dynamics. Such physical setup
is feasible experimentally and is expected to yield interesting
phenomena. For concreteness, we analyze here IWLLSs
originating from the light source used in Ref. �26�, which
spans the visible range from �=400–700 nm, and is both
spatially and temporally incoherent.

We emphasize that these solitons are inherently statistical
in nature, with an optical field structure that varies randomly
in time. Therefore, they physically differ from e.g.,
Manakov-type vector lattice solitons �18,19�, or the more
recently studied polychromatic multigap solitons �23�. For
example, the latter solitons involve the coupled evolution of
spatially coherent beams at several different wavelengths; by
contrast, the incoherent white light solitons studied here pos-
sess a broad continuum of frequency components, and are
both spatially and temporally incoherent.

In this paper, we self-consistently calculate the properties
of a typical IWLLS solution. We identify the behavior of
each temporal frequency constituent of such an IWLLS,
finding the intensity profile and coherence properties at each
frequency �. We find that these features, at each frequency,
are affected by the lattice in a fashion similar to that of a
quasimonochromatic random-phase lattice soliton. However,

the intensity structure is more localized at higher frequencies
�violet side of the spectrum� than at lower frequencies. The
opposite holds for the spatial power spectrum that is more
localized at lower frequencies �red side of the spectrum�.
This characteristic shape of IWLLSs reflects the fact that
diffraction is stronger for lower temporal frequency constitu-
ents, while higher frequencies experience stronger effective
nonlinearity and deeper lattice structure. Finally it is shown
that IWLLSs are experimentally accessible, as the dynamics
in a nonlinear waveguide array can �under proper nonlinear
conditions� naturally evolve from a “simple” �bell-shaped�
incoherent white-light input beam into an IWLLS. The input
beam acquires the properties of an IWLLS during propaga-
tion, in a fashion similar to the nonlinear reshaping process
of a spatially incoherent quasimonochromatic beam �see
Refs. �2,4,6� for examples of such dynamics�.

II. DESCRIPTION OF THE PHYSICAL SYSTEM

The physical system is as follows. The light source �con-
tinuously� emits spatially and temporally incoherent light
�e.g., an incandesent light bulb generates such light �26��,
with a broad temporal power spectrum ��=400–700 nm�. A
beam of such light is incident upon a �1+1�D nonlinear
waveguide array with noninstantaneous nonlinearity. This is
the key physical property of our system: the nonlinearity
cannot follow the fast fluctuations of the randomly fluctuat-
ing field but rather responds to the total time-averaged light
intensity �integrated over all frequencies� �26,37–39�. This
allows the creation of a smooth self-induced defect in the
lattice that enables the self-guidance of all the spectral com-
ponents of the incoherent beam.

The state of the system can be described by using
the mutual coherence function in the space-frequency do-
main, where the intensity structure and spatial coherence
properties at a given frequency � are described by the mu-
tual spectral density B��x1 ,x2 ,z� �37,38�; here x is the spatial
coordinate while z denotes the propagation axis coordinate.
The intensity structure at the temporal frequency constituent
� is contained within the diagonal of the mutual spectral
density I��x ,z�=B��x ,x ,z�. The information on the spatial
coherence properties at frequency � is extracted by normal-
izing B��x1 ,x2 ,z�

���x1,x2,z� = B��x1,x2,z�/�B��x1,x1,z�B��x2,x2,z� . �1�

The quantity ���x1 ,x2 ,z� is referred to as the complex co-
herence factor at frequency �. It expresses the spatial corre-
lation properties of the randomly fluctuating optical field.
Hence, the spatial correlation distance at frequency � is re-
lated to the characteristic width of ���x1 ,x2 ,z�. The total
time-averaged intensity is obtained by integrating B��x ,x ,z�
over all temporal frequencies Itot�x ,z�=�d�B��x ,x ,z�.

Within the modal theory �28,37�, the mutual spectral den-
sity B��x1 ,x2 ,z� is expressed in terms of modes ��;m�x ,z�
and their modal weights d�;m
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B��x1,x2,z� = �
m

d�;m��;m
* �x2,z���;m�x1,z� . �2�

The evolution of modes ��;m, and hence the evolution of the
correlation function B��x1 ,x2 ,z�, along the z axis, is gov-
erned by a set of integrodifferential equations �37,38�

i
���;m

�z
+

1

2k�

�2��;m

�x2 +
k�

n0
V�x,z���;m�x,z� = 0, �3�

where the potential V�x ,z�= p�x�+�n�Itot� is made up of the
linear p�x�= p�x+D�, and the nonlinear term �n�Itot�, where
Itot=�d�I��x ,z�, while I��x ,z�=�md�;m ���;m�x ,z��2 denotes
the intensity structure at frequency �. In this paper we con-
sider self-focusing media ��n�I� /�I�0, however, from our
discussion it follows that the qualitative features of IWLLSs
discussed below should hold for IWLLSs in self-defocusing
media as well, with the distincion of their Floquet-Bloch
power spectra being located mostly in the anomalous diffrac-
tion regions of the momentum space, as has been discussed
for quasimonochromatic spatially incoherent solitons �e.g.,
see �4��. In order to extract the behavior of the intensity
structure, coherence, and spatial spectra at a given temporal
frequency � in the most simple fashion, we assume that the
medium is dispersionless and the photosensitivity is fre-
quency independent. That is, the linear and the nonlinear
contributions to the index of refraction are frequency inde-
pendent; see Refs. �37,39� for discussion. We also neglect the
possible strong intensity fluctuations of the source; such an
effect can be included in Eq. �3� by using an effective non-
linear term �40�.

Solitons occur in our system when diffraction of a spa-
tially localized, incoherent white-light beam, is exactly bal-
anced by the nonlinear self-focusing �or self-defocusing�.
This is far more involved than in the monochromatic case
since an exact balance has to happen for every color constitu-
ent simultaneously. The self-consistency principle for an
IWLLS is as follows: An incoherent white-light beam in-
duces a defect in the periodic lattice, which has localized
defect states. Because the coefficients in Eq. �3� are fre-
quency dependent �k�=n0� /c�, the defect modes, and their
propagation constants �which are located in the gaps of
the spectrum of the linear system� differ for each frequency
component. If all the modes ��;m of each frequency constitu-
ent making up the incoherent beam coincide with the
defect modes at corresponding frequencies, then the self-
consistency loop is closed, and the incoherent white-light
beam self-traps in the lattice, forming an IWLLS. Math-
ematically, this means that

��;m�x,z� = u�;m�x�ei��;mz,

where u�;m�x� are orthonormal �real� eigenfunctions, and
��;m real eigenvalues of the defect modes at the frequency �,
obtained self-consistently from the eigenvalue equation

1

2k�

d2u�;m

dx2 +
k�

n0
V�x�u�;m = ��;mu�;m�x� , �4�

where

V�x� = p�x� + �n	
 d��
m

dm;��um;��x��2� .

The eigenvalues of the localized defect modes ��;m are lo-
cated in the gaps of the spectrum of the linear system �in-
cluding the semi-infinite gap above the first band�. We em-
phasize that the band-gap structure of the linear system
differs for each frequency component, as shown below.

III. INTENSITY STRUCTURE, SPATIAL POWER
SPECTRA, AND COHERENCE

In this section we present an example of an IWLLS in a
saturable self-focusing medium �n�I�=�I / �1+ I / IS�, and ana-
lyze its intensity structure, spatial power spectra �see the Ap-
pendix for definitions�, and coherence properties at each fre-
quency �. We have already noted that the coefficients in the
evolution Eq. �3� are frequency dependent, e.g., the �free-
space� diffraction term, 	k�

−1�2 /�x2, is stronger at lower fre-
quencies. From this it follows that the IWLLS structure
should differ for different frequency constituents. In order to
analyze this, it is convenient to rewrite Eq. �4� in dimension-
less units

d2u�;m

d
2 + Veff��;
�u�;m = �m
eff���u�;m�
� , �5�

where 
=x /x0, x0 is a spatial length scale,
�m

eff���=2k�x0
2��;m is the effective propagation constant,

while

Veff��;
� =
2�k�x0�2

n0
�p�
� + �n�Itot� �6�

is the effective potential felt by each frequency component �.
We would like now to examine each frequency constitu-

ent of the IWLLS individually, and extract its features that
arise solely from the fact that the effective potential is fre-
quency dependent. To do that, it is convenient to analyze
solutions for which the temporal power spectrum is uniform.
�Otherwise, if one of the frequencies would strongly domi-
nate within the temporal power spectrum, it would “guide”
the other frequencies, and the nonlinear features discussed
below would be harder to distinguish�.

The parameters of the nonlinearity and the lattice
used in the calculations are �IS=1.5·10−4, the periodic
potential term is p�x�= p0� j�exp�−��x− jD� /xc�8, where
xc=3.7 �m, D=10 �m, and p0=4.5·10−4, while the
spatial length-scale x0=2 �m. The linear part of the
index of refraction is n0=2.3 �as for the Strontium-
Barium-Niobate �SBN� crystals used in
such experiments�. The light source spans the entire visible
range �=400–700 nm, which determines the span of
k�=n0� /c=2�n0 /� �frequency components span from
2.69–4.71�1015 Hz�. With these parameters, the IWLLSs
are calculated self-consistently from Eq. �4� by using the
numerical procedure described in �18�. In order to extract the
main frequency-dependent features of the IWLLS, we chose
the same modal structure for each frequency component. The
power distribution within the populated localized modes aris-
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ing from the Bloch modes of the linear bands �at each tem-
poral frequency� is as follows:

�i� First band �total 72%� six modes: 17.8, 16.2, 13.7,
10.8, 8.0, and 5.5 %

�ii� Second band �total 25%� two modes: 18.0 and 7.0 %,
�iii� Third band �total 3%� one mode: 3.0%.

The total power within the soliton is 11 I0x0. Figure 1 illus-
trates the effective potential, the effective band-gap structure
of the lattice, and the propagation constants of the soliton.
We observe two important features: First, the effective band-

gap structure �the linear lattice properties� of the various fre-
quency components differ from one another. The gaps are
wider and the bands are narrower at higher frequencies. This
follows from the fact that the effective lattice depth increases
with the increase of frequency �see Eq. �6��. Second, the
effective nonlinear index change is larger at higher frequen-
cies. The effective propagation constants �m

eff��� are pushed
deeper into the gaps for higher frequencies; this is consistent
with the deeper effective lattice and stronger effective non-
linearity “felt” by the higher frequencies. It should be stated

FIG. 1. �Color online� The effective potentials and band gap structure at different temporal frequencies. �a� The effective potential
Veff�� ;x� for �=400 nm �violet line� and �=700 nm �red line� of the self-consistently calculated IWLLS �the potential value for the violet
light is shifted upwards by 1 for better comparison�. �b� The band gap structure of the lattice �shaded regions denote bands�, and the effective
propagation constants �m

eff��� of the populated soliton modes �red lines�.

FIG. 2. �Color online� Intensity profile and spatial power spectra of the IWLLS example in a nonlinear waveguide array displaying a
self-focusing nonlinearity. Left column: soliton quantities integrated over all frequency constituents. �a� Intensity profile of the IWLLS
�dot-dashed line�, and broadened intensity profile of the IWLLS input beam after linear diffraction for 42 mm �solid line� in
a linear lattice. �b� Intensity structure of the self-consistently calculated IWLLS �solid line�, the experimentally accessible
�simple� input beam �dot-dashed line�, and the structure of the simple input beam after evolution for 42 mm �dotted line� under the
nonlinear conditions that support the self-consistently calculated IWLLS. �c� Same as �b� for the Fourier power spectrum, and
�d� same as �b� for the Floquet-Bloch power spectrum �the spectra are in arbitrary units�. Right column: soliton
quantities of different wavelength constituents, �=400 nm �4.71·1015 Hz, violet dotted line�, �=509 nm
�3.70·1015 Hz, green dashed line�, �=700 nm �2.69·1015 Hz, red solid line�: �e� Intensity profiles after linear diffraction. �f� Intensity
profiles of the IWLLS. �g� Fourier, and �h� Floquet-Bloch power spectra of the IWLLS.
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that in our calculations, we work in the parameter regime
where the defect induced in the nonlinear medium by the
IWLLS is smaller than the lattice depth, so that the basic
lattice features are preserved in the presence of the soliton.
Because different frequencies “feel” different effective lat-
tices and nonlinearities, we conclude that in our example �of
a “flat” temporal spectrum� it is harder to obtain soliton so-
lutions that have a broader frequency range. �The fact that
the spectral width of the incoherent white light can affect
nonlinear phenomena was discussed previously in the con-
text of modulation instability �38�.� We test the stability of
the calculated soliton numerically by evolving it �with small
initial noise on top of the soliton modes� for many diffraction
lengths.

The intensity structure and power spectra �see the Appen-
dix for definitions� of the IWLLS example are plotted in Fig.
2, along with the linear diffraction behavior of the IWLLS
launched in a linear lattice. Figure 2�a� shows the spatially
oscillating intensity structure of the IWLLS. The humps in
the intensity are located mainly on the lattice sites, which is
consistent with the fact that 72% of the power is located in
the localized modes originating from the first band �1,18�.
When the lattice is linear, the initial profile diffracts instead
of forming an IWLLS; Fig. 2�a� shows the beam properties
after diffraction for z=42 mm. Figure 2�e� shows the inten-
sity structure at three different wavelengths ��=400, 509,

and 700 nm� after linear diffraction. The largest wavelength
experiences the strongest diffraction, because it evolves in
lattice which is effectively most shallow. The intensity struc-
ture of different frequency constituents is shown in Fig. 2�f�.
Larger wavelength �smaller frequency� constituents have
spatially broader profiles with smaller peaks at the lattice
sites. This also follows from the fact that larger wavelengths
experience a more shallow effective potential and a weaker
nonlinearity. More pictorially, the intensity profile of the red
part of the spectrum is wider, with smaller humps in the
soliton region. The violet part of the spectrum shows the
opposite behavior, with narrower intensity profiles and more
pronounced humps in the soliton region �approximately, the
height ratio resembles the frequency ratio�.

The Fourier power spectra of the IWLLS are plotted in
Figs. 2�c� and 2�g�, while the Floquet-Bloch power spectra
are plotted in Figs. 2�d� and 2�h�. The total Fourier �Floquet-
Bloch� power spectrum of the IWLLS is shown in Fig. 2�c�
�Fig. 2�d�, respectively� with solid line. Most of the spectrum
is located in the normal diffraction regions, as the nonlinear-
ity is of the self-focusing type �1–4�. Figure 2�g� �Fig. 2�h��
shows the Fourier �Floquet-Bloch, respectively� spatial
power spectrum at different temporal frequency constituents.
Within a single Brillouin zone, the spatial spectra corre-
sponding to the smaller frequency constituents are more lo-
calized in kx space. For example, the spectrum of the red

FIG. 3. �Color online� Contour plots of ���x1 ,x2� expressing the coherence properties of the IWLLS at different frequency constituents.
�a� ���x1 ,x2� for the red constituent �=700 nm, and �b� for the violet component �=400 nm. Cross sections of the coherence factor,
���x1 ,0� �solid line�, and ���x1 ,2D� �dotted line� for the red �c�, and the violet �d� frequency constituent.
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component has very localized peaks within the first Brillouin
zone for low kx values �see solid line in Figs. 2�g� and 2�h��.
This is a consequence of the shallow effective lattice for the
red component �see Fig. 1�a��.

Figure 3 illustrates the coherence properties of the IWLLS
at different wavelengths. Coherence is expressed in terms of
the complex coherence factor �Eq. �1�� at frequency �,
���x1 ,x2�. The quantity ���x1 ,x2� in Fig. 3 is real, in the
range �−1,1�. The white �black� color in the contour plot
denotes ��=1 �−1, respectively�, corresponding to coher-
ence between the points x1 and x2. Gray corresponds to ��

=0, i.e., total incoherence. The coherence of an IWLLS at a
given frequency mainly depends on the modal structure of
the IWLLS at that frequency. In order to extract solely the
dependence of the spatial coherence on the temporal fre-
quency, in our IWLLS example, the excited modes and their
weights are chosen to be identical at all frequencies. Figures
3�a� and 3�b� show ���x1 ,x2� for the red and violet parts of
the temporal spectrum. The red component has a �spatially�
more extended modal structure, and therefore a broader area
of smaller coherence �the grey region is broader for the red
component�. However, Figs. 3�c� and 3�d� illustrating the
cross-sections ���x1 ,0� and ���x1 ,2D� for the red and the
violet components, respectively, reveal that the red compo-
nent is much more correlated from site to site than the violet
�larger frequency� component. This also follows from the
fact that larger frequency components have the same number
of modes �with the same modal weights� squeezed within a
smaller region of space, which yields a smaller coherence
length at larger frequencies. The same feature holds for in-
coherent white-light solitons in homogeneous noninstanta-
neous nonlinear media �37�.

IV. EVOLUTION OF AN INPUT INCOHERENT BEAM
INTO A IWLLS

In this section we study the accessibility of incoherent
white-light solitons in an experimental setting. In particular,

we show that a “simple” incoherent white-light beam
launched into the lattice can evolve, under proper nonlinear
conditions, into an IWLLS. The parameters of the lattice and
the nonlinearity are identical to the ones corresponding to the
numerically exact soliton solution above. The modal struc-
ture of a simple, bell-shaped, input incoherent beam may be
described by

��;kx
�x,z = 0� = �I0�x�G��kx�eikxx. �7�

In our calculations the intensity structure of the beam is
I0�x�=e−�x/�2.6D��8

. Here, kx is the transverse momentum of the
kxth mode ��;kx

at frequency �. The continuous variable kx

here replaces the discrete index m. The function G��kx�
	e−�kxD/�2���2

expresses the relative power within the
�� ;kx�th mode. Note that we have chosen all frequency con-

FIG. 4. �Color online� The intensity profiles, Fourier, and Floquet-Bloch spatial power spectra of a simple bell-shaped incoherent beam
shown at different frequencies: �=400 nm �4.71·1015 Hz, violet dotted line�, �=509 nm �3.70·1015 Hz, green dashed line�, �=700 nm
�2.69·1015 Hz, red solid line�. �a� The above quantities at the input z=0, and �b� after propagation for 42 mm. These properties at different
frequency components differ from one another after propagation through the system.

FIG. 5. The evolution of the total intensity profile �a�, total
Fourier power spectrum �b�, and total Floquet-Bloch power spec-
trum �c� of an incoherent, bell-shaped, incoherent white-light beam
launched into the nonlinear waveguide array �see text for details�.
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stituents to have the same intensity structure, Fourier power
spectra, and coherence at the input �see Fig. 4�.

Figure 5 shows the evolution of the intensity structure, the
Fourier power spectrum, and the Floquet-Bloch power spec-
trum of the input beam. Shortly after the entrance into the
lattice, the intensity profile of the beam becomes multi-
humped, conforming to the lattice structure. Similarly, the
single humped power spectra �both Fourier and Floquet-
Bloch� becomes multihumped, with humps mainly in the
normal diffraction regions, due to the self-focusing nonlin-
earity �2,4�. We observe that after several diffraction lengths
of propagation in the z direction, the beam reshapes itself
into the solitonlike shape. Figure 4 shows the input and out-
put intensity structure, spatial power spectra, and coherence
of different frequency constituents. The beam is propagated
for z=42 mm. Even though the input beam has the same
shape for each frequency component, which clearly cannot
be the case for an IWLLS, the beam naturally evolves into an
IWLLS form �see Figs. 4�. For example, the power spectra at
the red component is narrower in kx space at the output than
other components, etc. We emphasize that this occurs solely
due to the underlying dynamics, i.e., no specific engineering
of the input beam was necessary. Figures 2�b�–2�d� show
excellent matching of the self-adjusted beam, and the self-
consistently calculated IWLLS. It is worth noting that the
Floquet-Bloch power spectrum is obtained by using the ap-
propriate basis for each frequency component, since this ba-
sis is itself frequency dependent. This can be seen in Fig.
4�a� �bottom inset�, which shows the Floquet-Bloch power
spectrum of the input beam at different wavelengths; even
though the Fourier power spectrum is identical for all fre-
quency components �at the input�, the Floquet-Bloch power
spectrum differs for different frequencies.

From Figs. 4 and 5 we find that the structure of the input
incoherent beam evolves into the IWLLS structure obtained
self-consistently. The evolution occurs via two mechanisms:
�i� through a nonlinearity induced energy exchange between
the Floquet-Bloch waves excited by the input beam �e.g., see
Refs. �2,4� for discussion�, and �ii� through a filtering effect
to nonlocalized radiation �see Fig. 5�; namely, some amount
of power is radiated away from the localized beam during the
initial process of self-adjustment of the input beam. It is
interesting to note that during this process, longer wave-
lengths tend to be radiated more. This is natural to expect as
they have a stronger tendency to diffract �e.g., see Fig. 2�e��;
thus, the temporal power spectrum is modified during the
self-trapping process �this also depends on the spatial coher-
ence properties at different wavelengths, which is in our case
specified by the input beam structure, Eq. �7��. After the
beam becomes self-trapped, its properties do not change dur-
ing further propagation, and its power is conserved.

V. CONCLUSION

In conclusion, we have theoretically studied incoherent
white light lattice solitons in nonlinear waveguide arrays. We
have examined the relevant physical properties of an IWLLS
including the intensity structure, spatial power spectra, and
coherence properties of different color constituents �from the

visible spectral range �=400–700 nm�. The intensity pro-
files at lower temporal frequency constituents are broader,
while the peaks in the intensity structure are lower. The op-
posite holds for the spatial power spectra at a given fre-
quency: Spatial power spectra �Fourier and Floquet-Bloch�
are narrower, with higher peaks at the lower frequency con-
stituents �red part of the temporal spectrum�. It is important
to note that the aforementioned features of the IWLLS arise
due to complex nonlinear coupling among the different color
components: Each localized mode is formed by the self-
consistent action of all other modes, including modes at dif-
ferent frequencies. We have also shown that such solitons are
accessible experimentally in the sense that a simple incoher-
ent white-light beam, when launched into the nonlinear lat-
tice under suitable conditions, may naturally evolve into an
IWLLS. We launched the same bell-shape profile for all
wavelength components, and the nonlinear evolution process
causes self-adjustment of the beam during the propagation,
eventually resulting in a beam with the characteristic features
of IWLLS, which are different at different frequencies.

The ideas of IWLLSs were presented here in the optical
context. However, we believe that similar solitonic structures
may be observed at finite temperature with multispecies
Bose-Einstein condensates, where bosons from different spe-
cies differ in their mass. The boson mass appears as a coef-
ficient in the kinetic energy term of the many-body
Schrödinger equation, in the same fashion as the wave-vector
k� appears within the diffraction term of Eq. �3�. This points
towards further analogies between partially-coherent light in
noninstantaneous nonlinear media and finite-temperature
weakly- interacting Bose-Einstein condensates �43�.
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APPENDIX: DEFINITION OF POWER SPECTRA

For the clarity of the exposition, in this section we define
the Fourier and Floquet-Bloch �FB� power spectra. When the
periodic system is linear, the eigenmodes of the system are
the FB modes �;nkx

�x ,z�= f�;nkx
�x�eikxx+i���;kx�z, obtained

from the eigenvalue equation

1

2k�

d2

dx2 �f�;nkx
�x�eikxx� +

k�

n0
p�x�f�;nkx

�x�eikxx

= ���;kx�f�;nkx
�x�eikxx, �A.1�

where f�;nkx
�x�= f�;nkx

�x+D�; n here denotes the band num-
ber, and kx is the Bloch wave vector. The frequency depen-
dent propagation constant of the Floquet-Bloch wave is
��� ;kx�, while the effective propagation constant of the FB
mode is 2k�x0

2��� ;kx�. Note that the structure, and the
propagation constants of the FB modes depend on the tem-
poral frequency �; e.g., the effective propagation constants
of the FB waves as a function of frequency are plotted in
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Fig. 1. The Floquet-Bloch power spectrum of the incoherent
white-light beam at frequency � is defined as

JFB,��kx,z� = �
m

d�,m�
 dx��;m�x,z�f�;nkx

* �x�e−ikxx�2

.

�A.2�

We present the FB spectra in the extended-zone scheme. The
Fourier power spectrum of the beam at frequency � is de-
fined as

JF,��kx,z� = �
m

d�,m�
 dx��;m�x,z�e−ikxx�2

. �A.3�

The total Floquet-Bloch JFB,tot�kx ,z� and Fourier JF,tot�kx ,z�
power spectra are obtained by integration over all frequen-
cies, that is, JFB,tot�kx ,z�=�d�JFB,��kx ,z�, and JFB,tot�kx ,z�
=�d�JFB,��kx ,z�.
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