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We report a new STAR measurement of the longitudinal double-spin asymmetry A;; for inclusive jet
production at midrapidity in polarized p + p collisions at a center-of-mass energy of /s = 200 GeV. The
data, which cover jet transverse momenta 5 < py <30 GeV/c, are substantially more precise than
previous measurements. They provide significant new constraints on the gluon spin contribution to the
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nucleon spin through the comparison to predictions derived from one global fit to polarized deep-inelastic

scattering measurements.

DOI: 10.1103/PhysRevLett.100.232003

Understanding how the spin of the nucleon is con-
structed from the spin and angular momentum of the
constituent quarks and gluons is a fundamental and unre-
solved question in quantum chromodynamics (QCD). The
gluon spin contribution to the nucleon spin AG has been
the focus of theoretical and experimental efforts since
polarized deep-inelastic scattering (DIS) experiments
found the quark spin contribution to be unexpectedly small
[1]. Unlike quarks, gluons do not couple directly to the
virtual photon emitted by the lepton in DIS. Information
about AG must be extracted from the next-to-leading-order
(NLO) perturbative QCD (pQCD) analysis of the momen-
tum transfer dependence of the same inclusive spin struc-
ture functions used in determining the quark spin
contribution [2—7]. Measurements of high- p; hadron pairs
and charm mesons resulting from the photon-gluon fusion
process in DIS have provided additional but limited con-
straints [8]. In contrast to DIS, hadronic interactions pro-
vide direct, leading order access to both the quark and
gluon polarized parton distribution functions (PDFs) via
detection of the jets of particles fragmenting from the
scattered partons. Early hadroproduction measurements
utilized fixed targets [9], but more recently results from
the first ever polarized collider RHIC [10,11] are now
being incorporated into NLO pQCD fits [12] with the
ultimate goal of extracting their constraint on AG.
Despite recent progress, significant uncertainty remains
regarding the magnitude and sign of AG [13]. The inclu-
sive measurements presented here span more than an order
of magnitude in partonic momentum fraction (x) and are
expected to sample a sizable piece of the total integral.
Comparisons with predictions derived from one global fit
[4,14] to deep-inelastic scattering measurements are used
to demonstrate the substantial new constraints these results
place on AG.

In this Letter, we report a new measurement of the
longitudinal double-spin asymmetry A;; for midrapidity
inclusive jet production in polarized p + p collisions at
/s = 200 GeV center-of-mass energy,

ott — ot

A = -
LL -
ot + ot

, ey
where ot 1 (o1 7) is the differential cross section when the
beam protons have equal (opposite) helicities. We have
previously measured the helicity-averaged cross section
[10] for transverse momenta (py) up to ~50 GeV/c and
it is well described by NLO pQCD evaluations. Inclusive
jet production in the kinematic regime studied here is
dominated by gluon-gluon (gg) and quark-gluon (gg) scat-
tering. Therefore, A;; provides direct sensitivity to gluon

PACS numbers: 14.20.Dh, 13.87.Ce, 13.88.+e, 14.70.Dj

polarization [14] and the cross-section result motivates the
use of NLO pQCD to interpret our measurements.

The data presented here are extracted from an integrated
luminosity of 2 pb~! recorded in the year 2005 with the
STAR detector [15] at RHIC. The polarization was mea-
sured independently for each of the two counter-rotating
proton beams and for each fill using Coulomb-Nuclear
Interference (CNI) proton-Carbon polarimeters [16],
which were calibrated via a polarized atomic hydrogen
gas-jet target [17]. Averaged over RHIC fills, the luminos-
ity weighted polarizations for the two beams were 52 =
3% and 48 = 3%. The proton helicities were alternated
between successive bunches in one beam and between
bunch pairs in the other beam. Additionally, the helicity
configurations of the colliding beam bunches were
changed between beam fills to minimize systematic un-
certainties in the A;; measurement. Segmented beam-
beam counters (BBC) [18] located up and downstream of
the STAR interaction region (IR) measured the helicity
dependent relative luminosities, identified minimum bias
(MB) collisions, and served as local polarimeters.

The STAR subsystems used to measure jets are the time
projection chamber (TPC) and the barrel electromagnetic
calorimeter (BEMC) [15]. The TPC provides tracking for
charged particles in the 0.5 T solenoidal magnetic field for
pseudorapidities —1.3 =< 1 < 1.3 and 2 in the azimuthal
angle ¢. In 2005 the BEMC, covering a fiducial area of
¢ =27 and 0 < np < 1, provided triggering and detection
of photons and electrons.

Events were recorded if they satisfied both the MB
condition, defined as a coincidence between east and
west BBCs, and either a jet patch (JP) or high tower
(HT) trigger. The HT condition required the energy of a
single calorimeter tower to be at least 2.6 (HT1) or 3.6
(HT2) GeV. The JP trigger fired if the sum of a An X
A¢ =1 X1 patch of towers, the typical size of a jet,
exceeded 4.5 (JP1) or 6.5 (JP2) GeV. Approximately half
of the 2.38 X 10 jets extracted from the 12 X 10° event set
originated from the JP2 trigger sample.

Jets were reconstructed using a midpoint cone algorithm
[19] with the same parameters as described in Ref. [10].
The algorithm clusters TPC charged track momenta and

BEMC tower energies within a cone radius of R =

JVA@? + An? = 0.4. Jets were required to have p; >
5 GeV/c and point between 1 = 0.2-0.8 in order to mini-

mize the effects of the BEMC acceptance on the jet energy
scale. BBC timing information was used to select events
with reconstructed vertex positions within ~60 cm of the
center of the detector, ensuring uniform tracking efficiency
and matching the conditions used in determining the rela-
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FIG. 1 (color online).

Neutral energy fraction of the jet energy for MB (crosses), HT (circles), and JP (squares) data compared with

STAR simulations for two jet py bins, (a) 6.2 < py < 11.4 GeV/c and (b) 17.3 < py < 32.2 GeV/c. The statistical uncertainties are
represented as error bars for the data points and bands for the simulations.

tive luminosity measurements. Beam background from
upstream sources observed as neutral energy deposits in
the BEMC were minimized by requiring the neutral energy
fraction of the jet energy (NEF) to be less than 0.8. A
minimum NEF of 0.1 was also imposed in order to reduce
pileup effects. Finally, only jets which contained a trigger
tower or pointed to a triggered jet patch were considered
for analysis.

Figure 1 compares the NEF spectra for MB, HT, and JP
triggered jets from data and simulations. Monte Carlo
events were generated using PYTHIA 6.205 [20] with pa-
rameters adjusted to CDF “Tune A” settings [21] and
processed through the STAR detector response package
based on GEANT 3 [22]. The shapes of the data distributions
are sufficiently reproduced by the simulations for the pur-
pose of estimating systematic errors. In contrast to the
calorimeter triggers, the mean and shape of the MB distri-
bution is relatively stable as a function of jet py. The HT
jets, and to a lesser extent the JP jets, show a strong bias

towards higher NEF at low p; which diminishes for higher
jet pr. The enhancement of jets near NEF = 1 in the data
compared to simulation is consistent with contributions
from beam background, as discussed above.

We present the inclusive jet A;; measurement, not as a
function of the measured transverse momentum
(DETECTOR jet pr), but instead corrected to reflect the jet
energy scale before interaction with the STAR detector
(PARTICLE jet pr). This correction was carried out by
applying the same jet reconstruction algorithm to the si-
mulated event samples at both the PARTICLE and DETECTOR
levels. PARTICLE jets are composed of stable, final-state
particles which result from the fragmentation and hadro-
nization of the scattered partons and remnant protons.
DETECTOR jets consist of the reconstructed TPC tracks
and BEMC tower energies in simulated events that pass
the same trigger conditions that were placed on the data. As
shown in Fig. 2(a) the jet yield is a rapidly falling function
of jet pr. This effect combined with the jet p; resolution of

1F a) | |b) f 35
: 2
5 107 B + . 3
K= : 125 ©
(]

> | + 20 m
0 10°F )
I 115 o
572005 STAR =
10°F JP2 Data + IH‘. 110 @
1 <
— STAR JP2 1s S
Simulations + <

1059675 20 25 30 35 0 5 10 15 20 25 30 35 0

DETECTOR Jet p_(GeVi/c) DETECTOR Jet p_ (GeVi/c)

FIG. 2.

(a) The raw detected jet yield in data (points) compared with the STAR Monte Carlo simulations. (b) Correlation between the

reconstructed jet transverse momenta at the PARTICLE and DETECTOR levels. The points indicate the means and the vertical error bars
show the rms widths of the associated PARTICLE jet distributions within the DETECTOR jet bins. The dashed line represents the condition

when the PARTICLE and DETECTOR jet py values are equal.
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about 25% results in a shift of the inclusive DETECTOR jet
pr distribution to larger values as shown in Fig. 2(b). For
pr > 10 GeV/c¢ the reconstructed DETECTOR jet pr is on
average a factor 1.22 larger than the PARTICLE jet py. This
shift varies only slightly with trigger and underlying par-
tonic process (gg vs gg vs gq). The dominant uncertainty
in the jet p; values arises from the =4% uncertainty in the
jet energy scale, but we also account for the subsample
dependence in the DETECTOR to PARTICLE jet conversion.
The agreement between data and simulations is best at high
pr (as shown in Fig. 1) where the correction, proportional
to pr, is largest. The uncertainty in the PARTICLE jet pr
slope results in a £2.5% error on the p; scale.
The asymmetry A;; was evaluated according to

_ (PPN —RN*T)
M S (P P)A(NTY + RNTTY

2

in which P, are the measured beam polarizations, N**
and Nt~ denote the inclusive jet yields for equal and
opposite proton beam helicity configurations, and R is
the measured relative luminosity. Each sum is over 10 to
30 min long runs, a period much shorter than typical time
variations in critical quantities such as P, and R. Typical
values of R range from 0.85 to 1.2 depending on fill and
bunch pattern.

Figure 3 shows the results for inclusive jet A;; versus jet
pr corrected for detector response to the particle level. The
vertical error bars show the statistical uncertainties. The
height of the gray band on each data point indicates the
total systematic uncertainty on A;; while the width reflects
the systematic uncertainty on jet pr. An overall 9.4% scale
error due to the uncertainty in the RHIC CNI polarimeter

» 4 STARData pp—jet+X
0.15—  — GRSV-std
~ — GRSV Ag=g
F - - GRSV Ag=0
01 GRSVAg=g . —l— —| —

A|_|_ 0.05[~

-0.05[ +9.4% scale uncertainty from
- polarization not shown

e o e e b by |

5 10 15 20 25 30
[ (GeV/c)

FIG. 3 (color online). Longitudinal double-spin asymmetry
Ay, for inclusive jet production at /s = 200 GeV versus jet
pr- The points show results for PARTICLE jets with statistical
error bars, while the curves show predictions for NLO parton jets
[14] from the GRSV [4] and GS-C [23] global analysis. The gray
boxes indicate the systematic uncertainties on the measured A;
values (vertical) and in the corrections to the measured jet pr
and the conversion between PARTICLE jet and NLO parton jet pr
(horizontal).

calibration is not included in the systematic error shown in
Fig. 3. The present results are in good agreement
(x*/ndf = 7.3/6) with our previous measurements of
A;p [10]. The combined statistical and systematic asym-
metry uncertainties are reduced by a factor of 4 and the py
coverage is nearly doubled, extending up to 30 GeV/c.

The curves shown in Fig. 3 are NLO pQCD evaluations
for inclusive jet A;; [14] based on different polarized
parton distributions [4,23]. Denoting the spin-averaged
gluon distribution function as g(x, Q%), then the curves
correspond to maximally positive [GRSV-max:
Ag(x, Q3) = +g(x, 03)], maximally negative [GRSV-
min: Ag(x, Q%) = —g(x, 03)] and vanishing [GRS V-zero:
Ag(x, Q%) = 0] gluon polarizations. The curve labeled
GRSV-std uses the best fit to inclusive DIS data and gives
[oAg(x, 0*)dx =0.24 at the initial scale Qf =
0.4 GeV?/c?. The calculations were performed with facto-
rization and renormalization scales ur = wr = pr. The
Ajp values for the GRSV-std and GRSV-max cases change
by less than 20% for variations in the scale from p;/2 to
2pr. The calculations are performed for jets composed of
NLO partons which do not include effects due to hadroni-
zation and the underlying event. This difference, estimated
from simulation studies, causes a Jjé % systematic shift in
jet pr between PARTICLE and NLO parton jets. The ma-
jority of the published polarized PDFs utilize forms similar
to GRSV for Ag(x) at the initial scale. An exception is the
Gehrmann-Stirling Set C (GS-C) parametrization [23]
which constrains the majority of the AG integral to reside
at x values below the current STAR kinematic reach and
allows a node in the functional form at x ~ 0.1 for Q> =
1 GeV?/c?. This PDF set was inserted into the inclusive jet
theoretical framework developed by [14] and is plotted in
Fig. 3.

The leading systematic error contribution to the A;
measurement arises from trigger and reconstruction effects
which cause the asymmetry to differ for PARTICLE and
DETECTOR jets. The shift in jet energy scale results in the
smearing of the PARTICLE jet A;; across the detected jet pr
bin, an effect which is largely accounted for by the correc-
tion of measured DETECTOR jet to PARTICLE jet p; values.
The calorimeter triggers, designed to select a subset of all
minimum bias events, change the natural distribution of
q4, q8, and gg events which comprise the inclusive mea-
surement. The consequence of this change for A;; also
depends on the true value of the gluon helicity distribution;
therefore, the systematic error due to both triggering and
reconstruction bias was estimated from the jet asymmetries
calculated within the simulation framework for GRSV-std,
-zero and -min scenarios. The GRSV-max scenario shown
in Fig. 3, is not consistent with our data and therefore was
not included in the estimates. The maximum positive and
negative differences for the distributions were selected at
each pr bin. Other systematic uncertainties include effects
from relative luminosities (9 X 10~#), beam background
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(7 X 10™%), and nonlongitudinal beam polarization com-
ponents at the STAR IR (3 X 10™%). Parity violating
single-spin asymmetries in the data were found to be
consistent with zero, <0.2 standard deviation, as expected,
given that parity violating physical processes are predicted
to be negligible at the current level of statistics.

To quantify the impact of the new data on AG, the
measured A;; values have been compared to predictions
within the GRSV framework [4,14,24] in which the polar-
ized parton distributions were refit assuming AG is con-
strained to a series of values spanning the full range
—g(x, 03) = Ag(x, Q3) = g(x, Q3). Figure 4(a) illustrates
the gluon x range accessed in a low and high p; data bin.
The smooth curve represents the corresponding fraction of
AG sampled for X, = Xgjyon in the GRSV-std scenario at
a scale of Q> = 100 GeV?/c? which is typical for the
present data. The measurements presented here provide
sensitivity to about 40% of the positive integral and 20%
of the negative integral solutions for Ag(x, Q?). Figure 4(b)
shows the confidence levels (C.L.) found from compari-
sons with these inclusive jet data. The correlations among
the systematic uncertainties for various jet py have been
included in the C.L. calculations.

The present data exclude fits of AG > (.33 at a scale of
0.4 GeV?/c? with at least 90% C.L. and the GRSV-min
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0.8F~Q°=100GeV7c? p=28GeVie {10 _
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FIG. 4 (color online). (a) The solid curve represents the frac-
tion of AG for GRSV-std that has x > x,,;, for scale Q% =
100 GeV?/c*. The histograms show the Xy, sampled in the
lowest and highest jet p7 bins. (b) Confidence levels for several
gluon polarization distributions, characterized by their AG at an
input scale of 0.4 GeV?/c? [4,14,24].

scenario is excluded at the 94% level. As discussed in
Ref. [4], the GRSV-std fit to the existing DIS world data
corresponded to a AG(Q3) = 0.24 with a range of
—0.45 < AG < 0.7 allowed with a y? variation of 1. For
comparison, the C.L. for the GS-C PDF curve is 0.46,
which is nearly identical to the GRSV-zero scenario.
Although these C.L. conclusions clearly depend on the
functional form for the gluon polarization employed in
the PDF framework, the constraints placed by our data
on the slice of AG between x = 0.02-0.3 are significant
and will exclude additional PDF’s which have a contribu-
tion to AG larger than GRSV-std in this x region.

In summary, we report new measurements of the longi-
tudinal double-spin asymmetry A;; for inclusive jet pro-
duction at midrapidity in polarized p + p collisions at
/s = 200 GeV with coverage in jet transverse momentum
up to 30 GeV/c and improved precision compared to
previous measurements. If we compare A;; to predictions
allowed within the GRSV framework, then AG(Q%) is
constrained to be less than 65% of the proton spin with
90% confidence. A global analysis of DIS and RHIC data
is needed to realize the full impact of these results on the
shape and magnitude of Ag(x, Q?).
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