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Tijekom stanične diobe, sestrinske kromatide razdvajaju se formiranjem metafaznog vretena, bipolarne 

molekularne makrostrukture samosastavljene od mikrotubula i pridruženih proteina. Trenutačno su u 

modelima metafaznog vretena opisane tri vrste mikrotubula: kinetohorni, interpolarni i astralni. U ovom 

radu analizirana su antiparalelna nekinetohorna vlakna mikrotubula koja se nalaze odmah ispod 

sestrinskih kinetohornih parova, a nazvana su premošćujuća vlakna. Primjenom fluorescentne 

mikroskopije živih stanica, pokazao sam da je ova struktura prisutna u različito obilježenim HeLa i Ptk1 

stanicama, i to s različitim brojem mikrotubula u svakoj liniji. Također, analiziran je odgovor vanjskoga 

kinetohornog vlakna na lasersku ablaciju u staničnoj liniji Ptk1. Uočio sam zajedničku putanju 

kinetohornih vlakana, kinetohora i premoščujućih vlakana prema van što ukazuje na lateralnu 

povezanost između kinetohornih i premošćujućih vlakana. Također, pokazao sam da se udaljenost 

između kinetohora smanjuje nakon ablacije i da razina smanjivanja obrnuto korelira s udaljenošću 

mjesta ablacije od kinetohore. Dodatno, pokazao sam da se vanjski element vretena izravnava nakon 

ablacije, i to najbrže i najviše u liniji s najdebljim premošćujućim vlaknom, što ukazuje da su ta dva 

parametra korelirana. Konačno, usporedio sam neke od rezultata s predikcijama teorijskog modela, kako 

bih pokazao njegovu robusnost koristeći neke eksperimentalne podatke kao ulazne parametre. Dobiveni 

rezultati govore da su premošćujuća vlakna važna strukturalna komponenta koja ima ulogu u ravnoteži 

sila kompresije i tenzije u metafaznom vretenu. 
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During cell division, sister chromatids are segregated by mitotic spindle, a bipolar self-assembly of 

microtubules and associated proteins. Current models of mitotic spindle recognize three distinct 

subpopulations of microtubules: kinetochore, interpolar and astral microtubules. The role of antiparallel 

non-kinetochore microtubule bundles, termed bridging fibers, positioned under sister kinetochores in 

HeLa and Ptk1 cell lines, was analysed in this study. Using live-fluorescent imaging analysis it was 

shown that these bundles are present in differently labelled HeLa and Ptk1 cell lines with distinct 

thicknesses. The response of outermost spindle element to laser ablation in Ptk1 cell line was also 

analysed. Joint outward movement of bridging and k-fibers was observed suggesting connection into 

single mechanical unit. Decrease in inter-kinetochore distance was also observed after ablation. That 

decrease is inversely correlated with distance of the cut from the kinetochore. In addition, spindle 

element straightening after ablation was observed in all cell lines but with strongest straightening in 

HeLa cell line with thickest bridging fiber, demonstrating that response to ablation and thickness of 

bridging fiber are correlated. Finally, some of obtained results were compared with theoretical model of 

the HeLa metaphase spindle confirming robustness of the model by using some of our experimental data 

as inputs. In conclusion, obtained results demonstrate that bridging fiber is important structural 

component of metaphase spindle involved in balancing compressive and tensile forces in spindle. 
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1 Introduction     
 

 

1.1. Cell division 
 

Cell division is the process by which a parent cell divides into two daughter cells. This process 

is the basis of existence and continuity of all life and it can be reasoned that perhaps the most 

critical part of this process is the ability of cells to accurately duplicate and then faithfully 

segregate their chromosomes at each cell division. This ensures stability to genomic 

information that is fundamental to life. For that reason this process has to be very precise 

because some loss or gain in DNA material can be either lethal to the cell, in which case it is 

not detected at level of organism, or cause severe complications for the cell. For example, it is 

estimated that yeast only mis-segregates one of its 16 chromosomes every 100 000 divisions 

(Bouck et al., 2008). In humans, tightly controlled and timed cell divisions at level of organism 

are essential for normal differentiation, complex organ development and loss of these normal 

controls of cell replication is fundamental defect in various types of cancer, infertility disorders 

and multiple congenital abnormalities (Lodish, 2014).  

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Reconstructions of two mitotic spindles showing different complexity of mitotic spindles 

in different organisms. Saccharomyces cerevisiae (budding yeast, top panel) spindle and Potorous 

tridactylus (PtK2, rat kangaroo kidney, bottom panel) spindle. There are 40 microtubules in the yeast 

spindle, 32 kinetochore microtubules, and 8 interpolar microtubules versus hundreds in PtK2 (25–30 

kinetochore microtubules per chromosome and ∼115 interpolar microtubules (ipMTs) from each pole) 

(Adapted from Bloom et al., 2008). 
 

 In all eukaryotic cells, segregation of chromosomes is accomplished by formation of 

mitotic spindle, highly dynamic bipolar molecular macrostructure of different complexity in 
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different organisms that is self-organised of microtubules and associated proteins at beginning 

of mitosis, process that is described below (Figure 1).  

 

 Mitosis (Greek μίτος mitos meaning thread) is a term first time used by Walther 

Flemming in 1880 which we now describe as process by which the duplicated chromosomes 

are segregated to the daughter cells. Even though he worked with cells subjected to rather crude 

fixation and staining methods, Flemming was able to describe shape of the spindle and its 

characteristic filamentous organisation (Pawaletz, 2001). In 1950s, polarisation microscopy 

proved that spindles are built from filaments that run in parallel with chromosome motion and 

later it was proposed that polymerisation dynamics of these filaments produce mechanical force 

needed for powering chromosome motions (Inoue and Sato, 1967). Later, by combination of 

different techniques and rapid expansion in field of molecular biology these filaments where 

identified as microtubules, non-covalent polymers of protein tubulin (Mohri, 1968). Due to its 

large size and major role in mitosis, many have studied molecular components of mitotic 

spindle in last 20 years by various techniques and many proteins were identified that are 

essential for mitosis (Walczak, 2008). In addition, emergence of techniques such as phase 

contrast microscopy allowed the first live-cell imaging of a highly dynamic structure such is 

mitotic spindle. Further, discovery and development of green fluorescent protein (GFP) and its 

many sister forms allowed for fast visualisation, tracking and quantification of molecular 

structures within mitotic spindle (Rieder and Khodyakov, 2003). Further, micro-manipulation 

techniques and laser ablation of some components of spindle gave us insights into mechanical 

principles of the metaphase spindle, mainly force generation mechanisms involved (Dogsterom 

and Recouvreux, 2012). However, our understanding of the basic mechanical principles and 

architecture of this essential cellular structure remains rudimentary, and we cannot explain how 

the spindle maintains its structural and functional stability in the face of different forces 

(Shimamoto et al., 2011). By combining all of these techniques coupled with theoretical 

modelling of the mitotic spindle, modern biophysical research is trying to elucidate some of 

these questions.   

 

1.2. Cell cycle 
 

Cell cycle is an ordered series of events that lead to cell division and the production of two 

daughter cells, each containing chromosomes identical to those in the parental cells (Lodish, 

2014). The cell cycle is divided into four main phases: G1 (gap one), S (synthesis), G2 (gap 
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two) and M (mitosis) (Figure 2). To complete the whole cell cycle, HeLa and Ptk1 cells need 

~24 hours (Aubin et al., 1980). In G1 phase (~15 hours) cells grow in size and synthetize 

proteins and RNAs required for DNA replication. When size of the cell is appropriate and it has 

synthesized all required molecules, it enters next cell cycle phase by passing a point in G1 

known as START point. When cells pass this point, they are irreversibly committed to cell 

division. Next, cells enter the S phase (~6 h), where each parental chromosome is duplicated to 

form two identical sister chromatids duplicated in the process of semiconservative replication. 

In the next gap phase, G2 (~2 h), cells synthetize more proteins and grow to prepare for the last 

phase of cell cycle, M phase (~1 h). M phase consists of two major processes: division of the 

nucleus, or mitosis, and division of the cytoplasm, or cytokinesis, when the cell itself divides 

in two. Main function of mitosis is to successfully distribute sister chromatids to each daughter 

cell (Lodish, 2014). Despite conserved proteins and basic principles of cell cycle and mitosis 

that are shared by many eukaryotic organisms, the process can differ significantly in some 

details, so many analogous principles exist that can exert the same function with different 

mechanisms. Therefore, as this project was done on human HeLa and rat kangaroo Ptk1 cell 

lines, we will be focusing mainly on mechanisms in those model systems. 

 

 

 

 

 

 

 

 

 

 

Figure 2. Overview of main phases of the cell cycle in animal cells. S phase of the cell cycle is period 

of DNA replication followed by gap (G2) period of protein synthesis. Start of mitosis (in essence nuclear 

division) is marked with breakdown of nuclear envelope and chromosome condensation and at 

metaphase-anaphase transition of mitosis sister chromatids segregate. After mitosis, M phase of cell 

cycle finishes with cytokinesis (cytoplasmic division) followed by gap (G2) phase of protein synthesis. 

Interphase is defined as the time between two mitosis (Adapted from Alberts et al., 2010). 

 

 It is essential that cell can control each step in cell cycle because it must ensure that 

DNA replication is carried out correctly and that each daughter cell inherits the correct number 
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of each chromosome. Accuracy and fidelity are achieved because cell division is controlled by 

mechanisms known as checkpoint pathways that prevent initiation of next step in cell cycle 

until earlier step have been completed and errors made during them corrected. The main 

controllers of cell cycle progression are highly conserved heterodimeric protein 

serine/threonine kinases that contain a regulatory subunit (cyclin) and a catalytic subunit 

(cyclin-dependent kinase, CDK). They regulate some key checkpoints, transition from G1 to S 

phase and from G2 to M phase. This regulative progression, involved in entry of different stages 

of cell cycle, is achieved by phosphorylating various proteins at specific regulatory sites. 

Phosphorylation in that way can activate some proteins and inhibit others in complex regulatory 

networks. Interestingly, CDKs are also subjects of regulation by phosphorylation (Hochegger 

et al., 2008). In addition, regulated degradation in proteasomes of same proteins plays an 

important role in cell cycle transitions and because it is irreversible, it ensures that the whole 

cycle moves in only one direction, from G1 phase to the M phase. Cells produce different type 

of CDKs that have a role in initiation of specific events in each cell phase (G1 CDKs, G1/S 

CDKs, S phase CDKs and mitotic CDKs) and CDKs that trigger one cell cycle phase are active 

only during that phase (Lodish, 2014). 

 

1.3. Mitosis in general 
 

For mitosis to proceed correctly cells must first duplicate their microtubule-organizing red 

(MTOCs), in animal cells called centrosomes, in coordination with replication of chromosomes 

in S phase. The duplicated centrosomes separate in prophase of mitosis and will become two 

spindle poles of mitotic spindle. It is important to note that this process has to be properly 

regulated because multipolar spindles that result from failure in this process contribute to mis-

segregation of chromosomes leading to high genomic instability resulting in aneuploidy seen 

in many tumour cell lines (Lodish, 2014).  

 

 Although mitosis is a continuous process, it has been divided in five stages for ease of 

description (Figure 3). First phase of mitosis, prophase, is characterized by increased activity 

of centrosomes, as they begin to nucleate microtubules which replaces interphase array of 

microtubules with mitotic asters, structures consisting of centrosome and microtubule asters 

(radial arrays of MTs that converge at the centrosome) (Mogilner and Craig, 2010). 

Additionally, the dynamics of growing microtubule increase at their plus-end and two mitotic 

asters are moving to opposite sides of the nucleus by the action of bipolar kinesin-5 motor 
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protein. Separated centrosomes will form two spindle poles of mitotic spindle. Furthermore, 

internal order of membrane systems is disrupted; endocytosis and exocytosis stop and actin 

microfilaments are rearranged to give rise to rounded cell. In addition, chromosomes begin to 

condense extensively; each DNA duplex must be reduced in length by >1000-fold after which 

it form tight structures called chromosomes (McIntosh et al., 2012). Next, cohesin complexes 

at chromosome arms are degraded leaving only those in centromeric region and protein 

complexes that represent sites of microtubule attachment, called kinetochores, begin to 

assemble at the centromeric region of each sister chromatid (Dumont and Mitchison, 2009). In 

prometaphase, nuclear envelope and nuclear pores breakdown and nuclear lamina disassemble. 

Nuclear envelope breakdown allows microtubules to search and capture the chromosome pairs 

by associating with their kinetochores (model first proposed in Kirschner and Mitchison, 1986). 

This first interaction between chromosomes and growing microtubules marks the beginning of 

assembly of mitotic spindle. When both sister chromatids become captured to opposite spindle 

poles they are said to be bi-oriented (also called amphitelic attachment) (Mogilner and Craig, 

2010). Such pairs begin a process of chromosome congression, movement that finally results 

in aligned sister chromatids in equatorial plane and finalisation of that process define beginning 

of the metaphase. Metaphase is defined as a stage when paired sister chromosomes oscillate at 

the center of the spindle. In this study, I will be concentrating on metaphase because I reason 

that this is natural starting point to study biophysical properties of the spindle because 

metaphase is dynamic steady state. That means that despite large fluctuations and directed 

fluxes in both physical and chemical processes during metaphase average amount and position 

of spindle components is constant over time (Dumont and Mitchison, 2009). The next stage, 

anaphase, is induced only when quality control is passed on. That quality control process is 

called spindle assembly checkpoint (SAC) and it controls segregation in that way that it 

prevents segregation until chromosomes are attached to poles and kinetochores are under 

sufficient tension (Cheeseman and Desai, 2009). If these conditions are fulfilled anaphase-

promoting complex/cyclosome (APC/C) is activated and cohesin complexes in centromeric part 

are broken, chromosomes are separated and pulled to different poles by the forces exerted by 

microtubules shortening in mechanism known as 'pac-man' (anaphase A). Separate movement 

also occurs: spindle poles move apart from each other through sliding of antiparallel 

microtubules (anaphase B). In the next phase, telophase, after chromosomes have separated, 

nuclear envelope reforms and chromosomes decondense. Finally, last phase of the cell cycle, 

cytokinesis, is characterized by division of the cell cytoplasm trough formation of a contractile 

ring (Lodish, 2014). 
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Figure 3. The stages of mitosis with some key components of mitotic spindle noted. 
Although mitosis is a continuous process it has been divided into stages for ease of description. During 

interphase, chromosomes are duplicated, binded by cohesin complexes and in the same time, 

centrosomes are duplicated. During prophase, chromosomes condense as reorganisation of microtubule 

array occurs. In metaphase, chromosomes are aligned in metaphase plate, and in anaphase, they are 

segregated to two poles. During telophase contractile ring is formed. More details in the text (Adapted 

from Walczak et al., 2010). 

 

1.4. Microtubule structure, organisation and dynamics 
 

Microtubules are ubiquitous cytoskeletal polymers essential for the life of all eukaryotic cells. 

Although they are essential parts of many biological processes and structures, I will focus here 

on their role in mitotic spindle, as they are fundamental structural and dynamical components 

of this structure. Every microtubule is dynamic and polar polymer composed of 13 parallel, 

laterally associated protofilaments that form the hollow cylindrical structure with an outer 

diameter of 25 nm (Downing and Nogales, 1998). Each protofilament is string of αβ-tubulin 

heterodimers connected by non-covalent bonds and arranged in a head-to-tail configuration, 

with each subunit type repeating every 8 nm. Besides longitudinal had-to-tail interactions 

between subunits, most microtubules have homotypic lateral interactions between same 

subunits of different protofilaments (Nogales and Alushin, 2011). As the subunits are oriented 

in a same way through whole protofilament, they have intrinsic polarity, and as the all 

protofilaments within microtubule have the same polarity, whole microtubule has an overall 
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polarity (Lodish, 2014). By convention, the end with exposed β-subunit is called plus-end, 

while the end with exposed α-subunit is the minus-end. Microtubule polarity is crucial property 

important for spindle morphogenesis because for example microtubule-based motor proteins, 

including dynein and a large set of kinesin-like proteins, recognize the surface of microtubules, 

read their polarity, and move their cargo accordingly (Wittmann, 2001). In addition, because of 

structural differences between subunits that define two ends of microtubules, growing and 

shrinking rates are much higher at the plus-end of microtubule. That brings to second important 

microtubule property important for spindle morphogenesis – dynamic instability. Dynamic 

instability is a process describing microtubule alternating between slow growing and fast 

shrinking rates (Mitchison and Kirschner, 1984) (Figure 4).  

 

 

 

 

 

 

 

 

 

 

Figure 4. Dynamic instability of microtubules. A) Dynamic instability of microtubules in vitro. 

Microtubule length is plotted as function of time. Assembly and disassembly each proceed at uniform 

rates but, as can be seen from different slopes of the lines, shortening of microtubule is much more rapid 

than growth. B) Growing microtubule with blunter plus-end (top) had GTP-β-tubulin cap whereas 

shrinking one with curved structure terminate in GDP-β-tubulin. Microtubule dynamics, as can be seen, 

is higher at the plus-ends of microtubules (Adapted from Lodish, 2014). 

 

 To better understand dynamic instability we must first understand the molecular 

characteristics of tubulin. Each tubulin subunit in the heterodimer can bind one molecule of 

nucleotide guanine triphosphate (GTP). While in the α-subunit GTP is never hydrolysed 

because it is trapped by the interface of the subunits, in β-subunit GTP can be hydrolysed and 

reversibly binded because GTP-binding site is at surface of the dimer. Transition from slow 

growing to fast shrinking is referred to as catastrophe, and transition from fast shrinking to 

slow growing as rescue (Figure 4). Moreover, microtubules sometimes pause for a period of 

time, during which their length remains constant. Soluble free tubulin subunits have a very slow 

rate of GTP hydrolysis but this rate increases after subunit becomes incorporated into 

A 
B 
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protofilament (Deasai and Mitchinson, 1997). Moreover, nucleotide guanine diphosphate 

(GDP) resulting from hydrolysis of GTP does not exchange while β-tubulin remains in the 

polymer. So, each protofilament in a growing microtubule has mostly bound GDP β-tubulin 

subunits while only at the growing tip it is capped by one or two terminal heterodimers 

containing GTP β-tubulin subunits, this part of growing end is called GTP cap (whole model is 

after it called GTP-CAP model, developed by Mitchison and Kirschner (1984). GTP as such 

dissociates four times slower than GDP that causes GTP cap at plus-end to stabilize 

microtubules (Howard and Hyman, 2009). The infrequent loss of such GTP cap would result in 

a catastrophe, whereas the reacquisition of such a cap by a polymerisation end would result in 

a rescue. All these processes are carefully regulated by microtubule associated proteins (MAPs) 

of three class: polymerases that promote growth (CKAP5 for example), depolymerases that 

promote shrinking (kinesin-13 family for example) and microtubule plus-end tracking proteins 

that stabilize plus-ends (+TIPs, EB1 for example) (Howard and Hyman, 2009). Importance of 

dynamic instability can be seen from the fact that energy released by GTP hydrolysis of the 

subunits behind the GTP cap is stored as structural strain that can be released when cap is lost, 

process that contributes for example to movements of chromosomes during anaphase. 

 

 All microtubules are nucleated from structures known as microtubule-organizing 

centers (MTOCs) because spontaneous nucleation does not play a significant role in nucleation 

phase of microtubules assembly in vivo. In animal cell, primary MTOC is called the 

centrosome. In most of the cases, minus-end of microtubule is located near the centrosome and 

plus-end radiates from it. In interphase, centrosome is located near the nucleus producing 

interphase radial array of microtubules. Centrosomes are composed of a pair of orthogonally 

arranged cylindrical structures called centrioles, that are highly stable and surrounded by 

pericentriolar material (PCM) (Wiese and Zheng, 2006). Despite variations in morphology of 

centrosomes, all include in their PCM more than 50 copies of the γ-tubulin ring complex 

(γTuRC), the conserved, essential core of the microtubule nucleating machinery. Every γTuRC 

contains about 13 copies of the γ-isoform of tubulin and several associated proteins. This 

complex defines the position of MT nucleation, the polar orientation of the polymer, and the 

fiber into which tubulin assembles (McIntosh, 2012). As I mentioned above, prerequisite for 

successful mitosis is duplication of centrosomes, in coordination with replication of 

chromosomes in S phase. These duplicated centrosomes separate in prophase of mitosis and 

will become two spindle poles of mitotic spindle. Interestingly, it has been noted that at 

beginning of mitosis microtubule (MT) nucleation rate can increase about 5-fold compared with 
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that of interphase cells. This can be explained by process called centrosome maturation in which 

abrupt increase in centrosome-localized γ-tubulin at beginning of mitosis has been noticed 

(Piehl et al., 2004). In addition, dynamic behaviour of microtubules increases considerably in 

mitosis, mainly through increasing dynamic instability behaviour. This is accomplished by 

increased catastrophes (mainly through depolymerisation activity of kinesin-13 family of 

proteins) and fewer rescues (mainly through activity of stabilizing microtubule-associated 

protein XMAP215) (Lodish, 2014). Recently, another pathway has been described for 

nucleation of microtubules including the augmin complex, protein complex consisting of eight 

polypeptides that can bind to existing microtubules, there it recruits γTuRC that nucleate 

assembly of new microtubules. It is one example of centrosome-independent microtubule 

formation in dividing cells (Hsia et al., 2014). It is believed that this complex is not essential 

for spindle formation and function but in absence of this pathway, levels of spindle 

microtubules are reduced (Goshima, 2008). 

 

1.5. Current models of spindle assembly and movements in prometaphase 
 

The mitotic spindle essentially has three principal components: centrosomes, chromosomes and 

microtubules. As I already described, it forms in prometaphase as chromosomes become 

connected to two centrosomes by microtubule bundles that link each pole to a specialized 

macromolecular assembly on the chromosome's centromeric region, termed the kinetochore 

(Kirschner and Mitchison, 1986). By transmission electron microscopy it was elucidated that 

kinetochore is trilaminar plate-like structure with electron-opaque outer and inner plates 

separated by an electron-translucent middle layer with the plus-ends of the kinetochore 

microtubules terminating in the outer layer (Brinkley, 1966). In human cells, 15–20 

microtubules are bound to each kinetochore (Cheeseman and Deasai, 2008), and 24 ± 5 in Ptk1 

cells (Rieder, 1981). Initially, using human antibodies researchers have identified three major 

proteins in the kinetochore, CENP‑A, CENP‑B and CENP‑C. More recent studies have 

identified more than 80 protein components of the kinetochore complex. In general, connection 

between microtubules and kinetochores leads to capturing and stabilisation of microtubule that 

generally results in the formation of the typical spindle in which the poles are focused on the 

centrosomes on opposite sides of the cell (O’Connell and Khodyakov, 2004). In addition, it 

seems important to mention the forces that can be exerted on chromosomes by dynamic 

connection between kinetochores and microtubules. These forces are crucial and not 
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dispensable for proper chromosome alignment at metaphase plate. One can imagine how this 

connection complex must be very dynamic, because microtubules in kinetochore fibers (k-

fibers) are very dynamic, so to maintain this connection kinetochores must somehow move 

together with k-fibers when they oscillate, both poleward and inward. That means that when 

microtubules in k-fiber start depolymerizing, kinetochores that are connected with them must 

follow this poleward motion in a dynamic fashion because microtubules are shortening, and 

kinetochores on the other side must coordinate polymerizing motion of k-fiber attached to it. 

As it can be seen by this description, this complex movements, often called kinetochore 

oscillations because kinetochores are easiest to track, have to be highly coordinated, and 

although process is poorly described to date, several members of kinesin family and dynein had 

been implicated, such as kinesin-13 subfamily members and kinesin-8 subfamily members (see 

below) (Jaqaman et al., 2010, Cross and McAnish, 2014). 

 

 There are few to date described complex mechanisms involved in initial attachment of 

kinetochore and microtubules (Figure 5). First model of spindle assembly (Kirschner and 

Mitchison, 1986) predicted that astral microtubules nucleated at centrosomes experience 

dynamic instability (rapid growing and shrinking) and in doing so they randomly 'search' the 

space. If they contact kinetochores, either laterally or at their plus-end, they are 'captured', 

meaning they are stabilized, and rate of catastrophes is reduced. In time, as process is repeated 

by many microtubules, number of kinetochore microtubules increases while number of astral 

microtubules decreases (Figure 5). Model in its initial form had some conceptual difficulties. 

Random search-and-capture model cannot fit in standard duration of prometaphase in human 

cells (15-20 min) and chromosome characteristic ‘mono-orientation’ at one pole would never 

be achieved at prometaphase with this model (O’Connell and Khodyakov, 2004).  

 

 Recent studies have described new model involving Ran, small GTPase that enhances 

the chance that microtubule will encounter the kinetochores. In essence, during mitosis, 

exchange factor for Ran GTPase is bounded to the chromosomes thereby generating a higher 

local concentration of Ran-GTP in the vicinity of the chromosomes. As enzyme required for 

Ran hydrolysis is evenly distributed through cytoplasm as gradient of Ran-GTP is formed and 

is centerd around the chromosomes, primarily centromeres (Figure 5). Ran-GTP in turn can 

directly promote microtubule nucleation at centromeres or can stabilize microtubules as they 

would grow more frequently towards the chromosomes and experience catastrophe when 

growing away from the Ran-GTP cloud (Caudron et al., 2005). CDK11 has been identified as 
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a Ran-GTP-dependent MT stabilisation factor (Yokoyama et al., 2008). Although, this 

mechanism is not essential for spindle formation, it is supplementation mechanism that works 

in cooperation with search-and-capture model to assemble spindle relatively fast. This 

mechanism dependent on the Ran-GTP gradient is thought to be effective over a long range 

(~20 µm) but Ran-GTP cannot make a substantial gradient over a shorter range (< 5 µm) 

presumably because of its rapid diffusion (Tanaka et al., 2010). In addition, microtubule random 

pivoting mechanism around the spindle pole has been described in yeast cells (Kalinina et al., 

2013). By this mechanism, microtubules ‘search’ the space for kinetochores, and become 

stabilized when they capture the kinetochore. This mechanism can fit within typical time 

required for kinetochore capture by microtubule in yeast cells (Pavin and Tolic-Nørrelykke, 

2014) (Figure 5). Also, in some model systems (yeast, Drosophila and some vertebrate cells) 

kinetochore-derived microtubules had been reported that subsequently can interact with MTs 

extending from spindle pole along their length thereby facilitating kinetochore (KT) loading on 

to fiber of MTs extending from spindle pole (Kitamura et al., 2010) (Figure 5). Problem of 

opposite polarity (minus-ends at kinetochores and plus-ends extending further) that would 

result from this nucleation could be conciliated by creation of short MTs (~50-500 nm) that are 

generated initially with this opposite polarity which is afterward converted, at least in some 

model systems (Drosophila and vertebrate cells). In support of this, γ-tubulin complex is found 

at KTs in vertebrate cells and conversion of polarity is thought to be promoted by some plus-

end directed motor acting on KTs (e.g. CENP-E). 

 

 Once the kinetochore is attached either laterally (more frequently) or terminally (less 

frequently) by mechanisms mentioned above, the minus-end directed motor protein complex 

cytoplasmic dynein-dynactin, associates with kinetochore and moves the sister chromatids 

down the microtubule (poleward KT transport) (Yang et al., 2007). As microtubule plus-end is 

shrinking, it catches up with the laterally associated KT connected to MT lattice, leading to 

end-on attachment, the connection where KT is connected with MT plus-end. Soon afterward 

chromosome is pulled toward a spindle pole as MTs continues to shrink (end-on pulling). This 

movements help to orient the sister chromatid so that the KT that is not occupied by microtubule 

is pointing toward the distal spindle pole. These mechanisms are included in pushing 

chromosome arms by microtubules in orientation process and are thought to highly increase 

accuracy of spindle assembly (Paul et al., 2009). When a free kinetochore is captured by a 

microtubule from a distal pole, the sister chromatid pair is said to be bi-oriented (e.g. amhitelic 

attachment). In addition, when some chromosome achieve amphitelic attachment and is under 
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tension, other chromosomes in the spindle can use his kMTs to contribute to their proper 

orientation and movement inside the spindle center. This spindle-equator-directed gliding 

movement is mediated by kinesin-7 motor protein (also known as CENP-E) that are associated 

with free kinetochore and move chromosome to the plus-end of the kinetochore microtubule 

(Cai et al., 2009). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Different models of kinetochore capture by microtubules. A) Search and capture 

model of kinetochore capturing. B) Biased model of kinetochore capture involving cloud of Ran-GTP 

in vicinity of kinetochores. C) Microtubule nucleation at chromosomes (left panel) and at kinetochores 

(right panel). D) Microtubule nucleation at already established kinetochore microtubules. E) Pivoting 

mechanism of microtubules around the spindle pole. (Adapted from Pavin and Tolic-Nørrelykke, 

2014). 

 
 

1.6. Current model of microtubule population within spindle 
 

 

Current models of animal spindles describe three distant populations of microtubules within 

mitotic spindle: kinetochore, nonkinetochore and astral microtubules (Figure 6). Although they 

all assemble from the same pool of tubulin subunits, they differ in their architecture, dynamics 

and role they play in mitotic spindle (Mitchison and Dumont, 2009) (Figure 6).  
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 Kinetochore microtubules (kMTs) have their plus-ends embedded in outer kinetochore 

layer and minus-ends at or near centrosomes. Main function of this population is to exert pulling 

forces on chromosomes at kinetochore and they seem to be indispensable for proper spindle 

function. As already described, they do this by forcing chromosomes to congress to metaphase 

plate and then to pull separated sister chromatids to different poles of the spindle at anaphase. 

They also silence the spindle assembly checkpoint (SAC), a special signalling system that is 

active on sister kinetochores without attached microtubules e.g. when kinetochores are not 

under sufficient tension (Dumont and Mitchison, 2012). Typical number of kMTs that binds to 

one kinetochore in mammalian cells is from 10-30. KMTs that are connected to the same 

kinetochore tend to assemble into a bundle called kinetochore fiber (k-fiber) and most of MTs 

within one fiber are continuous from kinetochore to the pole and run in parallel orientation. 

Microtubules within fiber are evenly spaced at 50-100 nm apart and interactions between them 

are weak along k-fiber, except near spindle poles where these interactions are strong (McDonald 

et al., 1992). Crosslinking proteins that have been shown to lock parallel microtubule together 

include kinesin-14 family members Ncd and Klp2 (Fink et al., 2009, Braun et al., 2009). If k-

fiber is perturbed in some 'natural' or artificial way it behaves as single mechanical unit (Nicolas 

et al., 1982). Origin of kMT has been described in previous section because origin of kMT 

reflects origin of spindle itself. These microtubules are not stationary tracks as was once 

believed yet they have a dynamical property named poleward flux. In poleward flux, 

polymerisation is happening at plus-end of MT where it is connected to kinetochore and it is 

balanced in steady state such as metaphase by depolymerisation at minus-end of MT at the 

poles. Result of this process is constant movement of k-fiber to the pole at about 0.5 µm min-1 

(hence term poleward) (Rogers et al., 2005), which can provide force that can do work when 

steady state balancing at kMT polymerizing plus-end is supressed (Waters et al., 1996).  

 

 

 Another microtubule population within spindle are nonkinetochore or interpolar 

microtubules (ipMTs or just polar microtubules), which comprise a majority of microtubules in 

large spindles such as vertebrate spindles. They are defined as all microtubules within the body 

of mitotic spindle that are not kMTs (Dumont and Mitchison, 2012). Electron microscopy 

studies have revealed that ipMTs tend to bundle together in fibers just like k-fibers do, but each 

fiber typically contains 2-6 microtubules, evenly spaced by 30-50 nm (Mastonarde et al., 1993) 

and anti-parallel bundling seems to be predominating, focusing primarily on region of spindle 

midzone. Their function in spindle is poorly understood and since they are numerous in spindle, 

it can be reasoned that our knowledge in this area is very limited. It is thought that they primary 
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function is to keep spindle pole apart through sliding between their antiparallel bundles by 

action of molecular motors to regulate spindle length and structure and to generate a force that 

moves poles apart in anaphase B (Dumont and Mitchison, 2009). Their minus-ends are mostly 

located throughout whole spindle and seldom at spindle poles (Figure 6). In addition, many of 

these minus-ends are embedded in k-fibers where they are possibly linked mechanically with 

k-fiber. Like kMTs, they also slide poleward at an average rate of about 2 µm min-1 but unlike 

kMTs they do not slide together as a harmonized fiber since velocity of neighbouring ipMTs 

can vary greatly indicating weakly cross-linking to kMTs and each other (Yang, 2007). It is 

important to note that most of our understanding of this microtubule population come from 

study of Xenophus egg extracts, where this population of microtubules comprise > 90% of all 

microtubules.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Model of typical architecture of mammalian spindle at metaphase with visual 

representation of different microtubule populations within spindle. A) Classical model of 

metaphase spindle with overview of locations of plus- and minus-ends within spindle. Black circles 

depicts locations of minus-ends of different microtubule populations, blue zones depict nucleation sites 

and black arrow dynamics of plus-ends. B) Kinetochore microtubules have minus-ends at poles, plus-

ends at kinetochore and they continuously slide toward minus-end (poleward flux, depicted by green 

arrow). They are stabilized by attachment to kinetochore and longer lifetimes then other populations. 

They usually form large bundles of microtubules called fibers. C) Interpolar microtubules microtubules 

have very dynamic plus-ends and dynamics of their minus-ends is not extensively studied. They are 

nucleated through the spindle and continuously slide poleward (green arrow). D) Astral microtubules 

are nucleated at centrosomes and do not show sliding behaviour (poleward flux). Their plus-ends are 

dynamic and their minus-ends are fixed at centrosomes. Possible overlapping in definition with other 

microtubule groups is indicated by question mark (Adapted from Dumont and Mitchison, 2012). 
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 Last population of microtubules described in current models of mitotic spindle are called 

astral microtubules (aMTs). They are classically defined as microtubules nucleated at 

centrosomes with their plus-ends extending toward the cell cortex (Dumont and Mitchison, 

2012). They turnover by dynamic instability of their plus-ends, at growth and shrinkage rates 

that are very high, about 10-15 µm min-1 but unlike other populations they do not slide because 

their minus-ends do not depolymerize. It is thought they perform the critical function of 

positioning the spindle with respect to the cell division plane by interacting with the cell cortex. 

There are many models that explain how this is achieved; one of them includes action of 

cytoplasmic dynein-dynactin complex associated with both cortex and microtubule or some 

other complexes associated only with microtubules. Dynein then pulls them by walking to their 

minus-ends embedded in centrosome, thereby pulling whole spindle poleward (Lu and 

Johnston, 2013). It is important to note that most of our understanding of this microtubule 

population comes from the study of budding yeast Saccharomyces cerevisiae spindle. 

 

 

1.7. Molecular forces and force-generators in mitosis 
 

 

Highly purified tubulin heterodimers can assemble in vitro into microtubules, but fast assembly 

and consequent formation of complex structures requires presence of microtubule-associated 

proteins (MAPs) (Figure 7). Although, MAPs are very broad term that has recently been applied 

to any protein that can associate, directly or indirectly, to MTs in vivo or in vitro (Fisher et al., 

2008) we can divide them into four groups. The first group consists of crosslinking side-binding 

proteins that stabilize and align microtubules in specific structures. The second group of plus-

end tracking proteins (+TIPs) either regulate microtubule growth at plus-end or links plus-end 

to the other cellular structures. The third group consists of enzymes that regulate microtubule 

destabilisation and the fourth of motor proteins that move along microtubules powered by 

chemical energy (Lodish, 2014). As can be seen from the previous sections where different 

MAPs where mentioned, they are essential in control of microtubule dynamics and generation 

of forces that are needed for spindle assembly and proper function of whole spindle.  

 

 Force production in mitotic spindle can be divided into active and passive force 

production. Active force production is defined by processes that convert chemical energy from 

ATP or GTP hydrolysis into mechanical work (Dumont and Mitchison, 2012). Two main active 

force production mechanisms are polymerisation dynamics of microtubules (see above in 
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section 1.4.) and ATPase motor activity. Passive forces are defined by energy consumption that 

was put into system by one of the active processes. Two main passive spindle forces are elastic 

contraction and friction and they are often underappreciated in modelling mitotic spindle 

because they are poorly understood (more about passive forces in Dumont and Mitchison, 

2012). It is important to note that all forces that are acting in the metaphase spindle must sum 

to zero because metaphase spindle is a dynamic steady state, as noted above (see section 1.3.).  

 

 Molecular motors are group of proteins that can be broadly described as ATPase 

enzymes, which bind and catalyse the hydrolysis of ATP into ADP and a free phosphate ion. 

They couple chemical energy released during ATP hydrolysis to reversible conformational 

changes in their motor domain(s) to do mechanical work. It is this mechanocemically driven 

cycling between different conformational states which causes motor proteins to alternate 

between bound and unbound states allowing them to 'walk' along microtubules. Almost all of 

them have a motor domain conserved in one family or more motor domains at opposite sides 

that bind and hydrolyse ATP to walk along more than one track. Besides, they can also have 

some class-specific nonmotor domains, such as binding domain responsible for binding of their 

cargo molecules, some domain involved in dimerisation and usually some domain involved in 

propagation of structural change. Their motion along microtubule is always unidirectional and 

is connected to intrinsic polarity of microtubules described above. So, some of these proteins 

are said to walk toward plus- and some toward a minus-end of microtubules. It is this direction 

of moving that determines the function of each motor protein in spindle assembly and 

maintenance. Every 'walking' motor has characteristic size of its step, characteristic rate of 

moving along microtubule and characteristic processivity – can be defined as number of steps 

motor can do without dissociating from microtubule (Lodish, 2014). 

 

 The major plus-end directed motor in the mitotic spindle is the kinesin-5 member Kif11, 

bipolar homotetramer complex with four heavy chains forming two motor domains that are 

capable of binding and cross-linking two MTs (Helmke, 2013). It moves along microtubules at 

rates of 0.1-0.01 mm s-1, rates characteristic of mitotic motility and that are almost 10-fold 

slower than some intracellular transport motors, such is kinesin-1 (Peterman and Scholey, 

2009). Kif11, due to orientation of its motor domains, preferentially binds to antiparallel 

microtubules and then slide them by walking to their plus-ends. Result of such motion is 

aligning of plus-ends of antiparallel microtubules and pushing apart of their minus-ends (basic 

anti-parallel sliding filament mechanism). Its main antagonist in sliding antiparallel 
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microtubules is a motor of opposite directionality such is minus-end directed motor protein 

kinesin-14 (for example KifC1 in humans). This motor protein slides the minus-ends closer to 

each other while it pushes the plus-ends apart. This motor functional antagonism is an important 

mechanism of establishment of initial spindle bipolarity and possibly regulation of spindle 

length. In addition, it is important to note that activity of these antagonistic motors is changing 

as mitosis progresses. Following initial dominance of plus-end directed motors, at metaphase 

steady state is achieved where action of plus-end directed motor proteins is balanced by activity 

of minus-end directed proteins. In centrosome-controlled spindles such are mammalian 

spindles, kinesin-5 and kinesin-14 may crosslink and slide anti-parallel ipMTs at the midzone 

outward and inward, respectively, allowing kinesin-5 to drive poleward flux and pole–pole 

separation (at least in Xenophus and Drosophila spindles) and kinesin-14 to shorten the spindle 

via pole–pole collapse (Peterman and Scholey, 2009). Although, Kif11 is critical to 

establishment of mitotic spindle bipolarity by centrosome separation it is not required to 

maintaining of this bipolarity. It has been shown that kinesin-12 plus-end directed protein, 

Kif15 in humans, plays a major role in maintaining this bipolarity by sliding antiparallel 

microtubules apart (Drechsler et al., 2014). 

 

 

 Besides already mentioned kinesin-14, the dominant minus-end-directed motor in the 

mitotic spindle is cytoplasmic dynein. These motors have the same overall organisation, they 

have two motor domains on one side and nucleotide-insensitive microtubule-binding tail 

domain on other. As we said before, by binding two antiparallel MTs, minus-end movement of 

these motors directly functions to oppose the MT motion of kinesin-5s. These proteins have 

one interesting feature; they can bind one MT as a cargo that is transported toward the minus-

end of another MT, thereby clustering the minus-ends of MTs together (sometimes called slide-

and-cluster mechanism). These motors therefore have a main role in focusing MTs into a united 

pole, function obviously very important in maintaing bipolar shape of the spindle (Civelekoglu-

Scholey and Scholey, 2010). In addition to this role in organizing MTs in spindle, dynein can 

also bind different cargoes and transport them to minus-ands of MTs, located mainly at spindle 

poles. These cargoes can be special protein regulators of spindle assembly and maintenance; 

such is NuMa, which stabilizes the pole structure, or different motor proteins, mainly kinesins, 

to transport them back when they came to plus-end of microtubule or to change their activity 

by changing their location. 
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Figure 7. Some of the mechanisms of mirotubule-associated proteins (MAPs) in spindle function.  
A) Poleward transport of microtubules by minus-end directed motor proteins, for example kinesin-14 or 

dynein. B) Outward sliding of antiparallel microtubules by action of bipolar plus-end directed kinesin-

5 motor protein. C) Depolymerisation at minus-end of microtubule by pole-associated kinesin-13 

proteins. D) Nucleation of microtubules at centrosomes mediated by γTuRC complex. E) Nucleation 

of microtubules at chromosomes. F) Nucleation of microtubules at sites of existing microtubules, 

mediated by Augmin complex (Adapted from Wang et al., 2014). 

 

 Lastly, a large number of motor proteins has been identified that bind not only to MTs 

but also to chromosome arms (Helmke et al., 2013). Most important of them are called 

chromokinesins and are involved in generation of so called polar ejection force (Reider and 

Salmon, 1994), one of the mechanisms for force production on chromosomes. Chromokinesins 

are also involved to different degree in some other processes including chromosome 

segregation, spindle organisation and cytokinesis (Mazumdar and Misteli, 2005). Two members 

of these groups are plus-end directed Kid/kinesin-10 and kinesin-4 family members, which have 

conserved motor domains but differ in other domains organisation. Polar ejection force is one 

of the forces that acts on kinetochores during metaphase (others are poleward flux of k-fiber 
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microtubules described above and forces exerted through dynamic connection between 

kinetochores and microtubules described above) to prevent premature movement of 

chromosomes toward the poles. Kinesin-4 and kinesin-10 bind chromosome arms and interact 

with microtubules emanating from centrosomes and in doing so they push chromosomes 

towards a microtubule plus-end and thus toward a metaphase plane (Mazumdar and Misteli, 

2005). 

 

 Besides motor proteins involved in transportation of microtubules and other cargo in the 

spindle, there are many classes of MAPs involved in MT destabilisation, MT stabilisation or 

binding of microtubules to chromosomes.  

 

 Proteins involved in MT destabilisation are very important because they disassemble 

the interphase array of microtubules in prophase and thus providing substrates for formation of 

all populations of spindle microtubules. In addition, by affecting the lifetime of MTs they can 

influence the spindle size and organisation in processes such are chromosome attachment, MT 

flux, MT density and length, behaviour reported after change of their expression in many 

modelling systems (Helmke et al., 2013). To date, three major classes of this group of proteins 

have been described: destabilizing kinesin family members (kinesin-13 primarily but also 

kinesin-14 and kinesin-8), MT-severing enzymes of the AAA ATPase family (Katanin, Spastin, 

Fidgetin), and tubulin dimer-sequestering proteins (OP18/Stathmin, RB3) (Helmke et al., 

2013). Some of these proteins, like kinesin-13 are well known regulators of poleward 

microtubule flux, mechanism of force release for chromosome positioning (process is described 

above in section) where they drive depolymerisation at microtubule minus-ends.  

 

 In MT-stabilizing group, strictly speaking, we can include nucleation proteins, but these 

were analysed before, so I will not discuss them. Other MT stabilizing proteins include for 

example HURP, XMAP215/chTOG, Patronin, and MCRS proteins that are grouped by 

mechanism that they use to ensure stability of microtubules. First group seems to form 

protofilament interactions that can stabilize tubulin heterodimers and protofilaments (HURP), 

second to increase growth rate of primarily ipMTs by interacting with plus-ends 

(XMAP215/chTOG) and third to reduce catastrophe frequency by interacting with plus- or 

minus-end (Patronin and MCRS) (Lodish et al., 2014). The two latter groups, because they bind 

or 'track' plus-ends, are historically known as +TIPS (plus-end tracking proteins). All these 

stabilizing proteins are required for establishing and maintaining spindle architecture in general. 
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1.8. Tensed k-fiber hypothesis and its limitations 
 
 

Knowledge of mesoscopic forces within mitotic spindle is limited compared with knowledge 

about molecular forces in the spindle. For example, tension pulling forces on metaphase 

chromosomes were confirmed by experiments using laser ablation where one sister kinetochore 

was ablated while other moved rapidly toward a pole (Berns, 1981) or by experiments 

measuring the distance between kinetochores before and after usage of depolymerisation agents 

whose activity decreased measured distance (Waters et al., 1996). This tension is thought to be 

generated at interface of kinetochores and plus-ends of microtubules presumably by 

microtubule depolymerisation (described above in section 1.5.) or action of minus-end directed 

proteins such as dynein. There is a possibility that depolymerisation or activity of plus-directed 

motors at minus-ends can generate tension at kinetochores, but this theoretical possibility was 

never observed experimentally. It is very important to emphasise here, that this tension must be 

balanced by compression in another part of spindle to maintain steady state. Main candidates 

for this role are ipMTs because they are often more curved then k-fibers, at least in some 

systems (Dumont and Mitchison, 2012). This hypothesis of tensed kMTs and compressed 

ipMTs does not fit all experimental data collected through the years. UV microbeam cutting of 

some k-fibers resulted in spindle shortening, and same with buckling of remaining k-fibers was 

observed after rapid depolymerisation of ipMTs using depolymerizing drugs and both are not 

expected if this model holds in its present form described above (Mitchison, 2005). This led to 

hypothesis of some non-MT element, termed 'spindle matrix' which that is under tension in 

spindles and stretches between poles, but such element was has not been observed 

experimentally to date.  

 

1.9. Aim of this study 
 

 

Following last section logic we can see that much about organisation of microtubules within 

spindle and force-balance rules in its different elements is not yet understood on the mesoscopic 

scale and conflicts in experimental data and theoretical predictions are not so surprising with 

our currently limited knowledge. In this study, I will be concentrating on metaphase because I 

reason that this is natural starting point to study biophysical properties of the mitotic spindle 

because metaphase is dynamic steady state. That means that despite large fluctuations and 
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directed fluxes in both physical and chemical processes during metaphase average amount and 

position of spindle components is constant over time (Dumont and Mitchison, 2009). To expand 

our knowledge about mechanisms and structures that balance forces in the metaphase spindle, 

especially at region around kinetochores, I decided to clearly define characteristics and force-

balance mechanisms within spindle element in different model systems using new approaches. 

In this work spindle element is defined as single mechanical unit comprised of sister k-fibers 

linked with their kinetochores and connected to a microtubular structure that bridges the gap 

between kinetochores and interacts with sister k-fibers (first described by the Tolic lab in 

Kajtez, 2014, Solomatina, 2014). I called that structure bridging microtubule (bMT) which, 

similarly to other microtubule populations, tends to assemble into bundles of microtubules 

termed bridging fibers. I hypothesized that this structure indeed links sister k-fibers and 

balances the forces on kinetochores. To confirm that hypothesis I used various approaches. 

Firstly, I analysed Ptk1 cells on which laser ablation was performed (Rüdiger, 2014) because I 

wanted to see if new model of bridging microtubules could be applied on Ptk1 cells. Initial 

observations in works preceding this one in our lab, suggested that it is valid model that can 

explain antagonistic effects of compression and tension acting on spindle element in HeLa cells 

transfected with different fluorescently-labelled molecules (Kajtez, 2014, Solomatina, 2014). 

Also, I want to broaden our knowledge about functional and architectural role of bMT and its 

characteristics in same HeLa cells so I analysed the videos of same cells where laser ablation 

was performed but in broader approach and with different strategies. Laser ablation assay 

(experimental part of this process was not part of this study) is a powerful technique to study 

metaphase spindle which can be used to disrupt the force-balance in the spindle and in retrospect 

interpret the forces that were acting on the ablated element by studying it response. I 

hypothesized that after laser ablation of one side of spindle element the elastic potential energy 

would be released that was stored in bent k-fibers and stretched centrosomes both in Ptk1 and 

HeLa cells. As a result of release of that energy, I expect to observe straightening and outward 

movement of the k-fiber and decrease in distance between sister kinetochores after which I 

should compare response in different model systems. Finally, my experimental data would be 

compared with predictions of the theoretical model of metaphase spindle developed together 

with the Pavin group (Department of Physics, Faculty of Science, University of Zagreb, Zagreb, 

Croatia). 
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2 Materials and methods 

 

2.1. Cell culture  
 

I used HeLa-TDS cell line that was previously transfected and stabilized using pEGFP-α-

tubulin plasmid which was acquired from Fran Bradke (Max Planck Institute of Neurobiology, 

Martinsried). Cells were seeded and grown in Dulbecco’s Modified Eagle Medium (DMEM) 

(1 g/l D-glucose, L-glutamine, pyruvate) with 50 μg/ml geneticin (Life Technologies, Waltham, 

MA, USA), 100 I.U./ml penicillin (Biochrom AG, Berlin, Germany), 100 μg/ml streptomycin 

(Sigma-Aldrich, St. Louis, United States) and 10% Fetal Bovine Serum (FBS) (Life 

Technologies). The cells were kept at 37 °C and 5% CO2 in a Memmert humidified incubator 

(Memmert GmbH + Co. KG, Schwabach, Germany).  

 

 HeLa cells were transfected by electroporation using Nucleofector® Kit R with the 

Nucleofector® 2b Device, using the high-viability O-005 program (Lonza, Basel, Switzerland). 

Transfection protocol provided by the manufacturer was followed except otherwise noted in 

this text. HeLa cells were transfected with mRFP-CENP-B plasmid (pMX234) provided by 

Linda Wordeman (University of Washington). 106 cells and 2 μg of plasmid DNA were used.  

 

2.2. Sample preparation for microscopy 
 
 
HeLa cells were seeded and cultured in 1.5 ml DMEM medium with supplements (without 

geneticin, otherwise same as cell culturing medium) at 37 °C and 5% CO2 on 35 mm glass 

coverslip dishes coated with poly-d-lysine (MatTek Corporation) for 24-48 hours after DNA 

transfection. Prior to imaging, medium was replaced with Leibovit's L-15 CO2-independent 

medium supplemented with 10% FBS (Life Technologies).  

 

2.3. Imaging 
 

HeLa cells were imaged by using a Leica TCS SP8 FLIM confocal microscope with a Leica 

HC PL APO 63x/1.40 CS2 oil immersion objective (Leica, Wetzlar, Germany) heated with an 

objective heater system (Okolab, Pozzuoli, Italy). During imaging, cells were maintained at 37 

°C and 5% CO2 in H101-1x35-PRIOR-NZ100 digital chamber (Okolab) using H101-BASIC-
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BL temperature controller connected with CO2-UNIT-BL controller (Okolab). For excitation, 

488 nm line of freely tunable white light laser (WLL) (Leica) and 532 nm of WLL laser (Leica) 

were used for GFP and RFP, respectively. I used hybrid (HyD) photodetectors (Leica) and 

rarely photo-multiplier (PMT) detectors (Leica) for detection of fluorescent light. GFP and RFP 

emission were detected in range of 490-561 nm and 597-695 nm respectively. Xy-pixel size 

was variable among different images; normally it ranged from 60-100 nm. Pinhole diameter 

was set to 0.7 μm (1 AU). Pixel dwell time was 1 s. Z stacks were acquired at variable number 

of focal planes (with intent to encircle whole spindle), always with 0.5 µm spacing. Image 

acquisition in time, although rarely performed, was done for 20-100 time frames with 10-20 s 

intervals using unidirectional scanning.  

 

2.4. Image analysis  
 

For image analysis I used videos generated by Jonas Rüdiger on Ptk1 cell line and Janko Kajtez 

and Anastasija Solomatina on HeLa cell lines (all from Tolic lab at the Max Planck Institute of 

Molecular Cell Biology and Genetics, Dresden, Germany).  

 

 Image processing was performed in ImageJ (National Institute, Bethesda, MD, USA). 

Quantification and statistical analysis were done in MatLab (MathWorks, Natick, USA) and 

SciDavis (SourceForge). 

 

 Kinetochores position in time and place were tracked using Low Light Tracking Tool, 

a specialised ImageJ tracking plugin (Krull et al., 2014). Tracking of kinetochores in xy-plane 

was performed on individual imaging planes for most cells or on maximum projection of up to 

three plane in rare cases where signal of sister kinetochores was tilted in different imaging 

planes. Analysis was performed on 50 cells, some cells were rejected because successful 

ablation could not be observed, kinetochore signal was too weak to track, tubulin signal was 

too weak to define ablation or spindle was multipolar. Ablation was defined by vanishing of 

tubulin signal in desired space in channels where it was observed, expansion of ablation hole in 

all dimensions and movement of kinetochores in response to ablation as described in previous 

studies (Elting et al., 2014, Sikirzhytski et al., 2014). 
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 The signal intensity of a bridging fiber was measured in ImageJ by drawing a 3-pixel 

wide line in center of the two outermost sister kinetochore pairs and perpendicular to the line 

passing through center of kinetochores (visual approximation). Intensity profile was taken 

along this line and mean value of the background noise signal present near the spindle was 

subtracted from it. The signal intensity of the bridging fiber was calculated in SciDavis program 

as the area under the peak which was closest to kinetochores and it was always double-checked 

to be sure that signal corresponds to the signal of what I saw as a bridging microtubule. The 

width of this peak at the bottom of the peak was typically 0.6 μm. The signal intensity of the k-

fiber was measured in a similar manner, ~1 μm away from a one kinetochore pair chosen at 

random and perpendicular to and crossing the corresponding k-fiber. The width of the peak of 

the k-fiber at the bottom of the peak was typically 1 μm or more in some cases. In cells 

expressing PRC1-GFP, mCherry-tubulin and mRFP-CENP-B, measurements were done on 

four cells where laser cutting was performed and subsequently the k-fibers and the bridging 

fiber separated, which allowed separation of the kinetochore signal from that of the bridging 

fiber. The mCherry-tubulin signal of the bridging fiber overlapped with the PRC1-GFP signal, 

and I defined the width of the former by the width of the latter signal. In addition to these 4 

cells, 11 measurements were done on fixed cells in one imaging plane or on a maximum-

intensity projection of up to two planes by the procedure described above for other cell lines. 

Because kinetochores were not labelled in these cells, I measured the bridging fiber intensity in 

the mCherry channel on the position that corresponds to the midpoint of the same structure in 

the PRC1-GFP channel. The distance between bridging fiber and center of kinetochores was 

measured in ImageJ by drawing a 17-pixel wide line (or how much it takes to encompass whole 

kinetochores) in center of the two outermost sister kinetochore pairs and perpendicular to the 

line passing through center of kinetochores (visual approximation) in kinetochore channel. 

Intensity profile was taken along this line with defined length (in most cases 2.5 μm). Then line 

was kept at exactly the same position with same length but its width was reduced to 3-pixel to 

encompass only bridging fibers between kinetochores. Intensity profile was taken along this 

line in tubulin channel and both profiles were processed in SciDavis and ImageJ. I measured 

the distance between kinetochore peak and bridging fiber peak by extrapolating kinetochore 

peak position on bridging fiber intensity profile and them measuring the distance between two 

points lying on parallel line. 

 

 The angle between the spindle element and the long axis of the spindle near the 

centrosome, 𝜃p, and near the kinetochore, 𝜃k, was calculated by fitting a line through 3 points 
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on the measured contour of the spindle element. A typical distance between the neighbouring 

points on the contours was ~250 nm. Stub length was measured in the first frame after the cut 

from the center of the corresponding kinetochore to the end of the ablated stub. 

 

 Graphs were generated in Matlab (this part was mainly work of Ana Milas, University 

of Zagreb, Faculty of Science) or SciDavis. ImageJ was used to scale images and adjust 

brightness and contrast. Figures were assembled in Adobe Illustrator CS5 and Adobe Photoshop 

CS5 (Adobe Systems, Mountain View, CA, USA). All data are given as mean ± standard error 

of the mean (s.e.m.), unless otherwise noted. 
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3 Results 

 
3.1. Characterisation of antiparallel fibers spanning region under kinetochores 
 
In order to characterize structure of microtubule fibers in mitotic spindle and test hypothesis of 

bridging microtubule existence in metaphase spindle, I used live-cell confocal laser scanning 

microscope imaging system and images acquired by special laser cutting assay (detailed 

description of laser cutting assay in Kajtez, 2014). To test this hypothesis in visual, I turned to 

two model systems, live HeLa cells stably expressing tubulin-GFP and transiently expressing 

CENP-B-RFP (a human centromeric protein) and live Ptk1 cells stably expressing Hec1-GFP 

(a kinetochore protein), which were injected with X-rhodamine-tubulin (Figures 8 and 9). 

Whole spindle images were acquired but my interest was a region defined by outermost spindle 

element, especially region around and between outermost kinetochore pair. That region was 

chosen because that is where bridging fibers could be seen without intrusion from a sister k-

fiber signal. As expected, I could observe bMT fiber between and below sister kinetochores in 

their close proximity on outermost spindle element in both cell lines (Figures 8 and 9). I focused 

on analysis of the outermost spindle element because spindle elements are very dense in the 

center of spindle of observed plane and planes below so distinguishing one element from other 

is imprecise.  

 

 The main focus of my analysis was to further describe the characteristics of a bridging 

microtubule as a microtubular structure in novel model of mitotic spindle initially described in 

the work of Kajtez (2014) and Solomatina (2014). I turned to analysis of thickness of the bMT 

fiber in different model cell lines. I used an approach in which I was measuring intensity ratio 

between k-fiber and bMT fiber because the exact number of microtubules in one fiber due to 

the limitations of light microscope (resolution ∼200 nm), could not be determined. Therefore, 

the obtained result would be an estimation of number of MTs in the bridging fiber. I measured 

the signal intensity of the MTs between sister kinetochores (IB), and across the k-fiber in the 

vicinity (∼1 µm from kinetochore (IBK)). I interpreted the signal intensity IB as the signal of 

the bridging fiber, and IBK as the sum of the k-fiber signal and the bridging fiber signal because 

I hypothesized that k-fiber and bMT fiber are laterally connected through most of their length, 

separating at junction point (see later, Figures 10A and 24). 
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Figure 8. Mitotic spindle of a HeLa cell expressing tubulin-GFP and CENP-B-RFP with a focus 

on bMT fiber that link k-fibers and kinetochores. A) Image of the whole HeLa metaphase spindle in 

both channels expressing tubulin-GFP (green) and CENP-B-RFP (magenta). White square indicate 

region enlarged in B.  B) Enlargement of the region at the end of k-fibers with clearly visible bMT 

between sister kinetochores. Both channels visible (top panel). Enlargement of the region at the end of 

k-fibers with clearly visible bMT between sister kinetochores. Just tubulin-GFP channel visible (middle 

panel). Illustration of a model of live picture presented above (bottom panel). Bars indicate 1 µm. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

  

Figure 9. Mitotic spindle of a Ptk1 cells, stably expressing Hec1-GFP, was injected with X-

rhodamine-tubulin with a focus on bMT fiber that link k-fibers and kinetochores. A) Image of the 

whole Ptk1 metaphase spindle in both channels expressing Hec1-GFP (magenta) and injected with X-

rhodamine tubulin (green). White square indicate region enlarged in B.  B) Enlargement of the region 

at the end of k-fibers with clearly visible bMT between sister kinetochores. Both channels visible (top 

panel). Enlargement of the region at the end of k-fibers with clearly visible bMT between sister 

kinetochores. Just tubulin-GFP channel visible (middle panel). Illustration of a model of live picture 

presented above (bottom panel). Bars indicate 1 µm. 

 

A B 

A B 



28 

 

 First model cell line for these measurements was HeLa cell line stably expressing 

tubulin-GFP and transiently expressing CENP-B-RFP. Measured in 37 cells, the intensity ratio 

between bMT fiber and sum of k-fiber and bMT fiber (IB/IBK) was roughly constant, IB/IBK = 45 

± 2% (Figure 10B). This also shows that in cells where bMT fiber intensity is high, k-fiber 

intensity is also high, namely there is a correlation between intensity of bridging fiber and k-

fiber (Figure 10B). This also indicates that in those cells where the bridging fiber could not be 

seen, it is because the signal was too weak and not because it was not present there at all. From 

this ratio, I estimate that the bridging fiber contains 82 ± 7% (mean ± s.e.m.) of the number of 

MTs in the k-fiber (IB/IK). Formula for mean is IB/IK = (IB+IBK)/(1-IB+IBK). From previous 

measurements (McEwen et al., 2001), I know that k-fibers in HeLa cells contain 17 ± 2 MTs, 

so this implies that bridging fiber consist of 14 ± 2 MTs. 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. bMT measurement in HeLa cell expressing tubulin-GFP and CENP-B-RFP. A) Picture 

explaining principle of bMT thickness measurement in corresponding cell. Light cyan line indicates 

where signal intensity of bridging fiber was measured, IB, and yellow line indicates where sum of 

bridging fiber and k-fiber intensities was measured, IBK. B) Signal intensity of the bridging fiber, 𝐼B, as 

a function of the signal intensity of the bridging fiber and the k-fiber together, 𝐼BK, in HeLa cells. C) 

Measurement of the tubulin-GFP signal intensity of the bridging fiber (left graph, measured along the 

blue line in the image) and the bundle consisting of the bridging fiber and the k-fiber (right graph, 

measured along the orange line in the image) in HeLa cell. Horizontal lines mark the background signal; 

vertical lines delimit the area (grey) where the signal was measured. Bar indicates 1 µm. 

A B 
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 Next, I did the same measurments in Ptk1 cells stably expressing Hec1-GFP (a 

kinetochore protein), which were injected with X-rhodamine-tubulin. Measured in 30 cells, the 

intensity ratio between bMT fiber and k-fiber (IB/IBK) was roughly constant, IB/IBK = 20 ± 2% 

(Figure 11). From previous measurements (McEwen et al., 1997), I know that k-fibers 

metaphase Ptk1 cells contain 24 ± 5 MTs, so this implies that bridging fiber in these cells consist 

of 6 ± 1 MTs. This result confirms previous estimates in these cells, where it was observed that 

3-8 MTs are laterally associated with kinetochore (Dong et al., 2007). In addition, in these cells 

I measured the distance between the center of the line joining the two sister kinetochores and 

the center of the bMT fiber that lies beneath and in between two sister kinetochores using 

similar intensity approach as in bMT thickness measurements (approach described in detail in 

Materials and methods). Analysed on 23 cells the distance was 0.20 ± 0.10 µm, what is 

comparable to the same measurements done in HeLa tub-GFP line (0.24 ± 0.15 (n = 42), Kajtez,  

2014). 

 

 

 

  

 

 

 

 

  

 

 

 

 

 

Figure 11. bMT measurement in Ptk1 cell expressing Hec1-GFP, which was injected with X-

rhodamine-tubulin. A) Picture explaining principle of bMT thickness measurement in corresponding 

cell. Light cyan line indicates where signal intensity of bridging fiber was measured, IB, and yellow line 

indicates where sum of bridging fiber and k-fiber intensities was measured, IBK. B) Signal intensity of 

the bridging fiber, 𝐼B, as a function of the signal intensity of the bridging fiber and the k-fiber together, 

𝐼BK, in a Ptk1 cells. C) Measurement of the tubulin-GFP signal intensity of the bridging fiber (left graph, 

measured along the blue line in the image) and the bundle consisting of the bridging fiber and the k-

fiber (right graph, measured along the orange line in the image) in a Ptk1 cell. Horizontal lines mark the 

background signal; vertical lines delimit the area (grey) where the signal was measured. Bar indicates 1 

µm. 
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 For confirmation of results and extension of my characterisation of bMT fibers in 

different conditions I examined thickness of the bMT fiber in the HeLa cell line stably 

expressing tubulin-GFP and transiently expressing CENP-B-RFP that were in addition treated 

with proteasome inhibitor MG132 (e.g. synchronisation in metaphase). Measured in 15 cells, 

the intensity ratio between bMT fiber and k-fiber (IB/IBK) was roughly constant, IB/IBK = 40 ± 

2% (Figure 12), which could be compared with results obtained in untreated cells (Figure 10). 

This tell us that a bMT fiber is a general structure present in HeLa cell line with a roughly the 

same thickness. To reduce cell treatment, it was decided that all other analysis on these cells, 

due to the similar bMT thickness, would be done on untreated cells. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. bMT measurement in HeLa cell line stably expressing tubulin-GFP and transiently 

expressing CENP-B-RFP and that were in addition treated with proteasome inhibitor MG132. A) 

Picture explaining principle of bMT thickness measurement in corresponding cell. Light cyan line 

indicates where signal intensity of bridging fiber was measured, IB, and yellow line indicates where sum 

of bridging fiber and k-fiber intensities was measured, IBK. B) Signal intensity of the bridging fiber, 𝐼B, 

as a function of the signal intensity of the bridging fiber and the k-fiber together, 𝐼BK, in a HeLa cells. 

C) Measurement of the mCherry-tubulin signal intensity of the bridging fiber (left graph, measured 

along the blue line in the image) and the bundle consisting of the bridging fiber and the k-fiber (right 

graph, measured along the orange line in the image) in a HeLa cell. Horizontal lines mark the 

background signal; vertical lines delimit the area (grey) where the signal was measured. Bar indicates 1 

µm. 
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Figure 13. bMT measurement in HeLa cell line stably expressing PRC1-GFP and transiently 

expressing mRFP-CENP-B and mCherry-tubulin. A) Picture explaining principle of bMT thickness 

measurement in corresponding cell. Light cyan line indicates where signal intensity of bridging fiber 

was measured, IB, and yellow line indicates where sum of bridging fiber and k-fiber intensities was 

measured, IBK. B) Signal intensity of the bridging fiber, 𝐼B, as a function of the signal intensity of the 

bridging fiber and the k-fiber together, 𝐼BK, in a HeLa cells. C) Measurement of the mCherry-tubulin 

signal intensity of the bridging fiber (left graph, measured along the blue line in the image) and the 

bundle consisting of the bridging fiber and the k-fiber (right graph, measured along the orange line in 

the image) in a HeLa cell. Horizontal lines mark the background signal; vertical lines delimit the area 

(grey) where the signal was measured. Bar indicates 1 µm. 

 

 I also analyzed bMT thickness in HeLa cell line stably expressing PRC1-GFP and 

transiently expressing mRFP-CENP-B and mCherry-tubulin. I measured bMT thickness in this 

cell line because I expected to measure thicker bridging fiber in this cell line then HeLa cell 

line expressing tubulin-GFP and CENP-B-RFP. This can been seen from live-cell fluorescent 

images taken from these cell lines (Figures 8 and 13A, respectively). I measured bMT thickness 

both in cells fixed in ice-cold methanol (n = 11), and in untreated cells (n = 4) (See detailed 

description in Material and methods). PRC1 is a microtubule crosslining protein that binds to 

overlap zones of anti-parallel MTs (Bieling et al., 2010). As I hypothesized before, bMT fiber 

is made of anti-parallel microtubules, and observed location of PRC1 signal in HeLa mitosis in 

the center of spindle element between sister kinetochores, confirms my assumption. Measured 

A B 
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in 15 cells, the intensity ratio between bMT fiber and k-fiber (IB/IBK) was roughly constant, 

IB/IBK = 60 ± 2% (Figure 13). By the same analogy as before, this implies that there is 𝑛 = 23 ± 

5 MTs in the bridging fiber. Note that in these cells, bMT fiber, as defined previously, is thicker 

than a k-fiber, which is in agreement with stronger response to laser cutting in these cells, which 

would be described below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14. bMT measurement in HeLa cell line transiently expressing CENP-Q-GFP and 

mCherry-tubulin. A) Picture explaining principle of bMT thickness measurement in corresponding 

cell. Light cyan line indicates where signal intensity of bridging fiber was measured, IB, and yellow line 

indicates where sum of bridging fiber and k-fiber intensities was measured, IBK. B) Signal intensity of 

the bridging fiber, 𝐼B, as a function of the signal intensity of the bridging fiber and the k-fiber together, 

𝐼BK, in a HeLa cells. C) Measurement of the mCherry-tubulin signal intensity of the bridging fiber (left 

graph, measured along the blue line in the image) and the bundle consisting of the bridging fiber and the 

k-fiber (right graph, measured along the orange line in the image) in a HeLa cell. Horizontal lines mark 

the background signal; vertical lines delimit the area (grey) where the signal was measured. Bar indicates 

1 µm. 

 

 To confirm whether thicker bMT fiber is result of PRC1 overexpression or tubulin-

mCherry overxpression I analyzed HeLa cell line transiently expressing CENP-Q-GFP (human 

centromere protein) and mCherry-tubulin. Measured in 10 cells, I found that intensity ratio 

between bMT fiber and k-fiber (IB/IBK) was roughly constant, IB/IBK = 61 ± 1.6% (Figure 15) in 
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these cells. By same analogy as before, this indicates that there is n = 27 ± 5 microtubules in 

bridging fiber. This is similar to result obtained in HeLa cell line stably expressing PRC1-GFP 

and transiently expressing mRFP-CENP-B and mCherry-tubulin (IB/IBK = 60 ± 2%, Figure 14).  

 

3.2. Force-balance analysis of lasser ablation assay videos 
 

So far, I have defined position and thickness of bMT in relation with k-fiber and the whole 

spindle element. Imaging alone can not provide information about force-balance in the spindle 

because mitotic spindle is a steady-state system in which there is continuous balance between 

forces that tend to maintain dynamic steady state. Also, because center of bMT is very close to 

kinetochores (0.2 ± 0.1 µm, Table 1) and sister k-fiber, it is difficult to observe their relations. 

To better define role of bMT in force-balance of the Ptk1 metaphase spindle element I used 

images aquired with laser ablation assay in the Tolic lab (Rüdiger, 2014). The goal of this assay 

was to selectively perturb the outermost spindle element and isolate it from the rest of the spidle. 

By doing so, I could interpret the forces acting on spindle element in a retrospect way. For 

example, movement of sister kinetochores toward each other after the laser cut would indicate 

the presence of compressive forces acting on k-fiber in region where k-fibers and kinetochores 

are linked. Ablation was performed at a distance of 2.4 ± 0.8 μm from the nearest attached KT, 

leaving short k-fiber stub where newly created and relatively stable minus-ends of microtubules 

are localized (Rüdiger, 2014). By doing so, it would be possible to detach single spindle element 

from one pole and analyze its response to ablation. 

 

 I hypothesized that bMT fibers are laterally connected to sister k-fibers, and that in 

response to ablation they should move together with kinetochores linked to sister k-fibers, as a 

single uniform elastic system, called spindle element. Also, I expected that k-fibers are under 

compression because spindle element is bent in the mitotic spindle, so outward movement of 

ablated part after releasing the forces that caused bending, should be observed (Figure 15). Also, 

it was assumed that kinetochores are under tension in metaphase spindle, so decrease in inter-

kinetochore distance should be observed shortly after laser ablation. Testing these assumptions 

would clear the role of compression and tension forces acting on k-fibers and centromeric 

region of a spindle element and define a role of a bMT fiber in these processes. 
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Figure 15. K-fibers, bMT fibers and sister kinetochores act as a single mechanical unit that tends 

to straighten out and move away from spindle long axis. Time lapse images (left panel) with 

illustrations depicting model of observed movements (right panel) in Ptk1 metaphase spindle following 

ablation. Hec1-GFP protein is visible in magenta and injected X-Rhodamine-tubulin in green. Picture 

depicts coordinated joint movement of k-fiber, kinetochores and bridging fiber away from the spindle 

long axis. Dotted line represent vertical line connecting center of the sister kinetochores. White triangle 

represents the site of ablation. White arrow represents direction of spindle element movement after 

ablation. Note that ablated part of the spindle element is straightening after ablation. Bar indicates 1 µm. 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Figure 16. Movement of sister kinetochore 

pairs from spindle long axis following 

ablation. Displacement (d) of the kinetochore 

that was closer to the cut (KC near) site in the 

direction perpendicular to the long axis of the 

spindle (y) in Ptk1 cells as a function of time. 

Displacement is normalized with position of 

the kinetochore before the cut. Negative value 

indicates moving toward the long axis of the 

spindle, and positive values indicate moving 

away from the long axis of the spindle. Time 

at the moment 0 indicates moment of ablation. 

Thin gray lines represent individual cell 

measurement; black line represents mean 

value and shaded area represents standard 

deviation. 
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 To define movement of the spindle element in response to laser ablation, I turned to 

kinetochore tracking in time. Importantly, I observed that bridging fiber moved outward 

together with kinetochores, intact k-fiber and k-fiber stub as a single spindle element (Figures 

15 and 16). Outward movement was defined as displacement of the kinetochore that was closer 

to the cut site in the direction perpendicular to the long axis of the spindle (long axis of the 

spindle is a reference), with respect to its position before the cutting. Outward movement of the 

outermost spindle element in first frame after the cut was observed in 94% (47/50) of the 

kinetochore pairs studied, where in rest 6% (3/50) no movement or a minor movement inwards 

with maximum displacement of 0.1 µm was observed (Figure 16). The maximum displacement 

was observed in most cases within three frames or ∼7 s after ablation. After maximum 

displacement kinetochores slowly started to move back toward the long axis of the spindle 

(Figure 16).  

 

 Next, I hypothesized that sister kinetochores are under tension, and I expected that 

following spindle element ablation sister kinetochores would move toward each other, in other 

words, inter-kinetochore distance would decrease after the cut. For this analysis, I used a data 

acquired from tracking of kinetochore pairs described previously. As I expected, dramatic drop 

in inter-kinetochore distance was observed following ablation as sister kinetochores move 

toward each other (Figures 17 and 18). In 92% (46/50) of ablated cells, the distance between 

sister kinetochores decreased first frame after ablation, and in the 8% (4/50) there were no 

change in kinetochore distance or kinetochore distance increased after ablation (Figure 18).  

 

 

 Next, I decided to analyze if the degree of sister kinetochore relaxation after ablation, 

expressed by strenght of tension, corelates with the inter-kinetochore distance before ablation 

(e.g. streched distance). It could be reasoned that centromeric heterochromatin that lies between 

kinetochores can be described as ideal elastic spring that would completely return to its relaxed 

state after ablation, when tension between kinetochores is released. Therefore, it would be 

expected that degree of relaxation would not depend on streched distance before ablation. 

However, data clearly indicate correlation between two variables, meaning that kinetochores 

that were more streched before ablation will remain further from each other after ablation 

(Figure 19). So, elasticisty of centromeric heterochromatin is not ideal, and I could argue that 

heterochromatin in this reagion witstands permanent deformations in elasticity induced by high 

tension forces that pull kinetochores from each other in metaphase. 
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Figure 18. Shortening of inter-kinetochore distance after ablation. Inter-kinetochore distance as a 

function of time normalized to the value at the moment of ablation (time 0 represent ablation) in Ptk1 

cells stably expressing Hec1-GFP, which were injected with X-rhodamine-tubulin. Gray lines represent 

individual cell measurements, upper and bottom black lines represent borders of standard deviation, and 

middle black line represent mean value. Note the drop in inter-kinetochore distance in most of the cells.  

 

 

Figure 17. Sister kinetochores tend to get 

closer after ablation. Time lapse images of 

Ptk1 metaphase spindle following ablation 

focusing on kinetochrore movements. Hec1-

GFP protein is visible in magenta and 

injected X-Rhodamine-tubulin in green. 

Picture depicts decrease in inter-kinetochore 

distance after ablation. White traingle 

represent site of ablation. White stars 

represents position of kinetochore near 

ablation site before ablation. Note that 

ablated part of the spindle element is 

straightening after ablation. Bar indicate 1 

µm. 
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Figure 19. Plasticity of centromeric heterochromatin. Inter-kinetochore distance 3 frames (∼7 s) 

after ablation as a funtion of same distance before ablation for each analyzed cell. Green line represent 

x = y curve, all points lying below that line represent inter-kinetochore distances that are relaxed post-

ablation. Blue line represent linear fit of the data.  
 

 Lastly, I analyzed if the position of the cut, measured by ablated stub lenght, have impact 

on degree of relaxation of sister kinetochores after laser ablation experiments. In model of 

metaphase spindle that include bMTs, bridging fibers are laterally connected along lenght of 

sister k-fiber, but near the kinetochores two structures separate and the point of separation is 

named junction point. I can theorise that two distict possibilities of spindle element response 

after ablation exist, one in which cut is made before junction point, and one in which cut is 

made after junction point. In first one, the connection between k-fiber and bMT remain intact 

and compression of bMT fiber that is bend between two juntion points balance the tensions 

between sister kinetochores. In the second one, the connection is broken and tension force is 

released. So, I would expect that in the first case degree of relaxation would be small to none, 

and in the second case degree of relaxation would be much bigger (Figure 20B). As junction 

point is single point along spindle element, I would observe sharp transition between cells 

where ablation site is passed juntion point from those where it did not. The region of sharp 

transition would give as estimation of junction point position along spindle element. As I 

expected, the degree of sister kinetochore relaxtion was larger for ablation sites near the 

kinetochores and smaller for ablation sites further from kinetochore in Ptk1 cells indicating 

correlation between two variables (n = 33) (Figure 20A). Also, as expected, I observed a point 
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on x-axis that indicates somewhat sharp transition between cells of high and low degree of 

relaxation. Our analysis have show that cells with ablation sites up to ∼1.25 µm from the 

kinetochore 11/22 cells (50%) had more then 35% reduction in inter-kinetochore distance after 

ablation with a maximum of 90%. On the other hand, cells with ablation sites higher then ∼1.25 

µm had 1/12 (8.3%) had reduction in inter-kinetochore distance greater then 35%. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 20. Relation between ablation site position and response of kinetochores to ablation. A) 

Decrease in inter-kinetochore distance (KC-KC) as a function of a ablated stub lenght in Ptk1 metaphase 

cells. Decrease in inter-kinetochore distance is defined as ratio of inter-kinetochore distance after 

ablation versus inter-kinetochore distance before ablation. B) Two hypothetical models depicting 

response of spindle element to ablation in relation to ablation site with junction point of kinetochore 

microtubules and bridging microtubules. Cutting between kinetochore and junction point separates k-

fiber and bMT fiber which allows release of tensile forces on the kinetochore and inter-kinetochore 

distance decrease is much higher then in C) where this connection between bMT fiber and k fiber is 

preserved because ablation site was between junction point and spindle pole. Magenta triangle represents 

site of ablation. 

 

3.3. Quantitative analysis of spindle shape in response to laser ablation 
 

To quantitatively describe the different shapes of metaphase spindles in HeLa and Ptk1 cells 

and response of the spindle element shape to ablation I used highly dense tracking along k-

fibers in one frame before, and three consecutive frames after ablation. To analyse spindle 

length and spindle half width I tracked center of the centrosomes and used data from 
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kinetochore tracking to determine the center between kinetochores. From this analysis I 

extracted parameters I was interested in: the angle between the spindle element and the long 

axis of the spindle near the spindle pole, 𝜃0, and near the kinetochore, 𝜃k, the distance between 

the bridging fiber and the kinetochore, 𝑑bk, the distance between sister kinetochores, 𝑑k, as well 

as the spindle length, 𝐿, and spindle half-width, ℎ (Figure 21B). From this analysis I found that 

shapes of HeLa and Ptk1 metaphase spindles differ (Figure 21A; Table 1) as is expected from 

taken images (Figures 8 and 9) and confirmed that approach is robust enough to distinguish 

between delicate changes in shapes of the spindle elements.  

 

 I also noticed that in some cells there is an obvious straightening of the spindle element 

after ablation as I could saw clear tendency of ablated stub to line up with intact k-fiber in some 

cells. That characteristic movement can be seen in the first phase response after ablation in Ptk1 

cells, defined by outward movement of the ablated spindle element (Figures 15 and 17). I 

hypothesized that this movement is not result of presence and characteristics of centromeric 

heterochromatic spring between kinetochores but rather presence of bMT fiber that is bend 

between two junction points in spindle element after ablation. Such microtubular structure will 

tend to straighten out after ablation because it is laterally associated with intact k-fiber on one 

end, and with k-fiber stub on another. Its presence in spindle element could explain observed 

joint movements of intact and ablated k-fiber and their kinetochores, as they constitute one 

uniform elastic system, named spindle element. To quantitatively describe straightening in 

different cell lines I used data acquired by highly dense tracking of spindle element in time (For 

detailed description see Materials and Methods). Analysis of this data had shown that the angle 

at the centrosome did not change significantly in both cell lines after ablation, while the angle 

at the kinetochore increased by 3.4 ± 1.2 degrees first frame after ablation (∼4 seconds) and 7.3 

± 2.91 degrees third frame after ablation (∼8 seconds) (n = 23 cells) in original HeLa tub-GFP 

cells (Figure 21C). In Ptk1 cell line, I observed some perplexing behaviour where the angle at 

the kinetochores decreased 1.8 ± 2.68 degrees in first frame after ablation and then increased to 

4.3 ± 2.42 degrees in third frame after ablation (Figure 21D). Stability of the angle at the 

centrosome in both cell lines suggests that the spindle element is clamped near the centrosome 

(e.g. free rotational movements are not permitted). 
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Figure 21. Spindle geometry analysis in different HeLa and Ptk1 cells Ptk1 cell expressing 

Hec1-GFP, which were injected with X-rhodamine-tubulin. A) Normalized shapes (mean ± stdev) 

of a k-fiber in HeLa (green) and PtK1 (black) cells. The spindle pole is at x = 0 and the kinetochore at 

x = 1. Calculated by Ana Milas. B) Scheme of the measured geometric parameters of the spindle, which 

are listed in Table 1. C) The angles 𝜃p and 𝜃k in HeLa tub-GFP cells as a function of time after laser 

ablation. D) The angles 𝜃p and 𝜃k in Ptk1 cells as a function of time after laser ablation.  

 

Table 1. Measured geometric parameters in HeLa tub-GFP, HeLa tub-mCherry and Ptk1 

cell lines. All values are given as mean ± std, in bracket are number of measured cells for each analysed 

parameter. 

 
Parameter                                                       HeLa tub-GFP cells      Ptk1 cells        PRC1 tub-mCherry 

angle between the k-fiber and the long axis of the      65.5 ± 8.8 (n = 23)      52.6 ± 8.4(n = 30)       61.9 ± 6.3 (n = 17) 

spindle in the vicinity of the spindle pole, 𝜃p (°) 

angle between the k-fiber and the long axis of the    13.7 ± 10.1 (n = 23)    21.2 ± 10.2 (n = 30)       13.3 ± 9.8 (n = 17) 

spindle in the vicinity of the kinetochore, 𝜃p (°) 

spindle length, L (μm)                                                  11.1 ± 1.2 (n = 52)     11.8 ± 1.7 (n = 50)        11.4 ± 0.7 (n = 31) 

spindle half-width, ℎ (μm)                                             5.0 ± 0.7 (n = 52)       4.0 ± 0.6 (n = 50)          4.8 ± 0.7 (n = 31) 

distance between the kinetochore and the bridging   0.24 ± 0.15 (n = 42)    0.20 ± 0.10 (n = 23)       0.36 ± 0.12 (n = 15) 

fiber, 𝑑bk" (μm)                 

distance between sister kinetochores, 𝑑k (μm)           1.05 ± 0.32 (n = 52)    1.92 ± 0.54 (n = 50)  0.954 ± 0.236 (n = 31) 

 

 Next, I hypothesized that the force in the bridging fiber correlates with the number of 

MTs in the fiber, so I compared the response to laser cutting in cells with different numbers of 

MTs in the bridging fiber (see section 3.1. for analysis of bMT thickness). I reasoned that a 

larger force in the bridging fiber could be observed experimentally as faster straightening of the 
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spindle element, after the force is released, following laser ablation. I reasoned that elastic 

microtubule rod such as bMT stores elastic potential energy when it is bent between two fixed 

points (junction points in this model), and that stored potential energy is greater when 

microtubule is thicker because stiffer rods have higher tendency to resist mechanical 

deformations. That larger elastic potential energy stored in the stiffer rods would cause faster 

straightening of the bMT fiber after ablation when energy is released and consequently, because 

of interrelation with sister k-fibers and kinetochores, of the whole spindle element. If this is 

true, I can reason that a bMT fiber is an important linking mechanical element in a metaphase 

spindle that balances the forces acting on different segments of spindle element. To quantify 

how fast the spindle element straightens after the cut, I measured the angle defined by the 

spindle pole and sister kinetochores (angle pole-KC-KC, Figure 22, right panel). The 

measurement system is designed so that when the spindle element is straight, the sister 

kinetochores and the spindle pole lie on the same line and the measured angle is 180 degrees, 

thus larger increase in the angle means faster straightening of the spindle element. I found that 

in HeLa tub-GFP cell line, which has 𝑛 = 14 ± 2 MTs in the bridging fiber (Table 1), the angle 

pole-KC-KC increased by 2.7 ± 0.8 degrees 4 seconds after the cut, i.e., the spindle element 

became straighter (Figure 22). In Ptk1 cell line, which has n = 6 ± 1 MTs in the bridging fiber 

(Table 1), angle pole-KC-KC increased by 3.1 ± 2.2 degrees three seconds after the cut (Figure 

22). However, variation in bMT thickness that are observed in these cell lines are not high 

enough to clearly verify this hypothesis, and it can be hypothesized that these measurements 

cannot distinguish such fine movements at this bMT thicknesses, or such observed movements 

are countered by those cells where there is no significant movement, at least not as I defined it 

here. 

 

 Because of limited ability of previous approach, I turned to different approach. I 

analysed videos of PRC1-GFP-tub-mCherry cell line that has a very thick bMT fiber (Figure 

13) that is created by simultaneous overexpression of tubulin and PRC1 (Figure 23). 

Overexpression was done by transiently expressing tubulin-mCherry and mRFP-CENP-B in 

HeLa cells that stably expressing PRC1-GFP protein (Solomatina, 2014). First, the angle at the 

centrosome did not change significantly in this cell line after ablation, similar with our previous 

observation in HeLa tub-GFP and Ptk1 cell lines, while the angle at the kinetochore increased 

by 11.2 ± 1.1 degrees 3 seconds after ablation (n = 17 cells) in this cell line (Figure 24A). In 

addition, in this cell line, which had 𝑛 = 23 ± 5 MTs in the bridging fiber (Table 1), the angle 

pole-KC-KC increased by 14.4 ± 2.1 degrees first frame (4 seconds) after the cut (Figure 22).  
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Figure 22. Quantification of spindle element straightening in all HeLa and Ptk1 cell line 

analysed. Angle 𝜃 pole-KC-KC as a function of a frame after ablation. The angle is defined as angle 

between line connecting pole further from the cut and kinetochore further from the cut with line 

connecting two sister kinetochores. The scheme on the right is showing how 𝜃 pole-KC-KC was defined. 

Angle 𝜃 pole-KC-KC of four cell lines are presented in the graph: HeLa cells expressing PRC1-GFP, 

mRFP-CENP-B and tubulin-mCherry (magenta), HeLa cells s expressing tubulin-GFP and CENP-B-

RFP (green), Ptk1 expressing Hec1-GFP which were injected with X-rhodamine-tubulin (black) and 

HeLa cell line transiently expressing CENP-Q-GFP and mCherry-tubulin (orange).  

 
 
 To compare results with PRC1-tub-mCherry and HeLa tub-GFP cell lines, I also 

performed the same measurements in HeLa cell line transiently expressing CENP-Q-GFP and 

mCherry-tubulin. Both cell lines share the same tubulin-mCherry overexpression and I have 

shown previously that they have thicker bridging fibers then HeLa cell line expressing tubulin-

GFP and CENP-B-RFP (Figures 10, 13 and 14). I have found that angle at the centrosome did 

not change significantly, similarly with all other cell lines studied, while the angle at the 

kinetochores increased 3.9 ± 3.5 degrees in first frame after ablation and 8.8 ± 4 degrees in third 

frame after ablation (Figure 24B). This results are similar to those obtained in HeLa-tub-GFP 

cell line and do not correlate thicker bridging fiber with response to ablation. In addition, the 

angle pole-KC-KC increased by 6.4 ± 2.6 degrees first frame (4 seconds) after the cut in this 

cell line (Figure 22). This result is intermediate between results obtained in HeLa-tub-GFP and 

PRC1-GFP-mCherry-tubulin spindles (Figure 22), and is not expected because this cell line has 



43 

 

bridging fiber thickness very similar to PRC1-GFP-mCherry-tubulin cell line. In PRC1-GFP-

tub-mCherry cell line, both measured degrees, that explain the level of response of a spindle 

element to ablation, are much higher than in HeLa tub-GFP cell line (Figure 22). 

  

 

 

 

 

 

 

 

 

 

 

Figure 23. Cell line with thicker bridging fiber have greater response to ablation. Images and 

illustrations of the HeLa cell expressing PRC1-GFP (green), tubulin mCherry and mRFP-CENP-B (both 

in magenta). Time-lapse of the mitotic spindle in merged channels showing strong reaction of spindle 

element to ablation (top left panel). Time-lapse of the mitotic spindle in PCR1-GFP channel showing 

strong reaction of spindle element to ablation (middle left panel), illustration of the model of presented  

live images (bottom left panel). 

 

  

 

 

 

 

 

 

 

Figure 24. Quantification of response to laser ablation in cells with thicker bridging fiber. A) The 

angles 𝜃p and 𝜃k as a function of frame after laser ablation in HeLa cells expressing PRC1-GFP, 

mCherry-tubulin and mRFP-CENP-B. B) The angles 𝜃p and 𝜃k as a function of frame after laser ablation 

in the HeLa cell line transiently expressing CENP-Q-GFP and mCherry-tubulin.  
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4 Discussion 
 

 

4.1. Bridging microtubules in new force map of the spindle 
 

As I described in introduction, force map of the metaphase spindle that was accepted for a long 

time in the field, assuming tensed k-fiber along their length, cannot explain some important 

experimental data and thus is not satisfactory any more. We can argue that much is known about 

molecular origin of the forces in the spindle (microtubule dynamics and molecular motors) and 

many players have been described and analysed to date in numerous in vitro experiments, but 

integration of that molecular knowledge into a mesoscopic molecular force model of the spindle 

is a new objective in studies of spindle mechanics. In excellent reviews, Dumont and Mitchison 

(2009) and Dumont and Mitchison (2012), have proposed new force map in which they 

integrated results from many different experiments, including molecular and mechanical 

perturbation of different spindle elements (Figure 25). They tried to answer some basic 

mechanical questions using biophysical approach in which molecular interactions and different 

proteins are abstracted into intrinsically mechanical structures. The simplest question is 

description of structures that are under tension, and those that are compressed in the spindle. 

Revised model proposes that k-fibers are under tension near kinetochores and under 

compression near the poles (Figure 25). Tension that is generated at metaphase chromosomes 

must be balanced by compression in another spindle element. It was proposed that some 

hypothetical non-microtubular structure, termed 'spindle matrix', must be present from pole to 

pole and that this structure is balancing forces generated at kinetochores. To do so, this element 

must make mechanical interactions with k-fiber along its length so these structures together can 

oppose forces at kinetochores. To date, several candidates for this function have been proposed. 

 

 One candidate is NuMa (nuclear mitotic apparatus) protein, which accumulates mostly 

at spindle poles at mitosis and is involved in tethering and stabilisation of microtubule minus-

ends at spindle poles and in focussing microtubules at spindle poles independently of 

centrosomes (Radulescu and Cleveland, 2009). It is believed it is main component of spindle 

pole matrix into which most of the spindle microtubules are tethered. Another candidate is 

Skeletor, chromosomal protein that forms macromolecular complex with other nuclear 

components at mitosis and is believed to form structural support in spindle matrix that can 

anchor motor molecules during force production and microtubule sliding. It was also shown 
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that this protein localisation is similar in shape with microtubular spindle during mitosis as it 

precedes assembly of microtubule spindle formation (Walker, 2000). Last component proposed 

to date is poly(ADP-ribose) (PAR), large, branched, negatively charged polymer whose 

polymerisation onto acceptor molecules is catalysed by a family of poly(ADP-ribose) 

polymerases (PARPs) (Chang, 2004). It is enriched at kinetochores and at spindle poles and it 

is known as component required for maintenance of bipolar spindle structure. Spindle matrix 

hypothesis proposes that components or their complexes that are separate from spindle 

microtubules, collectively termed spindle matrix, can contribute to force generation in the 

spindle and make some interactions with microtubular spindle elements (Pickett-Heaps et al., 

1997). In addition, besides components within spindle, some propose that a candidate element 

may lie outside the spindle. Main candidate is endoplasmic reticulum membrane system that 

enclose spindle in some system and can contain residue of the interphase nuclear envelope 

(Dumont and Mithison, 2012). Main problem with all this hypotheses, in light of our previous 

reasoning, is that none of these has been shown to stretch continuously from pole to pole making 

contact with k-fiber and acting as elastic element. 

 

 

 

 

 

 

 

 

Figure 25. New force map of metaphase spindle. Old tensed k-fibers force map (left) and revised 

force map that introduces both compression and tension within k-fiber (right) (Adapted from Dumont 

and Mitchison, 2012). 
 

 In contrast to this, our group has proposed non-kinetochore microtubular mechanical 

element that stretches between poles and can oppose forces generated at kinetochores. We 

hypothesized that this microtubular structure is composed of antiparallel microtubules and it 

bridges the gap between kinetochores while interacting laterally with sister k-fibers along most 

of their length so we named it bridging fiber (Figure 24). Similar non-kinetochore microtubular 

structures were previously observed using electron microscopy in different systems (Jensen, 

1982), (McDonald et al., 1992), but their precise structure and function were not explained. 

This microtubular structure can explain mechanical paradox that was generated from recent 
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experimental data (reviewed in introduction) in which one spindle element withstands both 

tensile forces at kinetochores and compressive forces in region closest to pole. This is 

paradoxical because k-kiber is largely inextensible, solid rod-like structure (Dumont and 

Mithison, 2012). My results from pure imaging confirm presence of such structure between 

sister kinetochores on outermost spindle elements, both in Ptk1 and different HeLa cell lines. 

This structure would represent new subpopulation of non-kinetochore microtubules within 

spindles of mammalian cells. Although both microtubules form mainly antiparallel bundles, 

main difference is lateral interactions of bMT fibers with k-fibers along their length. This 

interaction enables bMT fiber to influence forces that act on k-fibers, as I have shown above. 

Nature of this interaction in molecular detail, involving proteins mediating interaction, requires 

further study, but in present these interactions were abstracted at mesoscopic scale. 

 

  To better characterize this microtubular structure I measured its thickness in different 

cell lines by measuring relative intensity in given regions. Measured thickness would enable us 

to, not just estimate number of MT in bMT fiber, but also to calculate bMT stiffness that is in 

theoretical model of the mitpotic spindle (see next section) in direct relation with thickness. 

Measured thicknesses are in agreement with previous observation of thicknesses of MTs 

laterally connected with k-fibers, both in Ptk1 (Dong et al., 2007) and HeLa cell line (Kajtez, 

2014). The observed difference in bMT thickness in Ptk1 and HeLa cell lines may reflect 

difference in general shape of the spindle that was also shown in our analysis (Table 1). This 

difference in shape suggests difference in force balance mechanisms in these spindles that must 

accommodate this shape in dynamic steady state in mitosis, together with other differences in 

mechanical properties of those cells and HeLa spindles are generally more rounded with more 

curved outermost spindle element, while in Ptk1 cells spindles are more elongated with more 

straight outermost spindle elements. This can be seen from our results (Table 1) where spindles 

in Ptk1 are generally more elongated but narrower that those in HeLa cells. Different 

thicknesses of bMT fibers indicate different force balance mechanisms in these spindles that 

reflect itself in different shapes I observed for each cell line I studied. Proposed antiparallel 

nature of bridging bundles, although not direct objective of this study, was confirmed from 

observed localisation of PRC1 protein in midzone of spindle element between sister 

kinetochores of metaphase spindles of HeLa cells expressing PRC1-GFP, tubulin mCherry and 

mRFP-CENP-B (Figure 21). Explanations that are more detailed can be seen elsewhere 

(Solomatina, 2014). In addition, thicker bMT fibers in these cells were expected because they 

are constructed to simultaneously overexpress tubulin and PRC1 crosslinking protein 
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(Solomatina, 2014). Higher tubulin levels would increase spindle microtubule formation and 

higher PRC1 levels would increase binding rate of this protein to antiparallel microtubules in 

antiparallel fibers, such as bMT fiber. 

 

4.2. Spindle element is a single mechanical unit under both compression and 
tension forces 
 

Describing position of bridging fiber between sister kinetochores and its thickness cannot 

explain role of this structure in force-balance of metaphase spindles. I defined spindle element 

as single structural unit comprised of sister k-fibers linked with their kinetochores and 

connected to a bridging fiber. That definition assumes lateral connections between bMT fiber 

and sister k-fibers. To probe the nature of forces and existence of such lateral connections acting 

on k-fibers I analysed videos of HeLa and Ptk1 cell lines where laser ablation was performed. 

I confirmed that this spindle element, defined mainly by lateral interactions between sister k-

fibers and bMT, behave as single mechanical unit following laser ablation. This can be seen 

from collective outward (away from the line connecting spindle poles) movement of 

kinetochore pairs, intact k-fiber, bMT fiber and ablated k-fiber stub, both in HeLa and Ptk1 cell 

lines. This also suggests that these lateral interactions are strong enough to withstand strong 

physical perturbation, such is ablation of k-fiber(s). To conclude, results confirm that bridging 

microtubules are part of a spindle element laterally connected with sister k-fibers and that k-

fibers are under compression forces that force them to bend. 

 

 To better analyse velocity of straightening of spindle element, which I observed after 

ablation, I used data acquired from tracking of outermost k-fibers at one frame before, and three 

frames after ablation in HeLa and Ptk1 cell lines. It was crucial to define velocity of 

straightening in cell lines of different bMT thickness because I hypothesized that cell lines with 

thicker bMT fibers show faster straightening because of larger force release at the bMT fiber 

after ablation. Straightening can be seen from increase in pole-KC-KC angle in all cell lines 

studied and increase in angle at the kinetochore (𝜃k) in all HeLa cell lines studied. The two 

findings together in HeLa cells show us that the spindle element became straighter after the 

cutting, which is consistent with the observed aligning of the k-fiber stub with the intact k-fiber 

in HeLa cell lines (Kajtez, 2014) (Figure 15). Perplexing behaviour in Ptk1 cell line can be 

explained by imprecise nature of measurements in those cell line where resolution at pixel size 

it not so good as in other videos, which can, together with delicate changes in shape of spindle 
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element, create perplexing measurements. The largest increase of this angle observed in cell 

line with thickest bMT fibers suggests that out hypothesis was correct and there is correlation 

between number of MTs in bridging fiber and velocity of straightening of outermost spindle 

element. Therefore, I can conclude that, as expected, the spindle element straightened faster in 

these cells with thicker bridging fibers then in original HeLa tub-GFP and Ptk1 cell lines. 

Consistent with these results, I observed that the k-fiber stub became more aligned with the 

intact k-fiber in cells with thicker bridging fibers. It can be concluded that the force at the 

spindle pole and consequently in the bMT fiber increases with the bMT fiber thickness, and I 

saw that as stronger response to ablation measured in velocity of spindle element straightening.  

 

 The inconsistent behaviour in HeLa cell line transiently expressing CENP-Q-GFP and 

mCherry-tubulin can be result of strict definition of geometric parameters, which encompassed 

just some movements of spindle element that can be correlated with bridging fiber thickness. 

However, it is more likely that measuring of bridging fiber thickness was probably imprecise 

in some manner in this cell line, probably overestimating bridging fiber thickness. This is not 

surprising because resolution of these videos was not adequate which together with low cell 

number of analysed cells caused observed inconsistency in our results. In addition, similar bMT 

fiber thickness in HeLa cell line transiently expressing CENP-Q-GFP with mCherry-tubulin 

and HeLa cell expressing PRC1-GFP and tubulin-mCherry indicates that thicker bMT fiber is 

the result of overexpression of tubulin linked with mCherry, as this is characteristic shared by 

both cell lines. It is unclear why mCherry, a commonly used fluorophore, would cause 

appearance of thicker bridging fibers, but I can reason that maybe these cell lines have different 

expression levels of PRC1 protein instead. That assumption would require future measurements 

that were not part of this study. Furthermore, because of resolution limits of microscopy systems 

used and weak mCherry-tubulin signal in all cell lines where this fluorophore was used, I were 

forced to use small number of cells that are suitable for this analysis (see Materials and 

methods), and this small numbers surely limit strength of our deduction. Further work, 

including analysing protein expression levels in individual and population of HeLa cells, is 

clearly required to define whether thicker bridging fiber is result of PRC1 overexpression or 

overexpression of mCherry tubulin. In addition, straightening together with outward movement 

of k-fiber suggests that compressive forces are active along the outermost k-fiber in our 

spindles. Some other studies have also shown that k-fibers are under compression. For example, 

UV-microbeam severing of multiple inner k-fibers resulted in bending of intact k-fibers and 

shortening of the half-spindle length (Pickett-Heaps et al., 1997). Furthermore, treatment of 
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Xenopus egg extracts with microtubule-depolymerizing drug resulted in bending of intact k-

fibers, reduction in kinetochore tension and shortening of the spindle (Mitchison et al., 2005). 

The possible mechanisms governing the sources of this compression forces that act along k-

fibers represent the same mechanisms that govern the spindle length regulation. Main candidate 

for this role is antagonistic sliding filament mechanism that exerts forces through sliding of 

array of antiparallel microtubules by motor proteins (Goshima and Scholey, 2010). This 

antiparallel sliding of ipMTs that are cross-linked in antiparallel orientation in the central region 

of the spindle is main mechanisms for length regulation, at least in some, but not in all mitotic 

spindles. Compression could be generated by activity of minus-end directed motor proteins 

(e.g. homodimeric kinesin-14 and/or dynein) that slide ipMTs and in doing so, they are 

increasing the overlapping region of ipMTs and decreasing pole-to-pole distance. This would 

result in production of great inward force if there were no much opposition from plus-end 

directed proteins doing opposite work in producing outward force on the poles. This was shown 

by recent experiments in which codepletion of dynein antagonists plus-end directed motors Eg5 

and Kif15 resulted in excessive inward force in the spindle. This result suggests that Eg5 and 

Kif15 generate an outward-directed force on the spindle poles and this force is counterbalanced 

by inward-directed force generated by dynein (van Heesbeen et al., 2014). This antagonistic 

outward and inward forces must be tightly regulated (e.g. force-balanced) for proper control of 

spindle assembly and eventually for forming of correct KT-MT attachments and normal 

chromosome segregation. Other mechanisms that can influence spindle length and contribute 

to generation of compression on k-fiber include tight balance of microtubule polymerisation-

depolymerisation dynamics (e.g. poleward flux) and microtubule sliding mechanisms described 

above. Rate of ipMT minus-end depolymerisation at spindle poles can control the rate and 

extent of spindle elongation due to forces that are exerted on spindle poles by outward-sliding 

of ipMTs, in that way controlling spindle length and consequently forces acting on spindle 

element (Goshima and Scholey, 2010). In addition, astral forces generated from astral 

microtubules pushing on cell cortex can control spindle length. When growing astral MTs from 

centrosomes at different cell sides hit the cell cortex, they can develop compressive force via a 

polymerisation mechanism that is directed toward the cortex. This in turn produces an inward 

force on centrosomes that decrease the pole-to-pole distance. This was shown for some model 

systems, including movement of interphase nuclei and anaphase spindle in fission yeast (Tolic-

Norrelykke et al. 2004, Tran et al. 2001), but not for metaphase spindles in mammalian cells. 

This pushing force produced by astral microtubules is counterbalanced by pulling force 

produced when cortical dynein captures astral microtubules and walks toward their minus-end 
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while it is anchored at cell cortex. This produces pulling force on spindle poles and this balance 

between pulling and pushing on astral microtubules is very important mechanism of spindle 

positioning (Rosenthal, 2013). Further research in this field will provide more insights about 

compression-producing mechanism in metaphase spindles of mammalian cells and function of 

bMT fibers in that force production, especially in poleward flux of k-fibers. 

 

 I also confirmed that kinetochores are under tension that pulls kinetochores from each 

other (e.g. they experience pulling forces), in Ptk1 metaphase spindles. Resolution of that force 

by laser ablation resulted in dramatic drop in inter-kinetochore distance. I observed that 

following spindle element ablation sister kinetochores moved toward each other, in other words, 

in most Ptk1 cells I observed strong decrease in inter-kinetochore distance. This is in agreement 

with previous studies studying and confirming tension on metaphase kinetochores by 

depolymerisation agents such is nocodazol (Waters et al., 1996), or by ablation of one of the 

kinetochores (McNeill and Berns, 1981), both resulting in reduction of tension between 

kinetochores. Similar decrease in inter-kinetochore distance was also reported after laser 

ablation assays similar to ours (Elting et al., 2014, Sikirzhytski et al., 2014). These pulling 

forces are thought to be generated primarily at the interface of kinetochores and microtubule 

plus-ends by microtubule depolymerisation (discussed above) or by activity of minus-end 

directed motors, such is dynein. There is possibility that depolymerisation or activity of plus-

directed motors at minus-ends can generate tension at kinetochores, but this theoretical 

possibility was never observed experimentally (Dumont and Mitchison, 2012). This tension 

between sister kinetochores is crucial for passage through spindle assembly checkpoint (SAC) 

pathway because kinetochores with insufficient or no tension at all are quickly destabilized at 

interface with microtubules. Destabilisation is performed by phosphorylation of microtubule-

binding proteins in the kinetochore complex by Aurora B kinase (Lodish et al., 2014). 

Interestingly, I observed correlation between position of the cut and degree of reduction of inter-

kinetochore distance in Ptk1 cells. That was in agreement with studies in our lab done on same 

HeLa cells expressing tubulin-GFP and CENPB-RFP (Kajtez, 2014). In HeLa cells, it was 

estimated that junction point along k-fiber where k-fiber and bMT fiber meet is positioned 

around 1 µm from the kinetochore because all cuts at distance shorter than that does not result 

in a significant decrease in inter-kinetochore distance, in contrast with cuts longer than that 

(Kajtez, 2014). I observed same sharp transition at approximately 1.25 μm from kinetochore. 

Some analogous finidings where observed after laser ablation of a k-fiber a few µm away from 

the kinetochore in Drosophila S2 cells and newt epithelial cells where where kinetochores 
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generally do not oscillate (Pickett-Heaps et al., 1997, Maiato et al., 2004). They interpreted this 

results as indication that kinetochores are locked in N-state in these systems, where there is no 

active production across the centromere. These experiments also suggest that tension at the 

kinetochore is balanced by poleward forces exerted on first few of the k-fiber (Dumont and 

Mithison, 2012). All these results, including our own, can be explained by our model of mitotic 

spindle that include bridging fiber. Our results also indicate that junction point is located around 

region of 1 μm from kinetochores in HeLa cells, and around 1.25 μm from kinetochore in Ptk1 

cells. These results also indicate that tension force that acts on sister kinetochores is greatly 

reduced as we pass this region where junction point is located which would suggest that bMT 

fiber is important element in force-balance at interface of kinetochores with sister k-fibers. 

 

 In conclusion, I have shown that both compression and tension, as antagonistic forces, 

coexist in single spindle element. It is important to emphasize that this already proposed model 

(Dumont and Mitchison, 2009) was not explained to date by some mechanical model that 

comprises all experimental requirements. I can conclude that this new microtubular structure 

and model it encompasses can explain this mechanical paradox in which one spindle element, 

which is largely inextensible, solid rod-like structure, withstands both tensile forces at 

kinetochores and compressive forces in regions closer to spindle pole. 

 

4.3. Theoretical model of spindle element and future prospects 
 

 

To better define positions where compression and tension forces act and to estimate their values, 

theoretical model of the HeLa metaphase spindle was developed in collaboration with Nenad 

Pavin group and solved by Maja Novak (Department of Physics, Faculty of Science, University 

of Zagreb, Zagreb, Croatia). Microtubule fibers in this model are represented as elastic rods 

taking into account the elastic properties of MT bundles and the forces acting at their ends; 

there are two k-fibers in the model and one bMT fiber and they merge at two junction points 

along k-fiber length (Figure 26). K-fibers by one side end on kinetochores that are connected 

by centromeric heterochromatin that lies between kinetochores and is represented as elastic 

spring. The tension between sister kinetochores that stretch centromeric region is described as 

a pulling force acting at the end of the k-fiber that corresponds to the position of the kinetochore 

(Fk). Other end of k-fiber end near the centrosomes and torque is introduced (Mo) acting on the 

poles to mimic experimental finding that on the poles spindle element is clamped (it is not freely 
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joined). Otherwise, it is important to note that the distance between pole is fixed. Other force 

introduced is compressive force that act on k-fibers from the spindle poles (F0). The bending 

rigidity of the k-fiber and the bridging fiber were determined by multiplying the known bending 

rigidity of a single MT with the number of MTs in the respective fibers that I measured 

experimentally. 

 

 Inputs for solving the model where experimentally measured geometric properties of 

the HeLa mitotic spindle (Table 1): spindle length and width, angles at the kinetochore and the 

spindle pole and the measured thickness of the bMT fiber (e.g. estimation of number of 

microtubules in bMT fiber). Outputs in the model solving were position of the junction point 

and the forces at the spindle poles and kinetochores. This theoretical model has predictions that 

are important for analysis of my experimental data: 1. Shape of the mitotic spindle is convex; 

2. junction point is positioned 0.75 μm away from the kinetochore; 3. kinetochores are above 

the bridging fiber; 4. force at the spindle pole acts inwards, resulting in the compression and 

buckling of the bridging fiber; 5. tension at the kinetochore propagates along the segment of 

the k-fiber between the junction and the kinetochore; 6. two inward forces are counteracted by 

the compression in the central segment of the bridging fiber between the two junctions.; 7. the 

thicker bMT fiber is the larger force at the spindle pole is, and consequently a larger is force in 

the bridging fiber (Kajtez et al., unpublished data). 

 

 

 

 

 

 

 

 

 

 

Figure 26. Theoretical model of HeLa cell mitotic spindle. Schematic representation of the 

theoretical model of HeLa cell metaphase spindle including bMT microtubules developed by Nenad 

Pavin group and solved by Maja Novak. Black line represent rod extending from the position that 

represent the spindle pole until the junction point, magenta line represent rod that extends from the 

junction point to the position that represent kinetochore, and green line represent bridging rod that 

extends between two junction points. The geometry of each rod is described by a tangential angle, (𝑠), 

along the contour length, 𝑠. Forces at the spindle pole, 𝐹o, and at the kinetochore, 𝐹k, as well as the 

torque at the spindle pole, 𝑀o, are depicted. 
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  Results obtained from solving model equations, after including some of our 

experimental data, together with well-known constants as inputs, confirmed our experimental 

observations. Tension forces are found to be acting on segment of k-fiber between the junction 

and the kinetochore, while the rest of the k-fiber including laterally connected bMT fiber and 

central region of bMT fiber between the two junction points, are under compression. I reason, 

that central part of bMT fiber balances the antagonistic forces acting on the poles and at the 

kinetochores, making this perplexing presence of tension and compression forces within single 

spindle element possible. Model also have some important predictions that I would mention 

here because they were used to form hypothesis and plans in this project. First, theoretical 

model predicts that shape of mitotic spindle is convex, which may seem trivial, but it confirms 

that parameters, used for calculations in the model solving, are of biological importance, or at 

least observed in our experiments (Figure 8). Second, model predicts that sister kinetochore 

pair is positioned above bMT fiber, away from the central axis connecting two spindle poles. 

This is important because in all our analysed videos of HeLa and Ptk1 cells where I could 

observe bMT fiber, it was positioned below sister KT pair, toward center of the spindle (Figures 

8 and 9). In addition, model predicted that there is correlation between bMT fiber stiffness 

(directly related to its thickness, e.g. number of MT in fiber) and velocity of straightening and 

displacement of spindle element after the cut. We tested this hypothesis experimentally and 

confirmed these predictions (see above). In addition, model predicts that, in HeLa cells 

metaphase spindle, junction point is positioned 0.75 μm away from the kinetochore. That is in 

agreement previously observed experimental prediction that junction point is located in region 

around 1 μm from the kinetochore (Kajtez, 2014). In future, it would be interesting to see what 

model predicts about metaphase spindle behaviour in Ptk1 cell line, especially role of bMT 

fiber, because difference in spindle shape and bMT thickness in these cells compared with HeLa 

cell line, indicate some different force balance mechanisms. 

 

 Future work will be required to define role and structural dynamics of bMT fiber in 

chromosome segregation in anaphase and to better define its role in tension between 

kinetochores in metaphase and poleward flux in metaphase and anaphase, both in HeLa and 

Ptk1 cell lines. In light of this, it will be important to define motor proteins and crosslinkers 

acting between bMT fibers and between k- and bMT fiber, and to what extent sliding between 

these fibers contributes to processes and mechanisms that are crucial for spindle maintenance 

and function in metaphase and anaphase. It would be interesting to see what happens with bMT 
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fiber at metaphase-anaphase transition when dynamic steady state is disturbed. Our present 

observations indicate that most antiparallel microtubules marked with PRC1-GFP protein are 

linked with kinetochores, so it would be interesting to analyse how structure of spindle element 

is withstanding and changing in response to forces acting in anaphase. In addition, causes of 

thicker bMT fiber in HeLa cell line stably expressing PRC1-GFP and transiently expressing 

mRFP-CENP-B and mCherry-tubulin are not yet clear, so it would be interesting to define them 

at molecular level. In theoretical part of project, it would be interesting to create theoretical 

model for Ptk1 metaphase spindle because our results indicate different force-balance 

mechanisms in those cells compared with HeLa cells. In addition, we could include motor-

driven forces and arrangement of MT polarity and position of their ends in new theoretical 

model of metaphase spindle and then test experimentally some of the prediction of this dynamic 

model. All of this would shed more light on structural and functional role of bMT fibers in 

spindle of different phases of mitosis. 
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5 Conclusion 
 

In all eukaryotes, segregation of chromosomes is accomplished by formation of highly dynamic 

macromolecular complex termed mitotic spindle that self-assembles in prometaphase of 

mitosis. This structure is composed primarily of microtubules and associated proteins. Current 

models of mitotic spindle recognize three distinct subpopulations of microtubules: kinetochore, 

interpolar and astral microtubules. Although much is known about origin of forces on molecular 

scale encompassing molecular motors and microtubule dynamics, integration of those forces 

on mesoscopic scale is currently one of the main goals in the field. We have approached this 

problem by formulating a new model of mitotic spindle that includes microtubular structure 

that spans the region under sister kinetochores and is laterally connected to sister k-fibers. We 

called this structure bridging microtubule (bMT) that tends to form a bundle of antiparallel 

microtubules termed bMT fiber. Main goal of this study was to define first architectural and 

then role in force-balance of bMT in metaphase of mitosis. I observed bMT fibers close below 

the outermost kinetochore pairs both in HeLa cells expressing tubulin-GFP and CENP-B-RFP 

and in Ptk1 cells expressing Hec1-GFP and were in addition were injected with X-rhodamine-

tubulin. I also measured thickness of bMT fibers to define number of microtubules in bMT fiber 

in different cell lines. To define role of bMT fibers in force-balance and their lateral attachment 

to k-fibers in Ptk1 cells, I analysed videos where laser ablation of outermost k-fiber was 

performed. I observed outward movement of sister kinetochores, intact k-fiber, k-fiber stub and 

bMT fiber that was directed from central spindle plane. I conclude from the analysis that bMT 

fibers are laterally connected to sister k-fibers and they constitute single mechanical unit. In 

addition, I observed strong decrease in inter-kinetochore distance after ablation that was 

correlated with position of the cut in such a way that I observed strong transition in degree of 

relaxation in region around 1.25 µm from kinetochore. I concluded, in agreement with previous 

studies, that tension forces are acting on sister kinetochores. I also quantitatively analysed 

spindle shape in steady state and after ablation. I showed that velocity of straightening is largest 

in cell line with thickest bMT fiber and that straightening can be quantitatively described in 

other cell lines studied. This result confirms that compressive forces are active along spindle 

element. Finally, I compared our experimental data with theoretical model of the HeLa cell 

spindle to verify robustness of theoretic model and analyse how predictions of the model fit in 

our experimental observations. I conclude that bMT fiber is important structural element that 

balances compressive and tensile forces acting on spindle element in metaphase of mitosis in 

HeLa and Ptk1 cells. 
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