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Very recent inelastic α-scattering data on the isoscalar monopole and dipole strength distributions in 56Fe,
58Ni, and 60Ni are analyzed in the relativistic quasiparticle random-phase approximation (RQRPA) with the
DD-ME2 effective nuclear interaction (nuclear matter compression modulus Knm = 251 MeV). The calculation
nicely reproduces the observed asymmetric shapes of the monopole strength, and the bimodal structure of the
dipole strength distributions. The RQRPA centroid and mean energies are in very good qualitative agreement
with the experimental values both for the monopole, and for the low- and high-energy components of the dipole
transition strengths. It is noted, however, that while DD-ME2 reproduces in detail the excitation energies of the
giant monopole resonances (GMR) in nuclei with A � 90, the theoretical centroids are systematically above the
experimental values in lighter nuclei with A� 60. The latter can be reproduced with an effective interaction with
a lower value of Knm ≈ 230 MeV but, because of the asymmetric shapes and pronounced fragmentation of the
monopole strength distributions, isoscalar GMR data in light nuclei cannot provide accurate estimates of the
nuclear matter compression modulus.
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Compressional modes in atomic nuclei can be used to de-
duce the value of the nuclear matter compression modulus Knm

from a comparison of experimental excitation energies with
those predicted by microscopic nuclear effective interactions
[1]. Inelastic α-scattering experiments have been employed
in high precision studies of the systematics of isoscalar giant
monopole resonance (ISGMR) in nuclei with A � 90. There is
much less experimental information, and only few microscopic
theoretical analyses of the structure of compressional modes
in lighter nuclei with A < 90. While in heavy nuclei the shape
of the ISGMR strength distribution is typically symmetric,
for A < 90 the ISGMR display asymmetric shapes with a
slower slope on the high energy side of the peak, and with
a further decrease of the mass number the ISGMR strength
distributions become strongly fragmented. An interesting
question, of course, is whether studies of compressional
vibrations in lighter nuclei can provide additional information
on the nuclear matter compression modulus. Namely, Knm

corresponds to bulk nuclear compressibility, whereas one
expects that surface compressibility plays an increasingly
important role in the structure of ISGMR in lighter systems.
Recently the isoscalar giant resonances in 56Fe, 58Ni, and 60Ni
have been studied with small-angle inelastic α-scattering [2].
Since there were no specific microscopic calculations of E0
and E1 strength distributions in 56Fe and 60Ni, the mass
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dependence of the ISGMR excitation energies between A =
40 and A = 90 was thus compared with results of leptoder-
mous expansions based on Hartree-Fock + RPA calculations
with Skyrme interactions [3], and constrained relativistic
mean-field calculations [4]. The purpose of this work is to
perform fully self-consistent relativistic quasiparticle random-
phase approximation (RQRPA) calculations of isoscalar E0
and E1 strength distributions in 56Fe, 58Ni, and 60Ni, using
a modern effective density-dependent interaction which is
known to reproduce the systematics of compressional modes
in heavier nuclei with A � 90. However, one should note that
RPA, being a small amplitude limit of the time dependent mean
field theory, is somewhat less reliable for lighter systems and
the coupling to more complex configurations might also be
more important.

Recent theoretical studies of nuclear compressional modes
include the fluid dynamics approach [5], the Hartree-Fock +
RPA with Skyrme interactions [6–9], the RPA based on
separable Hamiltonians [10], linear response within a stochas-
tic one-body transport theory [11], the relativistic transport
approach [12], and the self-consistent relativistic RPA [13–16].
As has been pointed out by Shlomo et al., however, most
current implementations of the nonrelativistic RPA are not
self-consistent, and based on numerous approximations [7]. In
several following publications the consequences of violation
of self-consistency on the properties of giant resonances
have been investigated in a systematic manner [17–19]. Very
recent studies have emphasized the importance of a fully
self-consistent description of ISGMR, and confirmed that
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the low value of Knm = 210–220 MeV, previously obtained
with Skyrme functionals, is an artefact of the inconsistent
implementation of effective interactions [9,20]. The excitation
energies of the ISGMR in heavy nuclei are thus best described
with Skyrme and Gogny effective interactions with Knm ≈
235 MeV. In Refs. [8,9] it has been shown that it is also
possible to construct Skyrme forces that fit nuclear ground state
properties and reproduce ISGMR energies, but with higher
values of Knm. However, Knm > 240 MeV would require
unrealistically large value of the symmetry energy at saturation
density a4 [9]. A recent relativistic RPA analysis has shown
that only effective interactions with Knm = 250–270 MeV
reproduce the experimental excitation energies of ISGMR in
medium-heavy and heavy nuclei [16].

Data on the compressional isoscalar giant dipole resonance
(ISGDR) could also be used to constrain the range of allowed
values of Knm [21,22]. The problem, however, is that the
isoscalar E1 strength distributions display a characteristic
bimodal structure with two broad components. Theoretical
analyses have shown that only the high-energy component
represents compressional vibrations [23,24], whereas the
broad structure in the low-energy region corresponds to
vortical nuclear flow associated with the toroidal dipole
moment [25–27]. A strong mixing between compressional and
vorticity vibrations in the isoscalar E1 states can be expected up
to the highest excitation energies in the region ≈3h̄ω [26,27].
Nevertheless, models which use effective interactions with
Knm adjusted to ISGMR excitation energies in heavy nuclei,
also reproduce the structure of the high-energy portion of
ISGDR data [7,28,29].

In this work the isoscalar E0 and E1 strength distributions
for the open-shell nuclei 56Fe, 58Ni, and 60Ni are calculated in
the RQRPA [30] formulated in the canonical single-nucleon
basis of the relativistic Hartree-Bogoliubov (RHB) model [31].
This approach is fully self-consistent: the same interactions,
in the particle-hole and particle-particle channels, are used
both in the RHB equations that determine the canonical
quasiparticle basis, and in the RQRPA equations. In this
way, we ensure that RQRPA amplitudes do not contain
spurious components associated with the mixing of the nucleon
number in the RHB ground state, or with the center-of-mass
translational motion.

In Fig. 1 we display the isoscalar monopole strength
distributions for 56Fe, 58Ni, and 60Ni. The RHB+RQRPA
calculation has been performed with the DD-ME2 effective
interaction in the particle-hole channel and the finite-range
Gogny force has been used in the particle-particle channel
[32]. DD-ME2 belongs to a new class of relativistic effective
nuclear interactions with density-dependent meson-nucleon
vertex functions, providing a realistic description of asym-
metric nuclear matter, neutron matter and finite spherical and
deformed nuclei. For DD-ME2 the nuclear matter compression
modulus amounts Knm = 251 MeV. The strength distributions
in Fig. 1 can be compared with the data from Ref. [2] (Figs. 8, 9,
and 10). In all three nuclei the calculation predicts asymmetric
shapes for the isoscalar E0 strength distributions, in agreement
with data. In particular, an additional tail in the transition
strength is obtained above the main ISGMR peaks for 56Fe
and 60Ni. For 58Ni most of the strength is distributed over two
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FIG. 1. The RQRPA(DD-ME2) isoscalar monopole strength dis-
tributions in 56Fe and 58,60Ni in comparison with the experimental
centroid m1/m0 and mean

√
m3/m1 energies [2].

major peaks, with an additional pronounced high-energy tail.
The arrows denote the positions of the experimental centroid
(Ē1 = m1/m0) and mean energies (Ē3 = √

m3/m1), where
mk = ∫

EkR(E)dE are the energy moments, and R(E) is the
transition strength distribution function. We note that in all
three nuclei the main ISGMR peak predicted by the RQRPA
calculation is located in the narrow energy window between
the Ē1 and Ē3 experimental energies.

In the upper panel of Fig. 2 we plot the RHB+RQRPA
results for the ISGMR centroid energies of a series of
spherical nuclei from 40Ca to 208Pb, calculated with the
DD-ME2 effective interaction, in comparison with data from
the Texas A&M University (TAMU) [2,33–35] and Osaka
[28,29] compilations. We note that the latter data correspond to
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FIG. 2. (Upper panel) The RQRPA centroid energies of ISGMR
in 40 � A� 208 nuclei in comparison with TAMU [2,33–35] and
Osaka [28,29] data compilations. (Lower panel) The calculated mean
energies of ISGMR for several medium-mass nuclei in comparison
with the data from Ref. [2]. In addition to DD-ME2, three additional
effective interactions with the values of Knm = 230, 250, and
270 MeV [16] have been used.
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peak energies and, especially in nuclei in which a high-energy
tail is found above the main peak, these values should be
somewhat below the TAMU centroid energies. The agreement
between the excitation energies calculated with DD-ME2
and the TAMU data is remarkable for nuclei with A � 90,
whereas the theoretical centroids are systematically above
the experimental values in lighter nuclei. The origin of this
discrepancy is not understood, but it could be due to the
fact that in light nuclei the surface incompressibility plays a
more important role in determining the ISGMR, whereas Knm

represents the volume incompressibility. The former quantity
is seldom taken into account when adjusting the parameters
of an effective interaction and, therefore, we do not really
expect that DD-ME2 can reproduce in detail the moments
of asymmetric and even fragmented isoscalar E0 strength
distributions in light nuclei with A � 60.

It seems that data on ISGMR in light nuclei are not
very useful in extracting information on the nuclear matter
compression modulus Knm. Nevertheless, we have tried to
reproduce these data with few additional effective interactions.
In the recent analysis of nuclear matter incompressibility in the
relativistic mean-field framework [16], families of density-
dependent interactions with different values of the nuclear
matter compression modulus Knm and symmetry energy at
saturation (volume asymmetry) a4, were adjusted to reproduce
nuclear matter and ground-state properties of spherical nuclei.
By performing fully consistent R(Q)RPA calculations of
isoscalar E0 and isovector E1 strength distributions in spherical
nuclei with A � 90, it has been shown that the comparison
with data restricts the values of Knm to ≈ 250–270 MeV,
and the range of volume asymmetry to 32 MeV � a4 �
36 MeV. A weak correlation between a4 and Knm was
found, i.e., interactions with lower volume asymmetry allow
for slightly lower values of Knm. Therefore in addition to
DD-ME2, the family of interactions with a4 = 32 MeV and
Knm = 230, 250, and 270 MeV [16] has been used in a
R(Q)RPA calculation of ISGMR in 40Ca, 56Fe, 58Ni, 60Ni,
and 90Zr. The resulting mean energies Ē3 are plotted in the
lower panel of Fig. 2, in comparison with data from Refs.
[2,33,34]. We notice that while DD-ME2 and the Knm =
250 MeV effective interaction reproduce the experimental
value Ē3 for 90Zr, data in lighter nuclei are better described by
the effective interaction with Knm = 230 MeV, except possibly
for 58Ni, but for this nucleus the experimental energy Ē3

differs considerably from the values in the neighboring 56Fe
and 60Ni [2].

For the DD-ME2 effective interaction, the RHB+RQRPA
isoscalar dipole transition strength distributions in 56Fe, 58Ni,
and 60Ni are shown in Fig. 3. In all three nuclei the E1
strength is strongly fragmented and distrubuted over a wide
range of excitation energy between 10 MeV and 40 MeV, in
agreement with the experimental results of Ref. [2]. Similarly
to the results obtained for heavier nuclei [23,24,27], the E1
strength is basically concentrated in two broad structures:
one in the region 10 MeV � Ex � 20 MeV, and the high-
energy component above 25 MeV and extending above
40 MeV excitation energy. Only the high-energy portion of
the calculated E1 strength is sensitive to the nuclear matter
compression modulus of the effective interaction. In a number
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FIG. 3. The RQRPA(DD-ME2) isoscalar dipole transition
strength in 56Fe and 58,60Ni. The experimental centroid energies of
the low- and high-energy components are denoted by arrows [2].

of recent theoretical studies [25–27] it has been shown that
the low-lying E1 strength mostly corresponds to vortical
flow (dipole toroidal mode), although a strong mixture of
compressional and vortical velocity fields is predicted in the
intermediate and high-energy region.

In Fig. 3 the thick arrows denote the locations of the experi-
mental centroid energies (m1/m0) in the low- and high-energy
regions of the isoscalar E1 strength in 56Fe, 58Ni, and 60Ni [2].
These are compared in Fig. 4 with the theoretical values of
the centroids of the low- and high-energy components, for
different values of Ec, the somewhat arbitrary parameter which
separates the low- and high-energy regions. We notice a good
qualitative agreement between the calculated and experimental
centroids in the high-energy region, especially taking into
account that the E1 strength above Ex = 40 MeV has not
been observed in the experiment. In the low-energy region,
however, the theoretical centroid energies are systematically
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below the experimental values by ≈1–4 MeV, depending on
the choice of Ec. This effect is in agreement with previous
RRPA calculations in heavier nuclei [27], and supports the
picture of pronounced mixing between compressional and
vorticity vibrations in the intermediate region of excitation
energies.

In conclusion, we have performed RHB+RQRPA calcula-
tions of the isoscalar monopole and dipole strength distribu-
tions in 56Fe, 58Ni, 60Ni and compared the results with very
recent experimental data [2]. For the ISGMR we find very good
qualitative agreement between theory and experiment, both for
the asymmetric shapes of the strength distributions, as well as
for centroid (Ē1) and mean energies (Ē3). It has been noted,
however, that while there is an excellent agreement between
the ISGMR excitation energies calculated with DD-ME2 and
the data for nuclei with A � 90, the theoretical centroids are
systematically above the experimental values in lighter nuclei
with A � 60. Even though because of asymmetric shapes and

pronounced fragmentation, ISGMR data in light nuclei are
probably not very useful for extracting information on the
nuclear matter compression modulus, we have shown that the
ISGMR centroids in nuclei with A � 60 are better described
with an effective interaction similar to DD-ME2, but with a
lower value of Knm ≈ 230 MeV. The isoscalar E1 strength
distributions calculated with DD-ME2 are in good agreement
with the experimental results [2], and reproduce the observed
bimodal structure with two broad components in the 2h̄ω and
3h̄ω energy regions. The calculated centroid energies of the
low- and high-energy E1 components in 56Fe, 58Ni, and 60Ni
qualitatively reproduce the experimental values obtained from
small-angle inelastic α-scattering data.
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