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We report measurements of transverse momentum pt spectra for ten event multiplicity classes of p-p
collisions at

���
s
p
� 200 GeV. By analyzing the multiplicity dependence we find that the spectrum shape

can be decomposed into a part with amplitude proportional to multiplicity and described by a Lévy
distribution on transverse mass mt, and a part with amplitude proportional to multiplicity squared and
described by a Gaussian distribution on transverse rapidity yt. The functional forms of the two parts are
nearly independent of event multiplicity. The two parts can be identified with the soft and hard
components of a two-component model of p-p collisions. This analysis then provides the first isolation
of the hard component of the pt spectrum as a distribution of simple form on yt.
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I. INTRODUCTION

The structure of the inclusive pt spectrum from relativ-
istic nuclear collisions is affected by several aspects of
collision dynamics and by the final-state hadronization
process. Comparisons of p-p, d-Au, and Au-Au pt spectra
at Relativistic Heavy Ion Collider (RHIC) suggest that a
form of color-deconfined matter has been created in Au-Au
collisions [1,2]. Particle-production mechanisms which
could determine spectrum structure include soft parton
scattering followed by longitudinal or ‘‘string’’ fragmenta-
tion [3] and hard parton scattering followed by transverse
fragmentation [4]. Other mechanisms could be significant.
The structure of the pt spectrum at some achievable level
of precision may therefore be complex. A summary of
efforts to unfold and interpret the structure of inclusive
pt spectra from ISR to Fermilab and SPS energies in the
context of jet phenomenology and quantum chromody-
namic (QCD) theory is provided in [5].

At RHIC energies hard parton scattering is expected to
dominate the spectrum at larger pt and to be significantly
modified in A-A collisions (jet quenching) [4,6]. But how
does hard scattering contribute at smaller pt? How does it
interact with thermal or ‘‘soft’’ particle production? Is
there an ‘‘intermediate’’ pt region [7] with its own unique
production mechanisms? Those issues remain unresolved
after much theoretical speculation and experimental mea-
surement and provide a context for the present analysis
applied to high-statistics pt spectra from ten multiplicity
classes of p-p collisions. The multiplicity dependence
offers new access to underlying particle-production
mechanisms.
pt spectra from relativistic nuclear collisions are con-

ventionally modeled by the power-law function [8], a form
suggested by measured jet systematics and perturbative
QCD (pQCD) expectations. At larger pt the spectrum is
expected to tend asymptotically to the power-law form p�nt
[9]. The strict power-law form is then generalized to the
function A=�1� pt=p0�

n, having the expected pQCD de-
pendence at larger pt but transitioning to an approximate
Maxwell-Boltzmann form at smaller pt, consistent with
expectations for thermal particle production. Although the
power-law function has been previously applied to p-p
data with apparently good fit quality (�2 within expected
limits) it has not been tested with the precision of recently
acquired RHIC p-p data. One can question the validity of
its underlying assumptions. For instance, why should a
single model function adequately describe spectra which
may represent a mixture of several particle-production
mechanisms?

Alternatively, a model function can be formulated in
terms of the two-component model of nuclear collisions
[10], which identifies ‘‘soft’’ p-p collisions with no hard
parton scatter and ‘‘semihard’’ collisions with at least one

significant parton scatter (i.e., producing distinguishable
hadron fragments). According to the two-component
model the minimum-bias distribution on event multiplicity
nch can be decomposed into separate negative-binomial
distributions (NBD) identified with soft and semihard
event types. We then expect the fraction of events with a
hard parton collision to increase monotonically with se-
lected event multiplicity nch. Variation of pt spectra with
nch could then provide a basis for isolating soft and hard
(and possibly other) components of inclusive spectra on a
statistical basis, where the hard spectrum component refers
to the fragment pt spectrum for hard-scattered partons, and
the soft component is the pt spectrum for soft particle
production.

In this analysis we first test the ability of the conven-
tional power-law model function to represent the data. We
then reconsider the data with no a priori assumptions. We
attempt to describe all spectrum structure with the simplest
algebraic model required by the data (e.g., ‘‘simple’’ in
terms of parameter number and functional forms—
cf. Eq. (4) and Sec. XI) and then to associate the model
elements with possible particle-production mechanisms.
We adopt two new analysis techniques: (1) We introduce
transverse rapidity yt [11,12] as an alternative to pt. yt
has the advantage that spectrum structure associated
with hard parton scattering and fragmentation is more
uniformly represented on a logarithmic variable: yt corre-
sponds to variable �p � ln�pparton=pfragment� convention-
ally used to describe parton fragmentation functions in
elementary collisions [13]. A simple description of
soft particle production is not compromised by the choice
of transverse rapidity. (2) We introduce the running
integral of the yt spectrum, which substantially
reduces statistical fluctuations relative to significant
structure and therefore improves the precision of the
analysis.

In this paper we present high-statistics pt spectra for ten
multiplicity classes from p-p collisions at

���
s
p
� 200 GeV.

We use the conventional power-law model function to fit
those spectra and assess the quality of that description. We
then construct running integrals of the spectra on yt and
define a reference function common to all nch values and
based on the Lévy distribution. We use that reference to
extract difference spectra which contain the nch-dependent
parts of the spectra in a more differential form. We find
that the difference spectra have a simple structure: the
major component is well described by a Gaussian distri-
bution with fixed shape and with amplitude (relative to the
reference) linearly proportional to the particle multiplicity.
To simplify presentation we initially describe approximate
relationships and optimized parameters without errors. We
then return to a comprehensive discussion of the parameter
system and its errors and consistency in Sec. VI. This
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analysis is based on p-p collisions at
���
s
p
� 200 GeV

observed with the STAR detector at the RHIC.

II. pt AND yt SPECTRA

Data for this analysis in the form of inclusive pt spectra
for unidentified charged particles were obtained from
nonsingle-diffractive (NSD) p-p collisions at

���
s
p
�

200 GeV triggered by a coincidence of two beam-beam
counters (BBC) in 3:3< j�j< 5 [1]. Charged particles
were measured with the STAR Time Projection Chamber
(TPC) and Central Trigger Barrel (CTB) [14]. Particle
momenta were determined with a 0.5 T magnetic field
parallel to the beam (z) axis. Primary charged particles
were represented by TPC tracks falling within the accep-
tance for this analysis—2� azimuth, pseudorapidity j�j<
0:5, and 0:2< pt < 6 GeV=c—and satisfying track cuts
described in [1]. The observed particle multiplicity in the
acceptance is denoted by n̂ch, whereas the corrected
and pt-extrapolated true event multiplicity is denoted by
nch. From 3� 106 NSD events individual pt distributions
were formed for 10 primary-particle multiplicity classes
indexed by the observed multiplicity: n̂ch 2 �1; � � � ; 8; 9�
10; 11� 12	.

To eliminate backgrounds from event pileup each TPC
primary-track candidate was independently required to
match a CTB/trigger timing requirement (100 ns, matching
efficiency 94%, false-coincidence background 2%) and
project to the beam line within 1 cm transverse distance
of closest approach. No other vertex requirement was
applied to the primary tracks. The event-vertex z position
was estimated by the arithmetic mean �z of projected track z
for all CTB-matched primary tracks in an event. Events
with j �zj< 75 cm were accepted for further analysis. The
event vertex was not included in primary-track pt fits. That
procedure eliminated pileup-event tracks, selected those
events well positioned relative to the TPC, and minimized
correlations of individual track pt and pt spectrum shape
with event multiplicity or event triggering not related to
collision dynamics.

The resulting pt spectra were corrected for tracking
efficiency, backgrounds, and momentum resolution.
Tracking acceptance and efficiency on (pt, �, z) and back-
grounds were determined by embedding Hijing events in
data events with at least one empty bunch (so-called abort-
gap events). The same fractional correction was applied to
all multiplicity classes. The correction factor was 1.45 at
0.2 GeV/c, falling to 1.2 at 0.5 GeV/c, and thereafter
smoothly to 1 at 6 GeV/c. Efficiency- and acceptance-
corrected (but not pt-extrapolated) spectra integrate to
multiplicity n0ch � �1:35
 0:015�n̂ch, while the corrected
and pt-extrapolated per-event spectra integrate to ‘‘true’’
multiplicity nch � �2:0
 0:02�n̂ch. The errors reflect the
spectrum-to-spectrum relative normalization uncertainties
most relevant to this differential analysis. The normaliza-
tion uncertainty common to all spectra is about 10%.

In Fig. 1 (left panel) corrected and normalized per-event
pt spectra are plotted as points in the form
1=nch1=ptdn=dpt for ten multiplicity classes, offset by
successive factors 40 (except for n̂ch � 1 at bottom).
Parentheses for ratio prefactors of spectrum densities in
the form dn=dx are omitted to lighten notation. In other
cases ratio prefactors are separated from densities by a dot.
Corrected and extrapolated spectra normalized by nch all
integrate to unity in the sense of Eq. (1) for pt or yt, with
the integration limit! 1. In Fig. 1 (right panel) equivalent
spectra on transverse rapidity are plotted. Hard parton
scattering leading to transverse fragmentation may be bet-
ter described on transverse rapidity yt � lnf�mt �

pt�=m0g, with transverse mass mt �
������������������
p2
t �m2

0

q
, and pion

mass m� assumed for m0: yt � 2) pt � 0:5 GeV=c and
yt � 4:5) pt � 6 GeV=c. The solid curves ns=nch � S0

provide a visual reference for the data. ns�n̂ch� and S0 (pt
or yt) are defined below, and function S0 is by definition
independent of n̂ch.

III. POWER-LAW ANALYSIS

The power-law function is the conventional model func-
tion applied to pt spectra from relativistic nuclear colli-
sions [8]. Said to be ‘‘QCD-inspired,’’ the function
A=�1� pt=p0�

n goes asymptotically to p�nt at large pt
(hence ‘‘power-law’’) and approximates an exponential at
small pt. The argument supporting the power-law function
assumes that pt spectra at larger collision energies can be
modeled with a single functional form. In this part of the
analysis we test that assumption. The pt spectra for ten
multiplicity classes in Fig. 1 were fitted with the three-
parameter power-law model function defined above.
Parameters A, p0, and n were independently varied to
minimize �2 for each multiplicity class (in all fitting �2

was calculated using only statistical errors). The inclusive

pt (GeV/c)

1/
n ch

 1
/p

t d
n/

dp
t  

[(
G
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/c

)-2
]
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FIG. 1. Corrected and normalized charged-particle spectra on
transverse momentum pt (left) and transverse rapidity yt (right)
for 10 event multiplicity classes, displaced upward by successive
factors 40 relative to n̂ch � 1 at the bottom. Solid curves
represent reference function ns=nch � S0�yt� (cf. Sec. IV C).
Dotted curves are spline fits to guide the eye.
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mean pt was extracted for each class as hpti � 2p0=�n�
3� (cf. Sec. VII for those results).

In Fig. 2 (left panel) we plot relative fit residuals�������������
ytNevt

p
�data-fit�=

���������
data
p

distributed on yt. The points indi-
cate the actual data positions. The quantity plotted insures
that the residuals are directly measured in units of the root-
mean-square statistical error at each yt. These relative
residuals are then similar to Pearson’s correlation coeffi-
cient or relative covariance [15]. Poisson errors apply to
dn=dyt, whereas the spectra plotted in Fig. 1 (‘‘data’’) are
of the form 1=ytdn=dyt. Thus, a factor

����
yt
p

is required to
make the statistical reference uniform on yt in these resid-
uals plots. The residuals structure on pt is equivalent to that
on yt within a Jacobian factor (the fits were actually done
on pt and the residuals transformed to yt for this plot). As
noted in the discussion in Sec. XI and elsewhere, much of
the structure due to hard scattering and fragmentation is
displaced to small pt in a nonlinear way when plotted on
pt.

The large-wavelength residuals in Fig. 2 (left panel)
exceed the expected statistical error (hatched band) by up
to 30� and are similar in form for various n̂ch classes,
revealing a large systematic disagreement between the
power-law model and data. The small-wavelength struc-
ture, mainly attributable to true statistical fluctuations, is
consistent with expectations (hatched band). The argument
supporting the power-law model of pt spectra is thus
shown to fail when tested with high-statistics STAR p-p
data.

In Fig. 2 (right panel) we plot best-fit values of power-
law exponent n vs n̂ch resulting from fits to data (solid
points) and to the two-component model functions de-
scribed later in this paper (open circles). The latter points
and hatched band are discussed in Sec. XI. We observe a
very strong variation of n with multiplicity. Reduction of n
with increasing hard scattering is expected in the power-

law context, but we find that the physical mechanism is
different from the theoretical expectation (cf. Sec. XI).

We observe very strong disagreement between the
power-law model function and data, whereas a previous
UA1 (SP�PS) analysis reported power-law fits with reason-
able �2 at the same energy [8]. The UA1 results are never-
theless consistent with the present analysis because that
analysis was inclusive on nch and employed only 20 k
minimum-bias events (vs 3� 106 for the present analysis).
That analysis was therefore statistically insensitive to the
structures apparent in Fig. 2. Statistics for the UA1
minimum-bias pt spectrum are comparable to the n̂ch �
11:5 multiplicity class in this study, but the latter contains
about 10� the hard component in the UA1 minimum-bias
spectrum. An E735 (FNAL) analysis of spectrometer data
at 0.3, 0.55, 1.0, and 1.8 TeV [16], including multiplicity
dependence of spectrum shapes, also obtained satisfactory
power-law fits to pt spectra. However the effective event
number was comparable to the UA1 study, in part because
of the reduced angular acceptance of the spectrometer
relative to the STAR CTB detector, and the pt acceptance
[0.15, 3] GeV/c was considerably less than STAR or UA1,
further reducing sensitivity to spectrum shape. Given this
exclusion of the power-law model we now seek an alter-
native model which best describes pt spectra from relativ-
istic nuclear collisions.

IV. RUNNING INTEGRATION

Running integration provides substantial noise reduction
for spectrum analysis, thereby improving precision. In this
section we examine the nch dependence of differential and
integrated spectra and define alternative normalization fac-
tor ns�n̂ch� and reference function S0.

A. Spectrum normalization

In Fig. 3 (left panel) the spectra from Fig. 1 (right panel)
are replotted without vertical offsets as spline curves for
detailed comparison. No assumptions have been made
about the data, and all spectra integrate to unity when
extrapolated. The dash-dot curve is reference S0 defined
in this section. To facilitate the discussion we identify three
regions on yt separated by the vertical dotted lines: A �
�1:3; 1:9	, B � �1:9; 3:4	, and C � �3:4; 4:5	. The region
below yt � 1:3 is outside the pt acceptance. Regions A
and C are defined such that the curves within them are
nearly constant relative to one another, whereas in region B
the differences between curves vary rapidly.

The trend of the spectra with increasing n̂ch is counter-
balancing changes within A and C: linear decrease in A
(see inset) and linear increase inC. The relative variation in
the two regions over the observed n̂ch range is quite differ-
ent: 10% reduction in A and 10� increase in C. Such
balancing variations are expected if the yield in C increases
relative to A with n̂ch, due to the requirement that the
normalized spectra must integrate to unity. We conclude
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that with increasing n̂ch additional particle yield localized
on yt and dominating region C is added to the spectrum.

The apparent reduction at smaller yt is then a trivial
effect of the unit-integral condition which can be compen-
sated by changing the normalization. We normalize the
spectra not by true total multiplicity nch but by multiplicity
ns defined such that the normalized spectra approximately
coincide within region A. The variation of lower end point
positions with n̂ch is compensated within errors by normal-
izing with the linear function ~ns�n̂ch� � 2n̂ch�1�
0:013n̂ch� (function ~ns estimates multiplicity ns). The
negative term compensates the relative yield increase at
larger yt. The revised normalization also facilitates the
running integration study described below.

B. Running integrals and reference S0

To calculate running integrals the measured spectra are
extrapolated in the pt interval �0; 0:2	 GeV=c (yt 2
�0; 1:15	) with reference function ns=nch � S0. The extrapo-
lation is relatively insensitive to the S0 parameters, insuring
quick convergence of the S0 optimization procedure de-
scribed below. The running integral of a yt spectrum is
defined by

 n�n̂ch; yt� �
Z yt

0
dy0ty0tf1=y0tdn�n̂ch; y0t�=dy0tg: (1)

In Fig. 3 (right panel) the normalized running integrals
1=ns�n̂ch� � n�n̂ch; yt� reveal the detailed structure of the
spectra with much-improved signal-to-noise ratio. We ob-
serve that the integrals in the right panel indeed nearly
coincide up to yt � 2. Above that point (region B) the
integrals separate. In region C the integrals all saturate,
with nearly equal spacings between curves. That result
provides a first detailed look at the localized (on yt) addi-
tional yield which produces the nch dependence of the yt
spectrum shape.

Given the results in Fig. 3 (right panel) the natural
choice for a reference is one which coincides with all
data curves for yt < 2 and defines a limiting case for the
sequence of separated data curves at larger yt. We therefore
define the reference as the asymptotic limit of the yt spectra
(or their integrals) as n̂ch ! 0. For reasons discussed below
we chose as a trial reference the Lévy distribution [17]

 S0�mt;�0; n� � As=�1� �0�mt �m0�=n�n (2)

defined on transverse mass mt and suitably transformed to
yt. �0 � 1=T0 is an inverse-slope parameter. We find that
the Lévy distribution with optimized parameters (dash-dot
reference curves in Fig. 3) coincides with the desired
asymptotic form. Determination of parameters n and
�0 from the data is discussed in the next subsection.
Amplitude As��0; n� is defined by the unit-integral nor-
malization requirement on S0.

The running integral of S0, the dash-dot curve in Fig. 3
(right panel) denoted by N0, is obtained by replacing the
curly bracket in Eq. (1) with S0�yt�, in which case
n�n̂ch; yt� ! N0�yt� (also, see the legend in Fig. 4—right
panel). N0 is thereby defined as the limit as n̂ch ! 0 of the
running integrals for the ten multiplicity classes. We can
obtain a more differential picture by optimizing reference
curve S0 and subtracting it and its running integral N0 from
the data. Figure 4 (left panel) discussed in the next sub-
section reveals the nch-dependent yield increase as a local-
ized structure on yt and is used to optimize S0. This
differential procedure represents a new level of precision
in spectrum analysis facilitated by the high-statistics STAR
p-p data and the running-integral technique.

C. Optimizing reference S0

In Fig. 4 (left panel) we plot the difference between
running integrals 1=ns�n̂ch� � n�n̂ch; yt� of the corrected
spectra in Fig. 3 (right panel) and reference integral
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N0�yt� (the dash-dot curve in that panel). In region B we
observe a strong localized n̂ch dependence in the yt spectra.
The optimum parameters for S0 are derived as follows.
Inverse-slope parameter �0 is adjusted to minimize resid-
uals in region A of Fig. 4 (left panel). �0 determines the
average slope of the residuals in that region. Exponent n
then determines the size of the first step in region C. n is
adjusted so that the first step follows the nearly linear trend
of nch dependence in that yt interval. Amplitude As��; n� is
determined by the unit-normalization requirement for S0.

Changing either �0 or n in S0 does not alter the stepwise
variation with n̂ch of the data curves in the left panel above
the first step. That structure is inherent in the data and
unaffected by the reference choice (cf. Fig. 3—right panel,
before reference subtraction). The amplitude variation
within region C is well represented by nh=ns � �n̂ch

with �� 0:01, where nh is the coefficient of H0 defined
in the next subsection. That procedure determines refer-
ence S0 parameters As � 20:3
 0:1, n � 12:8
 0:15,
and T0 � 0:1445
 0:001 GeV [18].

In Fig. 4 (right panel) the curves are obtained by divid-
ing the curves in the left panel by their values at upper end
point yt � 4:5 with approximate ratio nh=ns. Reference
N0�yt� is included in the right panel as the dash-dot curve.
Comparing N0 to the data integrals it is clear that the
multiplicity dependence in Fig. 4 cannot be accommodated
by adjusting S0. With the exception of the first few n̂ch

values (labeled curves) the integrals closely follow a com-
mon trend: an error function or running integral of a
Gaussian which estimates in a model-independent way
the running integral of the nch-independent model function
H0�yt� determined differentially in the next section.

V. DIFFERENTIAL ANALYSIS

Using running integrals we have defined a precision
reference for the yt spectra and isolated the nch dependence
of those spectra relative to the reference. We now return to
the differential yt spectra and identify an additional spec-
trum component by subtracting the reference from the data.
The dashed curve in Fig. 4 (right panel) ( just visible near
yt � 2) represents the running integral of model function
H0 determined in this section.H0�yt�models the additional
yield at larger yt as a differential yt spectrum component. It
is already clear from Fig. 4 that the shape of that compo-
nent is approximately Gaussian and nearly independent of
nch.

In Fig. 5 (left panel) we show the result of subtracting
reference S0�yt� from the yt spectra in Fig. 1 (right panel)
divided by ns=nch. We obtain the difference distributions
denoted by nh=ns �H�n̂ch; yt� (the data points connected
with dashed curves). Those data represent all nch depen-
dence of the yt spectra relative to fixed reference S0. The
error bars denote statistical errors, applicable also to the
data in Fig. 1. The two vertical dotted lines enclose region
B on yt previously defined. H�n̂ch; yt� has unit integral by

definition, consistent with ns � nh � nch. The shapes of
the data curves are well approximated by the unit-integral
Gaussian reference

 H0�yt; �yt; �yt� � Ah� �yt; �yt� � exp
�
�

1

2

�
yt � �yt
�yt

�
2
�
; (3)

with Ah � 0:335
 0:005, �yt � 2:66
 0:02, and �yt �
0:445
 0:005. The solid curves represent nh=ns �H0,
with best-fit amplitudes nh�n̂ch�=ns�n̂ch� plotted in Fig. 7
(right panel, solid dots). nh is the multiplicity of the new
spectrum component. The data are generally well de-
scribed by the model, except for the excursions at smaller
yt for the smaller n̂ch values.

Dividing the data in Fig. 5 (left panel) by the corre-
sponding best-fit Gaussian amplitudes nh=ns reveals the
normalized data distributions H�n̂ch; yt� in the right panel.
Reference S0�yt�, shown as the dash-dot curve in the right
panel, is approximately an error function [19]. The hatched
region estimates the systematic error from the S0 subtrac-
tion. Deviations from the H0 model function (dashed
curve) in that panel represent all the residual nch depen-
dence of the yt spectra, i.e., all deviations from the two-
component model in Eq. (4) below. Those deviations are
plotted in Fig. 6 (left panel) and discussed further in the
next section.

The QCD-based power-law trend p�nt expected for hard
parton scattering would appear in this plotting format as a
straight line with negative slope equal to the exponent or
‘‘power’’ �n [5], since yt � ln�2pt=m0� at large pt makes
the plot effectively a log-log plot. Out to yt � 4:5 or pt �
6 GeV=c we observe no linear tangential departure from
Gaussian model H0 (dashed parabola) in data H�n̂ch; yt�.
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VI. TWO-COMPONENT MODEL

The two-component model [10,20] states that the
minimum-bias frequency distribution on event multiplicity
from relativistic p-p collisions can be resolved into two
components, each approximated by a negative-binomial
distribution (NBD) with its own mean and k parameter.
The two components correspond to events with (hard) and
without (soft) significant hard parton scatters. That concept
can be extended to the possibility that the inclusive pt
spectrum shape for hard events is different from that for
soft events [21]—that the former contains an additional
spectrum component which we designate the hard compo-
nent, the complement being then the soft spectrum com-
ponent. In that interpretation spectra from different
multiplicity classes should contain different admixtures
of the two spectrum components, and the multiplicity
dependence of the spectrum shape may therefore provide
a means to isolate those components.

In this section we examine the two-component model in
detail. We consider the factorization structure of the model
function that has emerged from data analysis, we examine
the residuals structure compared to statistical errors, and
then test the necessity of the fixed-parameter model func-
tion by fitting the data with all model parameters freely
varying. We finally relate all multiplicities in the model
and show that they form a consistent system.

A. Two-component model function

We have analyzed the multiplicity dependence of yt
spectra from p-p collisions without an a priori model
and have observed a strong nch dependence whose func-
tional forms we now summarize. The two-component
model of yt spectrum structure can be generally repre-
sented by the first line of

 1=ytdn=dyt � s�n̂ch; yt� � h�n̂ch; yt�

� ns�n̂ch�S0�yt� � nh�n̂ch�H0�yt� � . . . ; (4)

with unspecified soft and hard spectrum components
s�n̂ch; yt� and h�n̂ch; yt�. What we have inferred from the
nch dependence of the measured yt spectra is the second
line, which represents a factorization hypothesis with spec-
trum components modeled by unit-normal functions S0�yt�
and H0�yt� independent of nch, ratio nh�n̂ch�=ns�n̂ch� �
�n̂ch, and constraint ns � nh � nch. We suggest that the
algebraic model in the second line corresponds to the two-
component physical model described above and repre-
sented by the first line. In the rest of this section we
consider the quality and details of the parametrized model
in Eq. (4) and test its uniqueness by performing a free �2 fit
of the unconstrained model functions to the data.

In the power-law context there is no a priori hypothesis
for nch dependence: each of the ten multiplicity classes in
this analysis can be fitted independently with the three-
parameter model to produce 30 fit parameters. The corre-
sponding residuals are shown in Fig. 2 (left panel). For the
two-component model we could in principle have six free
parameters for each n̂ch, producing 60 fit parameters. How-
ever, the algebraic model of Eq. (4) (second line) contains
constraints motivated by the requirement of model sim-
plicity which greatly reduce the number of independent
parameters. (1) The shapes of unit-integral functions S0�yt�
andH0�yt� are independent of multiplicity: each function is
determined by only two parameters fixed for all nch.
(2) The relative normalization of the two components is
nearly linearly proportional to the observed multiplicity, as
defined by fifth parameter �. Thus, only five parameters
represent all the data in that model. As with the power-law
model we compare data to the model on the basis of
relative fit residuals on yt, which provide a more differen-
tial and direct assessment of fit quality than the �2 statistic.

B. Five-parameter fixed model

The residuals in Fig. 6 (left panel) correspond to the
function in the second line of Eq. (4) with five optimized
parameters held fixed for all n̂ch. Above yt � 2:7 the
residuals are consistent with statistical fluctuations except
for a few sharp structures with amplitude several times the
statistical error. Those structures arise from the compara-
tively low statistics of the Monte Carlo simulations used
for background corrections. The Monte Carlo statistical
fluctuations appear in these residuals as small-wavelength
systematic deviations.

The prominent residuals in yt < 2:7 for n̂ch � 1–4 (a
‘‘third component’’) could represent nontrivial nch depen-
dence of the soft or hard component or some additional
physical mechanism. The end point values at yt � 4:5 in
Fig. 4 (left panel) vary linearly with nch to a few percent
(open symbols in Fig. 7—right panel), despite the sub-
stantial nonlinear excursions at small yt of the distributions
in Figs. 5 and 6. That apparent contradiction suggests that
the prominent residuals may represent a change of the hard
component at small nch which preserves the linear trend of
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the integrals. These two-component residuals from the
five-parameter fixed model are otherwise much smaller
than the systematic deviations of the power-law model in
Fig. 2 (left panel) with its 30-parameter �2 fit, especially in
the large-yt region where the power-law model should be
most applicable.

C. Two-component free �2 fits

To determine whether the algebraic model of Eq. (4) is
necessary (required by the data), not simply an accident of
data manipulation, spectra for n̂ch 2 �1; 11:5	 were fitted
with the six-parameter function in Eq. (4) using �2 mini-
mization. Spectra 1=ytdn=dyt were first normalized by
multiplicity estimator ~ns�n̂ch� from the fixed parametriza-
tion. The coefficients of S0 and H0 in the fitting function
are then ns=~ns and nh=~ns. The six parameters (ns, �0, n,
nh, �yt, �yt) were freely varied for each n̂ch.

The residuals from the free fits are shown in Fig. 6 (right
panel). The fit residuals are comparable to the correspond-
ing fixed-model residuals in Fig. 6 (left panel), even though
the free fits include six independent parameters for each of
ten nch classes for a total of 60 parameters, compared to the
fixed model with only five parameters to describe all ten
nch classes. The residuals for the smaller n̂ch values show
that the free fit attempts to minimize the small-yt structure
(‘‘third component’’) in the left panel at the expense of
increased intermediate-yt residuals. The effect on the fit
parameters is however modest, as illustrated in Table I.

Table I compares the fixed-model parameter values
(fixed) to the results of the six-parameter free fits (fitted)
for ten n̂ch classes. If the hard-component Gaussian on yt
were not necessary we would expect the �2 fit to converge
to the soft-component Lévy distribution as a proxy for the
power-law function. The results in Table I indicate that

most of the free-fit S0 and H0 shape parameters remain
nearly constant within errors across the full n̂ch interval.
The hard-component Gaussian amplitudes are definitely
nonzero and monotonically increasing, consistent with
the trends in Fig. 5 (left panel) obtained by subtracting
S0�yt� from the normalized spectra in Fig. 1 (right panel).

Figure 7 (left panel) shows trends for the two fit parame-
ters n and nh=~ns which best illustrate the trade-off between
soft/power-law and hard components of the model and the
necessity of the two-component model. Best-fit values are
presented for all n̂ch classes as the solid symbols (open
symbols are discussed below). There are significant sys-
tematic deviations of exponent n from the fixed-model
value (hatched band) which are however qualitatively dif-
ferent from the trends in Fig. 2 (right panel). The hard-
component amplitude nh=~ns also deviates from the linear
fixed-model trend, but the trend of monotonic increase is
even stronger. The hard component appears to be more
favored by the free fit than by the fixed parametrization.
We discuss the systematic differences between fixed model
and free fit in the following paragraphs. However, this
fitting exercise does demonstrate that for almost all n̂ch a
two-component model is indeed necessary to describe
RHIC p-p data.

The systematic deviations between free fits and fixed
model in Fig. 7 (left panel) are easily understood. We
separately consider n̂ch < 5 and n̂ch > 5 (separated by the
dotted lines). Generally, there is a strong positive correla-
tion between soft-component exponent n and hard-
component relative amplitude nh=ns originating from the
requirement to describe the large-yt yield. If n decreases
the Lévy distribution tail rises and the amplitude of the
hard-component Gaussian amplitude must decrease as well
to compensate at large yt, and conversely. The systematic

TABLE I. Two-component �2 fit parameters. The line labeled
‘‘fixed’’ contains the two-component fixed-model parameters.
Each fit has � � 28 degrees of freedom. The error row applies
only to the fixed parametrization. The fit errors are generally
smaller than those errors for the last five free-fit rows. Significant
systematic effects are discussed in the text.

Fitted Soft component Hard component
n̂ch ns=~ns T0 (GeV) n nh=~ns �yt �yt �2=�

1 0.995 0.145 11.97 0.000 – – 73.3
2 1.001 0.145 11.78 0.002 2.75 0.500 40.4
3 1.001 0.145 11.83 0.013 2.75 0.421 15.0
4 0.996 0.145 11.74 0.025 2.75 0.400 7.36
5 0.994 0.145 12.60 0.049 2.65 0.427 3.14
6 1.001 0.144 15.63 0.089 2.57 0.450 1.09
7 0.999 0.144 15.42 0.097 2.57 0.451 0.62
8 1.005 0.144 16.73 0.115 2.56 0.454 1.18
9.5 1.011 0.143 16.66 0.130 2.56 0.456 0.52
11.5 0.995 0.145 15.69 0.128 2.58 0.460 1.20
Fixed 1.000 0.1445 12.8 0:0105n̂ch 2.66 0.445
Error 0.005 0.001 0.15 0:0005n̂ch 0.02 0.005
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deviations relative to the fixed model for n̂ch < 5 respond
to the presence of the ‘third component,’ which is not a part
of the two-component model. To compensate for the addi-
tional component in the data the hard-component ampli-
tude is suppressed and n is reduced by about 10% to
provide additional yield from S0 at small yt. The conse-
quence is negative residuals near yt � 2:6 in Fig. 6 (right
panel).

For n̂ch > 5 a different issue arises. In Fig. 5 (left panel)
we have noted previously that the hard-component data
peaks are skewed (fall off more rapidly on the low-yt side)
whereas the hard-component model function is a symmet-
ric Gaussian. The difference is most apparent in the run-
ning integrals of Fig. 4 (right panel): the dashed model
curve lies above the data near yt � 2. In Fig. 5 (right panel)
the hatched region illustrates the region of maximum in-
fluence of the S0 subtraction on the hard component.
Because the hard-component data peaks are asymmetric
the S0 subtraction at larger yt must be reduced by increas-
ing exponent n (the small-yt S0 contribution must remain
constant to describe the spectra there). This requires a
compensating increase in the hard-component amplitude
to fit the larger-yt part of the spectra, and the Gaussian
model function must shift down on yt (by�0:1 or 5 sigma)
and the width increase slightly (0.01 or 2 sigma) to accom-
modate the apparent increased symmetry of the data hard
component.

To test that description the free fits were redone with the
Gaussian centroid fixed at �yt � 2:65. The open symbols in
Fig. 7 (left panel) show the result. The best-fit parameters
are now within the error bands of the fixed model, with
only modest increase in �2=� (1.69, 1.07, 1.43, 0.95, 1.18,
respectively, for n̂ch � 6; � � � ; 11:5 compared to the corre-
sponding values in Table I). The fit residuals in Fig. 6 (right
panel) appear identical for the two cases. We emphasize
that the mode (most probable point) of the data hard-
component peak is near yt � 2:65. The downward shift
of the model peak in the free fit is a consequence of the
skewness in the data hard component not described by the
fixed model but consistent with measured fragmentation
functions from reconstructed jets.

D. Two-component multiplicities

In Sec. IVA we adopted a normalization strategy which
brought all spectra into coincidence in region A of Fig. 3
(left panel) by defining multiplicity ns / n̂ch except for a
small deviation linear in n̂ch. We then defined reference
function S0 as a limiting case of the spectrum nch depen-
dence and isolated a second component H0 by subtracting
the fixed reference from all spectra. The amplitude of H0

relative to the reference is defined by ratio nh=ns / n̂ch.
The representation to that point is (physics) model inde-
pendent, derived only from the observed spectrum n̂ch

dependence: the reference is / n̂ch and the second compo-

nent is / n̂2
ch. That difference is the underlying basis for

distinguishing the two components.
In this section we have identified the two algebraic

spectrum components with the components of a physical
model of soft and hard parton scattering and subsequent
fragmentation to detected particles. We distinguish four
event multiplicities: (1) the observed multiplicity n̂ch or
uncorrected number of particles with pt > 0:2 GeV=c in
the STAR angular acceptance which serves as an event-
class index, (2) the corrected and pt-extrapolated multi-
plicity nch, (3) the ‘‘soft-component’’ multiplicity ns
and (4) the ‘‘hard component’’ multiplicity nh, with ns �
nh � nch. We now examine the self-consistency of the
multiplicities in our two-component model in the context
of real spectrum properties, including efficiencies and
acceptances.

Soft multiplicity ns is estimated by function ~ns�n̂ch� �
�2:0
 0:02�rel� 
 0:2�abs�	n̂ch�1� �0:013
 0:0005�n̂ch	.
The 1% error applies to the relative or spectrum-to-
spectrum normalization relevant to this differential analy-
sis, whereas the 10% error applies to the common normal-
ization of all spectra. As noted, coefficient 0.013 is
determined by requiring that corrected spectra normalized
by ~ns approximately coincide within region A of Fig. 3 (left
panel) for all n̂ch. The factor 2 is determined by requiring
that after correction, extrapolation with S0 to pt � 0 and
normalization with nch all spectra in Fig. 1 integrate to
unity. In the first column of Table I deviations of ns=~ns
from unity are consistent with the 1% error estimate.

The hard fraction nh=ns � �n̂ch is estimated by two
methods. In the first method we determine the Gaussian
amplitudes required to fit the data distributions in Fig. 5
(left panel). Those amplitudes give the solid Gauss-
ian curves compared to data in that plot and are plotted
as the solid points in Fig. 7 (right panel). The linear
trend (dashed line) corresponds to slope � � 0:0105

0:0005. The solid curve passing precisely through
the points is nh�n̂ch�=ns�n̂ch� � f�0:0105n̂ch�

�10 �

�0:005n̂1:5
ch �
�10g�1=10, the errors on the coefficients being


0:0005. The nonlinearity of that curve is related to the
non-Gaussian small-yt structure for small values of n̂ch

(third component).
In the second method we note that the distributions in

the left panel of Fig. 4 are running integrals of data
distributions in Fig. 5 (left panel). The amplitudes of those
integrals at end point yt � 4:5, plotted as open squares in
Fig. 7 (right panel), also estimate ratio nh=ns. They vary
nearly linearly (dotted line) with slope � � 0:0095

0:0005. Reduction of � from 0.0105 for the Gaussian
amplitudes to 0.0095 for the integral endpoints results
from small deviations of the data peaks from the H0

Gaussian model at small yt evident in Fig. 5. The data
are slightly skewed in a manner consistent with measured
fragmentation functions. The model Gaussians are
matched to the data at and above the data peak mode or
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most probable point. The integral of any data peak is
therefore expected to be slightly less than that of the
corresponding model function. Both methods suggest satu-
ration of the hard-component amplitude at larger n̂ch.

Consistency of the soft and hard multiplicity estimators
within the two-component model can be established by the
following argument: Tracking inefficiencies produce the
same fractional changes for all n̂ch and are represented by
factors 	s and 	h for soft- and hard-component yields. The
corrected spectra are extrapolated to pt � 0 with soft
model S0. The fraction of S0 falling above pt �
0:2 GeV=c (within the pt acceptance) is represented by

. The hard component identified in this analysis falls
entirely within the pt acceptance. The observed multiplic-
ity is then given by n̂ch � 
	sns � 	hnh, whereas the
corrected and extrapolated spectra integrate to true multi-
plicity nch � ns � nh. The expression for n̂ch above can be
rearranged to solve for ns in the first line below,

 ns ’
n̂ch


	s

�
1�

	h

	s
� �n̂ch

�
predicted;

~ns � 2n̂chf1� 0:013n̂chg observed;

(5)

whereas the second line is the estimator inferred from the
data. By integrating reference S0 we determine that 
 �
0:7: 70% of the reference spectrum is within the accep-
tance pt > 0:2 GeV=c. Tracking efficiencies 	s and 	h are
both approximately 70%, and we have determined from the
data (running integrals) that �� 0:0095. We therefore
have 1=
	s � 2 and 	h=
	s � �� 0:0135, establishing
the consistency (predicted $ observed) of the two-
component multiplicities. Coefficient 0.013 is identified
as �=
, and the trend of ns is defined by ratio nh=ns �
�n̂ch. We thus close the circle, demonstrating quantita-
tively how increase with n̂ch of the hard-component con-
tribution to the spectrum forces ns to decrease relative to
n̂ch in compensation, why ~ns contains the negative term,
and what its magnitude must be.

VII. hpti SYSTEMATICS

Another aspect of the two-component model is the
variation of hpti (inclusive mean pt) with n̂ch. Estimation
of hpti for spectra with incomplete pt acceptance requires
either a model fit or direct integration of data with extrapo-
lation. The power-law function for pt distributions
1=ptdn=dpt � A=�1� pt=p0�

n, with hpti � 2p0=�n�
3�, has been used previously to extract hpti values from
corrected pt spectra [8]. hpti can also be determined by
direct integration of the experimental pt spectra, with
extrapolation to pt � 0 by a suitable model function.
Finally, the two-component fixed-model function obtained
in this analysis can provide a parametrization of hpti�nch�.

The running multiplicity integral n�n̂ch; yt� is defined by
Eq. (1), with the data extrapolated over pt�0; 0:2	 GeV=c
by reference ns�nch�S0�pt�. Running integral pt�n̂ch; yt� can

also be defined for transverse momentum pt by including
an extra factor pt�yt� in the integrand of Eq. (1). The ratio
hpti�n̂ch; yt� � pt�n̂ch; yt�=n�n̂ch; yt� is then a function of yt
for each value of n̂ch, and hpti�n̂ch� is the limit of that
function as yt ! 1. hpti�n̂ch� is thus determined by direct
integration of pt or yt spectra.

A changing mixture of soft and hard components may
cause hpti to vary with nch. The hpti values for individual
components are obtained by direct integration of model
functions S0 and H0: hptisoft � 0:385
 0:02 GeV=c and
hptihard � 1:18
 0:01 GeV=c. A two-component analytic
expression for hpti is then given by

 hpti�n̂ch� �

�
0:385

ns�n̂ch�

nch
� 1:18

nh�n̂ch�

nch

�
GeV=c; (6)

with nh=ns � �n̂ch and ns � nh � nch.
In Fig. 8 hpti�n̂ch� values inferred from power-law fits to

corrected STAR spectra are represented by open circles,
consistent with a 200 GeV UA1 power-law analysis plotted
as solid triangles [8], but inconsistent at smaller n̂ch with
the two-component result from this analysis plotted as
solid points. The two-component data were obtained with
the nh=ns values plotted as solid dots in Fig. 7 (right panel).
The solid line represents the two-component analytic ex-
pression for hpti in Eq. (6) with � � 0:0095. The UA1
results for 900 GeV [8] are plotted as open triangles. The
dotted line corresponds to Eq. (6) with � � 0:015. hpti
values obtained by direct integration of the extrapolated
spectra are represented by the open squares. The hatched
region represents the common uncertainty in all means due
to uncertainty in the particle yield in pt < 0:2 GeV=c.

The hpti�n̂ch� values in Fig. 8 obtained by direct inte-
gration of extrapolated spectra provide the best estimate of
the physical trend. The results at 200 GeV for direct

n̂ch

<p
t>
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)

UA1  900 GeV power-law
UA1  200 GeV power-law
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FIG. 8. hpti�n̂ch� derived from the two-component H0

Gaussian amplitudes (solid dots), from the running integrals
(open squares), and from power-law fits to STAR and UA1
data (open circles, triangles). The solid and dotted lines corre-
spond to Eq. (6) with � � 0:0095 and 0.015, respectively.
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integration, the two-component model and power-law fits
are consistent within errors for n̂ch > 4. The notable de-
viation of the power-law results from the two-component
linear trend for n̂ch < 5 can be explained by the third-
component structures at small yt and small n̂ch in Fig. 5
(left panel). Those structures strongly influence (bias) ex-
trapolation of the power-law function into the unmeasured
region in pt < 0:2 GeV=c so as to overestimate the in-
ferred yield there (nominally 30% of the total spectrum).
The overestimate at small pt produces a sharp reduction of
hpti�n̂ch� values inferred from power-law fits. The addi-
tional yield at small yt in Fig. 5 itself corresponds to hpti �
0:4 GeV=c, and thus cannot physically lower the compos-
ite hpti below hptisoft � 0:385 GeV=c. These hpti results
demonstrate that the UA1 data are sensitive to the small-yt
and small-n̂ch structures revealed in this analysis when the
more integral spectrum measure hpti is used.

VIII. ERRORS

The statistical errors for the basic yt spectra in Fig. 1 are
best indicated by the error bars on the difference distribu-
tions of Fig. 5 (left panel). That figure also compares the
pointwise statistical errors to the hard-component structure
inferred in this study, which is statistically well determined
for all nch classes. Monte Carlo calculations of background
corrections with full detector response simulation are com-
puter intensive. Because of limited statistics the statistical
fluctuations in the Monte Carlo data used for background
corrections are injected into the corrected data spectra as
visible systematic errors: long-wavelength systematic error
is reduced at the expense of increased short-wavelength
random ‘‘systematic’’ error. Those errors are apparent as
the nonstatistical short-wavelength structures in Figs. 2 and
6. The systematic uncertainties in the corrected spectra can
be divided into nch-dependent and nch-independent
uncertainties.
nch-independent systematic uncertainties include uncer-

tainties in the corrections for tracking efficiency, back-
grounds (mainly weak decays), and momentum reso-
lution. Systematic spectrum corrections for this analysis
were 20% or less, except for the lowest two pt bins where
they increased to 40%. Statistical errors for the systematic
corrections were typically less than 1% (except as noted
above for the background corrections). We estimate the
uncertainties in the systematic corrections as 10% of the
correction values. The total uncertainty for the systematic
corrections is then less than 2% above pt � 0:4 GeV=c.
The UA1 corrected nch-inclusive pt spectrum for 200 GeV
�p-p collisions [8] agrees with the corresponding inclusive
spectrum from the present analysis at the 2% level.
nch-dependent systematic errors could result from

nch-dependent tracking inefficiencies. However, track de-
tection and pt measurement in this analysis required no
reference to other tracks or a fitted event vertex, thus
minimizing any nch dependencies. In effect, each track

was treated in isolation independent of its relationship to
any event, except for the timing requirement with the CTB.
The tracking efficiencies for low-multiplicity (1–4) and
high-multiplicity (> 4) events integrated over the pt ac-
ceptance were found to be consistent to 3%, with a 1%
statistical error. We take that as an estimate of the
nch-dependent systematic uncertainty.

The main source of systematic uncertainty in the shape
of the hard-component structures isolated in Fig. 5 is the
definition of S0 as the lowest element of the regular se-
quence in Fig. 4 (left panel). S0 is a rapidly decreasing
function in the interval yt � 1:6–3. The main effect of
varying either �0 or n in S0 is to change the magnitude
of S0 in that interval, shape changes being secondary. It is
consistent within the two-component context to require
that (1) component H�nch; yt� be non-negative, placing an
upper bound on S0 in Fig. 5 and (2) that any
nch-independent aspect of the distributions in Fig. 5 be
minimized, determining a lower bound. Those criteria
place stringent constraints on S0 already in yt � 1:6–2,
limiting systematic offsets at yt � 2 to 
0:002, the al-
lowed range rapidly decreasing above that point according
to the S0 curve in Fig. 10 (right panel). The systematic
uncertainty estimate corresponding to those trends is rep-
resented by the hatched region in Fig. 5 (right panel).

The nonstatistical power-law fit residuals in Fig. 2 are as
much as 30 times the statistical error. One of the findings of
this study is that the power-law model function is inappro-
priate for these pt spectra. Systematic uncertainties for the
fit parameters are therefore not meaningful.

The fitting uncertainties for the fixed-model parameters
are given at the bottom of Table I. Those uncertainties are
meaningful relative to the fitting procedure defined in the
two-component model context. The ability of that model to
describe the data is apparent in Fig. 6 (left panel). The only
significant residuals correspond to a low-yt spectrum ele-
ment (for n̂ch � 1–4) deliberately omitted from the two-
component model. One source of systematic uncertainty in
those parameters is whether the fixed-model prescription
forces a certain result by excluding some other which may
better describe the data.

To test that possibility a free �2 fit with all model
parameters varying was conducted. The difference in the
two cases is summarized in Table I and Fig. 7 (left panel).
In particular, there are substantial differences in the Lévy
exponent and the hard-component amplitude for the free fit
depending on whether the position of the hard-component
Gaussian is constrained or not. When the Gaussian position
is constrained the free fit and the fixed model agree within
the systematic uncertainties in the latter. The differences in
the unconstrained fit are traced to significant departures of
the shape of the hard-component data peak from the sym-
metric Gaussian peak shape: the model function could be
further refined by adding a skewness (expected for frag-
mentation functions) to improve the stability of the fits.
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However, it is not our purpose to develop a complex
representation of yt spectra, but rather to demonstrate the
essential two-component aspects of the spectra with the
simplest possible model function. The differences in fit
parameters in Fig. 7 (left panel) can therefore be taken as
a generous estimate of the systematic uncertainty in the
fixed-component parametrization.

IX. IDENTIFIED PARTICLES

Model functions S0 and H0 derived from this analysis of
unidentified particles represent physical spectrum compo-
nents S and H for several hadron types, mainly �, K, and
p. Two questions emerge: (1) to what extent do S0 and H0

correspond to individual hadron types, and (2) to what
extent does the nch dependence of the pt spectrum truly
separate two physical components S and H? The soft
component of one hadron species may have significant
nch dependence which could be misinterpreted as the
hard component of another species, or of the combination
of unidentified hadrons in this study.

We can obtain some answers to those questions from
nch-inclusive spectrum studies of identified hadrons. pt
spectra for

��������
sNN
p

� 200 GeV p-p collisions have been
measured for identified pions, kaons, and protons [22].
Because n̂ch � 1 and the pt acceptance was [0.3, 3] GeV/
c for that analysis the measured multiplicity-inclusive pt
spectra are reasonably described by Lévy distribution S0,
especially the kaon and proton spectra. The common Lévy
exponent for the three species is n � 16:8
 0:05, com-
pared to n � 12:8
 0:15 measured in this analysis for
unidentified hadrons. The slope parameter for identified
pions is T � 0:145
 :001 GeV, whereas for both kaons
and protons T � 0:23
 0:005 GeV, compared to T �
0:1445
 0:001 GeV for unidentified hadrons in this
analysis.

The trend of S0 with hadron species is easily understood.
Addition of the ‘‘hotter’’ K and p spectra to the ‘‘cooler’’
pion spectrum flattens the unidentified-hadron composite
at larger pt, reducing the exponent of S0 to n � 12:8. At
smaller pt the pion fraction dominates the composite spec-
trum, and the unidentified-hadron slope parameter is the
same as the pion slope parameter. The effect of the heavier
hadrons on the composite spectrum is mainly to reduce the
Lévy exponent from the larger physical value common to
all three hadron species.

Information on the nch dependence of pt spectra for
identified particles is limited. A preliminary analysis of
K0
S and � pt spectra up to 4 GeV/c [23] suggests that the

nch dependence of both spectra can be described by a
modest (5%) reduction of n with increasing nch. That trend
can be compared to the free �2 fit results for S0 in Table I as
shown in Fig. 7 (left panel): n increases by about 25% over
the measured n̂ch range. That increase is traced to an
attempt by the model to accommodate a skewness of the

hard component in the data, not a true variation in the soft
component.

X. PYTHIA MONTE CARLO

A similar analysis of p-p collisions from the Pythia
Monte Carlo [24] reveals substantial deviations from
data. We studied default Pythia-V6.222 and Pythia ‘‘tune
A’’ (increased initial-state radiation and multiple soft par-
ton scatters relative to the default) with parameters derived
from studies of the underlying event in triggered jet events
[25]. In Fig. 9 (left panels) we show Pythia pt spectra
normalized to unit integral and soft reference S0 (dash-
dot curves) determined by the same criteria applied to
STAR data. Those plots can be compared to Fig. 3 (left
panel). In Fig. 9 (right panels) we show the results of
subtracting reference S0 from the normalized spectra in
the left panel divided by ns=nch. Those plots can be com-
pared to Fig. 5 (left panel). The dashed curves are the hard
component H0 for STAR data divided by 10 to provide a
reference.

The S0 parameters for Pythia-V6.222 in the upper panels
are T0 � 0:147 GeV and n � 23. The large value of n
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FIG. 9. Two-component analysis applied to Pythia
Monte Carlo data with the same multiplicity classes as for
STAR data. The left and right panels may be compared with
Figs. 3 (left panel) and 5 (left panel), respectively. Dashed curves
in the right panels represent the STAR data hard component for
n̂ch � 11 (H0=10). Dash-dot curves in the left panels represent
soft component S0 optimized for each Monte Carlo configura-
tion: Pythia V6.222 default with parameters T0 � 0:147 GeV
and n � 23 (upper panel); Pythia tune A with parameters T0 �
0:137 GeV and n � 14 (lower panel).
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implies that the Pythia soft component is nearly Maxwell-
Boltzmann, in sharp contrast to RHIC data. The exponent
is strictly limited to a large value by the Pythia data for
yt < 2:5. The S0 parameters for Pythia tune A in the lower
panels are T0 � 0:137 GeV and n � 14. The smaller value
of n is comparable to the value 12.8 observed for RHIC
data.

The hard-component yield for Pythia is generally a
factor of 2 to 3 less than the data (most apparent above yt �
2:7), broader and peaked at a smaller value of �yt. Pythia-
V6.222 shows saturating of the hard-component amplitude
with increasing n̂ch, whereas tune A shows a more uniform
and significantly greater rate of increase. The large
Gaussian-shaped offset common to all curves and centered
at yt � 2 is also not observed in the data. That structure
cannot be accommodated by the Lévy distribution. The
two Pythia Monte Carlos thus exhibit some features which
agree qualitatively with experimental data but are quanti-
tatively different. Tune A is closer to data than the default
for soft and hard components, but the nch-independent
Gaussian offset near yt � 2 persists and is not observed
in the data.

XI. DISCUSSION

A description of p-p collisions in terms of soft and hard
components is natural at RHIC energies where significant
hard parton scattering occurs but the underlying event [25]
is still relatively simple. The two-component model of
nuclear collisions can be applied to (1) the event-frequency
distribution on nch (two or more negative-binomial distri-
butions) [10,20], (2) the dependence of hpti on nch

[8,16,26], (3) triggered jet correlations on (�, �) (correla-
tions from soft and hard event classes) [21], and (4) the nch

dependence of the pt or yt spectrum shape [16]. The
common theme is the relation of hard parton scattering to
event multiplicity in the context of a ‘‘soft’’ underlying
event. This paper emphasizes analysis type (4)—the study
of the nch dependence of the spectrum shape on transverse
momentum pt and transverse rapidity yt.

Model functions S0�yt� and H0�yt� in Eq. (4) can be
viewed as the lowest-order elements of a perturbative
expansion of the spectrum shape. Multiplicities ns�n̂ch�
and nh�n̂ch� can be interpreted as estimating the mean
numbers of soft- and hard-component particles per-event
for a given n̂ch. The claim of simplicity for the two-
component fixed model is supported by the small number
of parameters, the simplicity of the model functions, the
demonstration of necessity in Sec. VI C, and the demon-
stration with residuals plots that there is no additional
information in the spectra (aside from the small-yt ‘‘third
component’’ which may represent additional physics).

We cannot rule out additional components or changes in
the shapes of physical components S and H. Each should
be nch-dependent at some level, but the present analysis

indicates that within the observed n̂ch interval any such
dependence is near the level of statistical error. A change in
S is suggested by the n dependence of the free �2 fits in
Fig. 6 (left panel). However, that behavior may simply be
due to a coupling of soft and hard amplitudes in the free fit,
with no physical significance.

A significant change inH is expected at larger n̂ch based
on known jet physics: larger fragment multiplicities are
produced by more energetic partons, with fragment distri-
butions shifted to larger yt [13]. Thus, the mean and width
of H should increase with n̂ch at some point, but such
changes are not observed beyond statistics within the yt
and n̂ch acceptances of this study. Apparently, the multi-
plicity increase in this analysis is dominated by increased
frequency of events with a single hard scattering within a
multiplicity class rather than bias toward more energetic
partons. That scenario is consistent with the two-
component model of [10].

The soft-component Lévy distribution S0 � As=�1�
�0�mt �m0�=n�n [17] is similar in form to power-law
function A=�1� pt=p0�

n. However, the physical interpre-
tations are quite different. The Lévy distribution describes
a nominally exponential function with a control parameter
(e.g., slope parameter) which undergoes Gaussian-random
fluctuations. Inverse exponent 1=n then measures the rela-
tive variance �2

�=�
2
0 of the control parameter [27]. In the

limit 1=n! 0 the Lévy distribution on mt becomes a true
Maxwell-Boltzmann distribution. Those properties sug-
gested the Lévy distribution as a reference function for
this analysis. Ironically, the ‘‘power-law’’ function in the
form of a Lévy distribution describes the soft-component,
not hard parton scattering. The Lévy parameters can be
interpreted in the context of an ensemble of hadron emit-
ters with random transverse speeds, thermal radiation from
moving sources as described by the Cooper-Frye formal-
ism [28]. The expected QCD hard-scattering power-law
trend is not evident in the data out to pt � 6 GeV=c.

In Fig. 2 (right panel) we plot exponent n values from
power-law fits to data (solid points) and to the two-
component fixed model (open circles) for the full range
of n̂ch. The latter procedure simulates a power-law fit to
data with no small-yt excursions or third component and
illustrates the effect of those features on the exponent. The
range of variation of the power-law exponent, in contrast to
the two-component fixed model, and the substantial effect
of the third component further illustrate that the power-law
parametrization is sensitive to aspects of spectra inconsis-
tent with its theoretical motivation, making fit results dif-
ficult to interpret physically.

The Gaussian shape ofH0�yt� inferred from this analysis
can be compared with fragmentation functions from jet
analysis of p-p, e-p, and e-e collisions plotted on loga-
rithmic variable �p � lnfpjet=pfragmentg, which also have an
approximately Gaussian shape [29] explained in a QCD
context as the interplay of parton splitting or branching at
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larger pt and the nonperturbative cutoff of the branching
process at smaller pt due to gluon coherence [30,31]. The
Gaussian parameters are predicted by the pQCD modified
leading-log approximation (MLLA) [32]. The hard com-
ponent obtained in this analysis then represents not frag-
mentation functions from reconstructed large-Et jets but
rather the average of a minimum-bias ensemble of frag-
mentation functions dominated by low-Q2 parton scatters
(Q< 10 GeV). In that context H0 represents minimum-
bias partons dominated by minijets [33]. A previous study
of small-Et clusters in 200 GeV p-p collisions [34] sug-
gested that semihard parton scattering or gluon radiation
from projectile constituent quarks could produce substan-
tial small-pt structure in hadron spectra similar to the hard
component of this study.

A recent analysis of pt spectra in the interval 0.3–
10 GeV/c for identified particles in p-p and d-Au colli-
sions [35] used the relativistic-rise particle identification
scheme to extend the spectra with very good statistics to
large pt. That paper compared the spectra to several NLO
pQCD calculations and compared the mt spectra of pions
and protons. It concluded that there is a transition region
from soft to hard particle-production processes at pt �
2 GeV=c in inclusive particle production, which would
appear to contradict the present results. However, the
identified-particle spectra in that study below pt �
2:5 GeV=c are from a previous study [22] in which the
point-to-point systematic errors and the statistical errors
are quite large, the latter due to the small acceptance of the
prototype ToF detector. The ToF-based studies of
multiplicity-averaged p-p collisions are therefore not sen-
sitive to the hard-component structure reported in this
paper, the great majority of which falls below 2.5 GeV/c.
The present study takes a new approach by comparing
large-statistics inclusive-hadron spectra in several multi-
plicity bins. Since the hard component is relatively en-
hanced in high-multiplicity events we are able to extend
our investigation of the hard component to low pt by
studying the trend of that enhancement.

The relative frequency of hard scatters in p-p collisions
is described by the fifth model parameter �� 0:01, repre-
senting the nearly linear dependence of nh=ns on n̂ch. We
relate the hard-component amplitude to the frequency of
hard collisions (f � number of hard collisions per NSD
p-p collision) as nh�n̂ch� � �n̂chns�n̂ch� � f�n̂ch� � �nmj,
with mean true event multiplicity �nch � 2:5 in one unit
of pseudorapidity and mean minijet multiplicity �nmj �

2:5
 1 [36]. We then estimate the observed frequency of
hard scatters in

���
s
p
� 200 GeV p-p collisions as f �

�nh= �nmj � 0:012
 0:004 observed hard scatters per NSD
p-p collision per unit of pseudorapidity. In that interpre-
tation multiplicity n̂ch serves as a ‘‘trigger’’ for hard parton
scattering, determining the fraction of hard-scattering
events in a given multiplicity class and thus the relative
amplitude of the hard spectrum component.

Model functions S0 and H0 on pt and yt are summarized
in Fig. 10, which can be compared with Figs. 1, 3, and 5.
H0=9) nh=ns � 0:11 is compared to data for n̂ch � 11:5
and illustrates the role of the hard component in the mea-
sured spectra with sufficient amplitude to be visible in a
linear plotting format (right panel). Similarly, H0=140)
nh=ns � 0:007 is compared to data for n̂ch � 1. Those
coefficients are consistent with the measured hard-
component Gaussian amplitudes for n̂ch � 1 and 11.5
(cf. Fig. 7—right panel).

Collisions in the event ensemble containing at least one
semihard parton scatter within the detector acceptance
should have similar yields of soft and hard components
(assuming an average minijet multiplicity of 2.5). The
average yt spectrum for such hard events is illustrated by
S0 �H0, shown as the dotted curve in Fig. 10 (right panel).
We cannot isolate such hard events in an unbiased manner,
but we can infer their structure by extrapolating the nch

trends determined in this analysis.
The left panel of Fig. 10 indicates the loss of visual

sensitivity to spectrum structure when spectra are plotted
on pt. The hard component can appear to be a continuation
of the soft component, whereas in the right panel the two
components are clearly separate functional forms. yt pro-
vides a more balanced presentation of structure resulting
from hard-scattered parton fragmentation, yet does not
compromise study of the soft component, which is well
described by a simple error function on yt [19]. The
transverse and longitudinal fragmentation systems undergo
similar physical processes and should therefore be com-
pared in equivalent plotting frameworks. Just as yz is
preferred to pz we prefer yt to pt.
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FIG. 10. Decomposition of inclusive pt spectra into a soft
component represented by a Lévy distribution on mt and a
hard component represented by a Gaussian on yt. Dashed curves
H0=9 correspond to data for n̂ch � 11:5, while the dotted curve
H0=140 corresponds to data for n̂ch � 1 (cf. Fig. 1). The dash-
dot curves are soft reference S0, and the solid curves are the
totals of soft and hard components for the model. The dotted
curve in the right panel estimates the shape of the inclusive yt
distribution for those p-p collisions containing at least one
minimum-bias hard parton scatter (hard events).
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XII. SUMMARY

In conclusion, we have studied the event multiplicity nch

dependence of high-statistics transverse momentum pt or
transverse rapidity yt spectra from p-p collisions at

���
s
p
�

200 GeV. We have determined that the power-law model
function fails to describe the spectra for any nch, exhibiting
large nonstatistical deviations from data. An earlier UA1
study reporting satisfactory power-law fits to data seems
contradictory. However, it is statistically consistent with
the present study because the UA1 data were derived from
a much smaller event sample. We have analyzed the shapes
of the spectra with a running-integral technique and deter-
mined that the spectra can be described precisely by a
simple five-parameter model function. The algebraic
model can in turn be related to a two-component physical
model of nuclear collisions.

The power-law function motivated by pQCD expecta-
tions for hard parton scattering better describes the soft
component in the form of a Lévy distribution on mt (two
parameters). We observe for the first time that the hard
component is well described by a Gaussian distribution on
transverse rapidity yt, with shape approximately indepen-
dent of multiplicity (two parameters). The hard-component
multiplicity fraction increases almost linearly with event
multiplicity (the fifth model parameter). A detailed com-
parison of (data�model) residuals from the two-
component fixed model and from free fits with all two-
component model parameters varied confirms that the two-
component fixed model is required by the data.

The hard component may represent fragments from
transversely scattered partons. The shape is consistent
with fragmentation functions observed in LEP and
PETRA e�-e� and FNAL p- �p collisions. The stability of
the hard-component shape with event multiplicity suggests
that a Gaussian distribution on yt is a good representation
of minimum-bias parton fragments. The relative abun-
dance of soft and hard components at any yt of course
depends on yt and nch, but most of the hard-component
yield falls below 2.5 GeV/c. There is evidence for a small
but significant third component at smaller yt and smaller
nch. Comparison with the Pythia Monte Carlo reveals
qualitative differences from data.
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APPENDIX: SYMBOL DEFINITIONS

Below is a list of symbols and their definitions as used in
this paper.
yt: transverse rapidity, replaces transverse momentum pt
to provide improved visual access to fragment
distributions
n̂ch: observed event multiplicity in the detector accep-
tance, also the event-class index
n0ch: efficiency- and acceptance-corrected multiplicity in
the detector acceptance
nch: corrected and pt-extrapolated or ‘‘true’’ multiplicity
in the detector angular acceptance
ns: soft-component multiplicity in the acceptance
~ns: particular function of n̂ch used to estimate ns
nh: hard-component multiplicity in the acceptance: ns �
nh � nch

�: hard-component coefficient: nh=ns � �n̂ch

S0: unit-normal functional form of the soft component
(Lévy distribution on mt)
N0: running integral of soft reference S0

H0: unit-normal functional form of the hard component
(Gaussian distribution on yt)
A, p0, n: power-law model parameters
As, �0, n: soft-component Lévy distribution parameters,
1=�0 � T0, the slope parameter
Ah, �yt, �yt : hard-component Gaussian parameters
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