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We study nonlocal vortex transport in mesoscopic amorphous Nb0.7Ge0.3 samples. A dc current I is passed
through a wire connected via a perpendicular channel, of a length L=2–5 �m, with a pair of voltage probes
where a nonlocal response Vnl� I is measured. The maximum of Rnl=Vnl / I for a given temperature occurs at an
L-independent magnetic field and is proportional to 1/L. The results are interpreted in terms of the dissipative
vortex motion along the channel driven by a remote current and can be understood in terms of a simple model.

DOI: 10.1103/PhysRevB.74.220510 PACS number�s�: 74.78.Na, 74.78.Db, 74.25.Qt, 74.25.Fy

In a pioneering work Giaver measured a magnetic-flux-
transformer effect in type-II superconductors.1 He applied a
magnetic field B perpendicularly to a sample comprising two
superconducting sheets separated by a thin insulator, passed
a current I through one of the superconductors, and measured
a voltage developed over the other one—where no current
was flowing. The induced voltage was a consequence of an
electromagnetic coupling of vortices in the two layers. In
their recent experiment Grigorieva et al.2 demonstrated a
complementary flux-transformer phenomenon associated
with vortices. They produced mesoscopic amorphous MoGe
structures of a double-cross shape, consisting of two parallel
wires connected at a right angle by a channel of width
w=0.07–2 �m and a length L=0.5–12 �m. In a perpen-
dicular B and with I through one of the parallel wires a
nonlocal voltage Vnl appeared over the second, current-free
wire. This novel, transversal flux-transformer effect origi-
nated in the in-plane vortex-vortex repulsion, which con-
veyed the driving force from the current-carrying wire to the
vortices in the channel. The effect disappeared not only for L
exceeding 6–7 �m but also for w larger than �0.5–1 �m.
When w was sufficiently small the force on the vortices in
the channel was transferred over many intervortex distances
and, moreover, Vnl was proportional to I. The efficiency of
the transversal flux-transformer effect can be quantified by a
nonlocal resistance Rnl=Vnl / I.

In the experiment of Grigorieva et al.2 the local mixed-
state dissipation was characterized on separate mm-sized
films, whereas Vnl was measured by a low-frequency ac
method during B sweeps at constant temperatures T. An ac
method was used because Vnl was in nV range—i.e.,
Rnl�5 m�—thus being too small for dc detection. In our
work we focused on dc probing of the transversal flux-
transformer effect and measuring Vnl and the local voltage Vl
on the same sample, which was possible in multiterminal
amorphous �a− �Nb0.7Ge0.3 structures of the geometry shown
in the inset to Fig. 1. The weak pinning, characteristic of the
a−Nb0.7Ge0.3 material used, resulted in a dc-measurable Vnl
and Rnl�1 � even at very low temperatures. The measured
nonlocal resistance was hence two orders of magnitude
larger than in Ref. 2.

In this study we investigate the transversal flux-
transformer effect in samples of different length by isother-

mal sweeps of B, over a range of applied I and for
0.15Tc�T�0.95Tc, where Tc is the superconducting transi-
tion temperature. Vnl depends linearly on I in the range
I=0.1–1 �A. With increasing B, Rnl�B� first acquires a non-
zero value at B=Bd, then has a maximum at B=Bp, and
gradually vanishes close to the upper critical magnetic
field Bc2. The main representatives of Rnl—i.e., Bp and
Rp=Rnl�Bp�—behave differently with respect to the channel
length. Bp is independent of L whereas Rp�1/L, suggesting
a vortex velocity unl�1/L at the nonlocal voltage probes.
This we relate to the total frictional force on the vortices in
the channel being proportional to L.

We investigated two structures of the type shown in the
inset to Fig. 1, where we also assign numbers to the leads
and define the coordinate system �with the unit vectors x̂, ŷ
and ẑ�. As in our previous studies,3,4 the samples were pro-
duced by combining electron-beam lithography with magne-
tron sputtering but the film thickness was increased from
20 nm to d=60 nm in order to safely avoid inhomogeneities
detected in samples of a cross section smaller than

FIG. 1. Local �lines, left-hand scale� and nonlocal �symbols,
right-hand scale� response for the L=2 �m channel at T=1.4 K
�Bc2=2.95 T� and I= I01=300,600,800 nA. Inset: a photograph of
the sample, with the designation of the leads and the definition of
the coordinate system.
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�5000 nm2. This way the pinning was enhanced, as we
inferred from the local dissipation, but still remained weak
enough to permit a nonlocal vortex motion over several mi-
crons. Contacts 0 and 1 are used for applying a dc I= I01
through the horizontal wire, exerting a local force on vortices
in the y direction �since B=−Bẑ�. Having a velocity u=uŷ,
vortices induce an electric field E=Ex̂. Combinations of con-
tacts i , j=6–9 are used for measuring the local voltage drop
Vl. The local vortex pressure is transferred from the horizon-
tal wire along the zero-I channels �the length L is indicated
for the left channel� toward the crosses contacted by leads
2,3 and 4,5, where Vnl is measured. For the first sample the
channel lengths were 2 and 3 �m and for the second 3 and
5 �m, so we covered the range L=2–5 �m and had two
L=3 �m samples for a consistency check. All wires of a
single sample had the same width: w=275 nm for the sample
with the longer channels and w=250 nm for the other one.
This small difference did not affect the results presented
henceforth. Since dc measurements are invariably burdened
by sub-�V parasitic signals, in order to determine Vnl�I� for
a given measurement with leads i, j we recorded both
Vnl,ij�I� and Vnl,ij�I=0� taken at the same B-sweep rate and
direction. Vnl,ij�I=0� was different for different pairs of leads
and depended very weakly on the B-sweep rate. The
background-free nonlocal voltage was extracted as Vnl�I�
=Vnl,ij�I�−Vnl,ij�I=0�. By this procedure we found a very
regular behavior of Vnl�I�, which, in particular, for the two
L=3 �m channels agreed within the error bars. From the
local voltage response between contacts �8,9� we
characterized the samples in the same way as in our
previous work,3 obtaining Tc=2.95 K, the normal-state resis-
tivity �n=3.7 �� m, −�dBc2 /dT�T=Tc

=2.17 T/K, and the
Ginzburg-Landau parameters �=100, ��0�=7.15 nm, and
	�0�=1.18 �m.

Results typical of Vnl are shown in Figs. 1 and 2. The data
in Fig. 1 were obtained for the L=2 �m channel at
T=1.4 K �Bc2=2.95 T� and with I= I01=300,600,800 nA.
The lines �left-hand scale� correspond to the local response
V89/ I01, and the symbols �right-hand scale� to Vnl / I

= �V45�I01�−V45�0�� / I01. As expected from previous
investigations3 of V�I� of a−Nb0.7Ge0.3, for the given current
density J�20–50 MA/m2 the local response at low T de-
pends on I. Noteworthy, in contrast to d=20 nm samples
with a weaker pinning3,4 the onset of Vl at a certain B=Bdl is
essentially independent of I. Bdl nearly coincides with Bd for
L=2 �m, while Bd for L=3, 5 �m is higher for �5% �high
T� to �20% �low T� and mutually indistinguishable.
Contrary to Vl�I�, Vnl�I� is for the given range of I linear for
all T.5

In Fig. 2 we show how Rnl=Vnl / I changes with tempera-
ture. The results refer to an L=3 �m channel, I=600 nA,
and T=0.8,1.6,2.6 K. As in Fig. 1, Rnl=0 up to B=Bd after
which it displays a relatively broad peak around B=Bp,
which defines Rp=Rnl�Bp�. Close to the Bc2, Rnl drops to zero
again. While the nonlocal resistance in Ref. 2 decreased with
decreasing T, vanishing at T /Tc�0.6, in our experiment we
find a nonmonotonic variation of Rnl�T�. Rnl is finite even
at the lowest measurement temperature �T=0.4 K,
T /Tc�0.14�, decreases at low T, and increases close to Tc
with increasing T �see Fig. 3�b� later�. The Rnl�B� traces are
nearly symmetric around B=0, but especially at low T and/or
high I, Rp for B�0 and B
0 may differ to some extent, as
seen, e.g., in Fig. 1 for I=800 nA �1.4 K� and in Fig. 2 for
T=0.8 K �600 nA�. These differences do not necessarily ap-
pear only because of variations in measurement conditions
during the long B sweeps �e.g., slightly different bath tem-
perature�; they may also originate in the Nernst effect6 due to
a heating in the current-carrying wire.3 However, the Nernst
effect changes sign by reversal of B and can be canceled by
the averaging Rnl�B�= �Rnl�+B�+Rnl�−B�� /2. Moreover, for
our samples Rnl�+I�=Rnl�−I�, which rules out a rectifying
effect proposed recently.7

FIG. 2. Rnl�B� �left-hand scale� for an L=3 �m channel at
T=0.8,1.6,2.6 K and I=600 nA, with the voltage resolution shown
by the right-hand scale. The curves are offset for clarity. The mean-
ing of Bd, Bp, and Rp is indicated by the arrows.

FIG. 3. Characteristic parameters of Rnl for the three channel
lengths. �a� Bp�T� together with Bc2�T�, Bdl�T�, and Bd�T� for the
L=2 �m channel. The dashed lines are guides for the eye. �b� LRp

vs T. The solid lines represent the results of the calculations �using
�BS and �T, as indicated� explained in the text.
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Essential information on Rnl is contained in the character-
istic quantities Bp and Rp. In Fig. 3�a� we plot Bp�T� for all
three channel lengths, together with Bc2�T�, Bdl�T�, and Bd�T�
for the L=2 �m channel. Bdl and Bd are relatively low and
become immeasurably small above 2.6 K �this applies to Bd
for L=3, 5 �m as well�. It can be seen that Bp is independent
of L. On the other hand, Rp does depend on L, which is
shown in Fig. 3�b�. RpL vs T, plotted by the symbols, exhib-
its a reasonably well-defined scaling behavior, implying
Rp�1/L.

Before turning to a more quantitative description of the
data we would like to give an intuitive picture of the nonlo-
cal effects observed. As discussed in Ref. 2, J decays with
distance y from the local cross as �exp�−�y /w�. Hence, for
the range of L in our experiment the weak penetration of J
into the channel is of little importance. For magnetic fields
B�Bdl both Vl and Vnl must be zero since vortices do not
move at all due to the pinning. On the other hand, for B

Bc2 the vortex contribution to Vnl must vanish, since the
sample is normal. A more intricate question is the relation
between the local dynamics where J�0 and the nonlocal
vortex motion where J=0, especially because vortex trans-
port in the presence of pinning �i.e., at low T� depends
strongly on J. The direct comparison of Vl and Vnl is com-
plicated further by the different conditions for vortex motion
in the local cross �vortices face other vortices in the channel�
and in the rest of the local wire �vortices face either surface
barriers, if present, or vacuum at the edges�. However, in
spite of these difficulties the presented results can be ex-
plained reasonably well by a simple model discussed below,
which agrees with the data even quantitatively when the pin-
ning is negligible.

This model assumes equilibrium between the driving
force exerted by I on the vortices in the lower cross and the
frictional damping force on the vortices in the channel, as
well as the presence of surface barriers enforcing a dominat-
ing y component of u inside the channel. In a first step we
neglect the pinning and assume that the frictional force is
linear in u with a velocity-independent friction coefficient �.
The effects of pinning are addressed later.

At a vortex density n=B /0, where 0 is the magnetic-
flux quantum, in total nw2 vortices in the lower cross—each
experiencing a force J0d—apply a pressure p=n0I /d on
the vortices in the channel. The corresponding pushing force
�per unit vortex length� pw is balanced by the force required
to move nLw vortices along the channel against the fric-
tional damping �unl per vortex. This gives unl=0I /�Ld
�1/L. Using Vnl=wBunl we find

Rnl =
Vnl

I
=

0Bw

L�d
. �1�

The above result holds if the surface barriers are strong
enough to confine the vortex motion within the channel. As
shown experimentally in Ref. 2, this is not satisfied for large
w. In any case, surface barriers are essential to preserve the
uniaxial character of the nonlocal vortex motion. An impor-
tant source of the surface barriers is the Meissner currents JM
flowing along the channel edges and providing an inward-

pointing force Fin�JM. The surface barriers weaken by ap-
proaching Bc2 irrespective of their exact origin, which may
explain the fact that Rnl�B� does not increase all the way up
to B=Bc2 before dropping to zero in the normal state. This
restricts the range of applicability of Eq. �1� to B not too
close to Bc2. On the other hand, Eq. �1� correctly reproduces8

Rp�1/L and, as we show below, accounts for Rp�T� quanti-
tatively in conditions of insignificant pinning.

For T�2.7 K the Vl�I� curves are linear beyond any
doubt, implying a negligible pinning and, moreover, ��� f
of the viscous drag in pure flux flow. There are two possible
dissipation mechanisms that determine the flux-flow viscos-
ity � f.

9 One is related to Joule heating of normal electrons in
vortex cores by the E therein, as described by the Bardeen-
Stephen model giving � f =�BS=0Bc2 /�n.10 The other ap-
proach, proposed by Tinkham, attributes the dissipation to a
loss of the superconducting Gibbs free-energy density
Gs�B ,T� as vortices move and cause depairing and recombi-
nation of Cooper pairs.11 This process is affected by the time
�= �� /�0��1+ �T /Tc�2� / �1− �T /Tc�2� of establishing a super-
conducting state and results in � f =�T=2��Gs ��0
�1.76kBTc is the superconducting gap at T=0 and � the
Planck constant�.11 For B not too close to Bc2—i.e., in the
regime of the applicability of Eq. �1�—Gs can be approxi-
mated by the superconducting condensation energy Us�T�
�Bc2

2 �T� /4�2�0, where �0=4� /107 H/m.3 Since we know
Bc2�T�, we can determine both �BS and �T for our samples,
which permits a quantitative comparison of the experiment
and the model.

At T�2.7 K the measured Bp�60 mT�Bc2 is fairly
constant, so the temperature dependence of the correspond-
ing Rp is dominated by that of �. By calculating �BS and �T
without any adjustable parameter and using Eq. �1� we ob-
tain LRp shown in Fig. 3�b� by the solid lines, as indicated.
The magnitudes of measured and calculated Rp agree well,
and this result is only weakly sensitive to precise T depen-
dences of Bp and �. It is suggestive that, although restricted
to a narrow T range of negligible pinning, our model can also
reproduce the steep increase of Rp�T� near Tc, which is at-
tributed to a rapid decay of � f preceding the transition to the
normal state and vanishing of Rnl.

So far we have not included any effect of pinning into our
analysis, which is justified only in a narrow T range close to
Tc. At lower temperatures the use of � f and the measured
values of Bp in Eq. �1� results in a rapid increase of Rp far
above the observed values. In addition, nonlinearities in Vl�I�
are observed below 2.7 K, indicating that the pinning is no
longer marginal. However, the fact that the linearity of Vnl�I�
and Rp�1/L are preserved in this regime brings up a possi-
bility of extending our model to lower temperatures. This is
achievable if even in the presence of pinning p remains pro-
portional to I and � independent of u. Below we argue that
these properties are consistent with a plausible picture of the
distribution of the pinning force in our samples.

We recall that the onset of Vl at Bdl does not depend on I,
which suggests a critical vortex density for triggering the
dissipation. This implies that for B�Bdl the flux is first
trapped in the most-strong-pinning regions of the sample.12

When these are saturated at B=Bdl vortices enter the lower-
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pinning regions in between—where they can move more eas-
ily. Only after this saturation does the dissipation start by the
vortex motion along “vortex rivers” between the strong-
pinning sites and areas. In the current-carrying wire vortices
in the “rivers” shear plastically with the edges, thus enhanc-
ing the driving force above J0 in depinning the vortices.
This process may result in a nonlinear Vl�I�, such as that
observed in Fig. 1, because one such vortex driven con-
stantly by J assists in depinning several vortices close to its
path through a “river.” Since J supplies energy for the depin-
ning described, the nonlinearity cannot propagate signifi-
cantly into the channel where J�exp�−�y /w�.2 The pushing
force is thus conveyed along the “rivers” set by the equilib-
rium pinning properties, and the fraction of the contributing
vortices is f ��B−Bdl� /B. The vortex pressure is therefore
reduced by the same factor f .

The frictional damping of the vortex motion in “vortex
rivers” was investigated in samples with artificial easy-flow
channels embedded in a strong-pinning medium.13 Because
of the random pinning landscape in our samples, no com-
mensurability effects between the moving and immobile vor-
tex regions are expected and the vortex velocity in the “riv-
ers” should respond linearly to the applied force. This may
explain the observed linearity of Vnl�I�, while the magnitude
of Rnl is reduced by the ratio f that accounts for the number

of vortices in the strong-pinning regions. Although we lack a
manageable model for calculating � including the effects of
pinning, the increase of Rp as T is lowered can be explained
at least qualitatively as a consequence of Bp�T� growing
faster than ��T�.

To conclude, we have investigated a transversal flux-
transformer effect, manifested in a nonlocal flow of vortices
in a narrow superconducting channel driven by a remote dc
current. In our low-pinning a-Nb0.7Ge0.3 the nonlocal voltage
appears in more than half of the superconducting phase
diagram—i.e., everywhere where the vortices can be moved
easily enough to induce dissipation at very low currents. The
effect is two orders of magnitude larger than in previous
studies.2 We observe a nonmonotonic variation of the maxi-
mal nonlocal resistance with temperature, which can be ex-
plained by an interplay of vortex density and vortex-motion
viscosity. Close to Tc the data are in quantitative agreement
with a simple model based on the assumption that the vorti-
ces behave like a weakly compressible fluid confined to the
superconducting channel by surface barriers.
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MZOS under Project No. 119262.

*Corresponding author. Electronic address: dbabic@phy.hr
1 I. Giaver, Phys. Rev. Lett. 15, 825 �1965�.
2 I. V. Grigorieva et al., Phys. Rev. Lett. 92, 237001 �2004�.
3 D. Babić et al., Phys. Rev. B 69, 092510 �2004�, and references

therein.
4 J. Bentner et al., Phys. Rev. B 70, 184516 �2004�.
5 A significant decay of Rnl appears around I=1.2 �A.
6 M. Zeh et al., Phys. Rev. Lett. 64, 3195 �1990�.
7 D. Y. Vodolazov et al., Phys. Rev. B 72, 024537 �2005�.
8 The 1-�m-long tails of the crosses, outside the channel area, do

not add to the damping force. Fin pushes vortices inwards along

the y direction as well, so the contributions of the tails cancel out
and L is the proper length for the vortex-block size.

9 A. I. Larkin and Yu. N. Ovchinnikov, in Nonequilibrium Super-
conductivity, edited by D. N. Langenberg and A. I. Larkin
�North Holland, Amsterdam, 1986�.

10 J. Bardeen and M. J. Stephen, Phys. Rev. 140, A1197
�1965�.

11 M. Tinkham, Phys. Rev. Lett. 13, 804 �1964�.
12 T. Matsuda et al., Science 271, 1394 �1996�.
13 T. Dröse et al., Phys. Rev. B 67, 064508 �2003�.

HELZEL et al. PHYSICAL REVIEW B 74, 220510�R� �2006�

RAPID COMMUNICATIONS

220510-4


