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Nonadiabatic dynamics of electron scattering from adsorbates in surface bands
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We present a comparative study of nonadiabatic dynamics of electron scattering in quasi-two-dimensional
surface band which is induced by the long-range component of the interactions with a random array of
adsorbates. Using three complementary model descriptions of intraband spatiotemporal propagation of quasi-
particles that go beyond the single-adsorbate scattering approach we are able to identify distinct subsequent
regimes of evolution of an electron following its promotion into an unoccupied band state: �i� early quadratic
or ballistic decay of the initial-state survival probability within the Heisenberg uncertainty window, �ii� preas-
ymptotic exponential decay governed by the self-consistent Fermi golden rule scattering rate, and �iii�
asymptotic decay described by a combined inverse power-law and logarithmic behavior. The developed models
are applied to discuss the dynamics of intraband adsorbate-induced scattering of hot electrons excited into the
n=1 image-potential band on Cu�100� surface during the first stage of a two-photon photoemission process.
Estimates of crossovers between the distinct evolution regimes enable assessments of the lifespan of a standard
quasiparticle behavior and thereby of the range of applicability of the widely used Fermi golden rule and
optical Bloch equations approach for description of adsorbate-induced quasiparticle decay and dephasing in
ultrafast experiments.

DOI: 10.1103/PhysRevB.78.155410 PACS number�s�: 73.20.�r, 79.60.�i, 71.10.�w, 78.47.J�

I. INTRODUCTION

Recent developments in the applications of ultrafast pho-
toelectron spectroscopy have enabled studies of electron dy-
namics at surfaces in the real time domain. This provided
novel insights into the temporal evolution and decoherence
of surface-localized electronic states and opened up new di-
rections in the investigations of surface interactions and re-
actions on the ultrashort time scale. In this context the elec-
tronic states within the quasi-two-dimensional Shockley
surface state �SS� and image-potential state �IS� bands on
low-index crystal surfaces of fcc and bcc metals have served
as paradigms in the studies of dynamics of quasiparticles at
surfaces and their interactions with the environment.

Many important aspects of hot electron energetics and
dynamics in surface-localized bands have been successfully
explored in two-photon-photoemission �2PPE� experiments
by combining the use of continuous wave as well as pulsed
pump and probe laser beams with variable delay times. This
has resulted in accumulation and systematization of the data
on characteristic energies and lifetimes of hot electron and
hole excitations in Shockley and image-potential bands on
clean surfaces1–13 and surfaces covered with localized
defects14–19 �adsorbates, cavities, steps, etc.�. Various theo-
retical approaches have been employed to interpret the mea-
sured energy levels and linewidths of surface and image-
potential states within the microscopic models. Band-
structure calculations have provided underlying framework
for the understanding of one-electron dynamics at ideal
surfaces.20–22 This laid foundation for the studies of spectral
linewidths of surface-localized states that arise from dynami-
cal interactions with the environment, i.e., with the various
degrees of freedom of the system, and the obtained results
have been used in the development of microscopic theories

of 2PPE from surfaces.23–26 In the next step the investiga-
tions have been extended to quasiparticle scattering from sur-
face defects which is a prerequisite for the understanding of
fundamental processes in more complex structures. Calcula-
tions of electron and hole decay and dephasing rates that
arise from elastic scattering from single adsorbates have
demonstrated the important contribution of this scattering
mechanism to the overall linewidths of electronic states in
surface bands even for small adsorbate concentrations.27–33

The majority of treatments of the dynamics of quasiparti-
cles excited into surface bands during the first stage of a
2PPE event have been restricted to the adiabatic or Markov-
ian �quasistationary� picture. In this approximation the tem-
poral evolution of quasiparticle states is characterized by ex-
ponential decay governed by the Fermi golden rule �FGR�
type of transition rates. Such a description is applicable to a
steady state evolution of the system during the times that are
on the order of or exceed the relaxation times typical of the
system. This regime was tacitly assumed in the develop-
ments of first microscopic theories of 2PPE from surface23–26

and bulk34 bands. The applicability of phenomenological op-
tical Bloch equations in the simulations of time-resolved
2PPE experiments7,13,26,35–37 also rests on this assumption.
However, 2PPE measurements utilizing pump and probe la-
ser pulses of femtosecond duration and small delay times
also probe the early non-Markovian evolution of quasiparti-
cles excited in surface bands. Besides the possible direct con-
sequences on the measured 2PPE spectra, this fact may turn
out important in the determination of 2PPE correlation traces
since in that case the delay times are varied from negative to
positive values across zero, in which case the non-Markovian
and Markovian evolution of excited quasiparticles may
equally contribute to the results of measurements.

First investigations of the problem of decay and decoher-
ence of quasiparticles promoted into Shockley and image-
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potential bands on clean metal surfaces that go beyond the
Markovian approximation were reported in Refs. 38 and 39
utilizing concepts and methods developed earlier.40–44 Here
the decay processes were assumed to arise from quasiparticle
interactions with electronic charge density fluctuations in the
system. The calculated quasiparticle survival probabilities
presented in Refs. 38 and 39 demonstrate that within the first
10 fs following the electron and hole excitation in the IS and
SS band, respectively, their evolution markedly deviates
from the Markovian exponential decay governed by the FGR
decay rate. Only past that interval the evolution of quasipar-
ticles can be described by a modified or self-consistent FGR-
governed exponential decay.

In the present work we extend these investigations to the
problem of multiple IS-electron scattering induced by the
interactions with low concentrations of adsorbed atoms ran-
domly distributed over the surface. This problem has been
extensively studied experimentally and many of its aspects
also theoretically. Angle- and time-resolved 2PPE spectros-
copy measurements have shown that the decoherence and
decay effects arising from excited electron scattering by
small concentration of random defects can be as large as
those originating from the interactions with charge density
fluctuations in the system.18 Recent developments in time-
resolved interferometric photoemission technique10,45 make
possible the separation of dephasing processes originating
from inelastic electron scattering and quasielastic scattering
by impurities. Theoretical studies of IS-electron scattering
from single adsorbates have demonstrated that intraband
transitions responsible for dephasing are caused dominantly
by the long-range component of the electron-adsorbate po-
tential which gives rise to small momentum transfer in elas-
tic scattering.17,31 Our investigations focus on the elucidation
of dynamics of intraband electron scattering by dipolar po-
tentials of random adatoms and its dependence on the con-
centration of scatterers.

2PPE spectra from quasi-two-dimensional surface bands
provide information on the dynamics of electronic states de-
scribed by the quasiparticle momentum K parallel to the sur-
face and the band index n, which are good quantum numbers
for the description of unperturbed quasiparticle motion in
surface bands. To study the temporal aspects of photoexcited
electron scattering from arrays of adsorbates we shall calcu-
late the quasiparticle survival probability which describes
electron evolution after its promotion into an eigenstate in
the band. Physical reasons for the choice of unperturbed
states as initial quasiparticle states in the treatment of relax-
ation processes are explained in Ref. 46. Thus, we start from
the unperturbed electron wave function �K,n

0 �0� in a band
state �K ,n� at the instant t=0 and investigate how it develops
in the course of time due to intraband scattering. We first
define the propagation amplitude whose magnitude and
phase carry the relevant information on quasiparticle evolu-
tion in the course of time by the expression

AK,n�t� = ��K,n
0 �0���K,n�t�� , �1�

where �K,n�t� is the electron wave function that evolved
from unperturbed �K,n

0 �0� in the presence of interaction with

adsorbates. The quasiparticle survival probability in the in-
terval �0, t� is then obtained as

LK,n�t� = �AK,n�t��2 �2�

and the quasiparticle phase as

�K,n�t� = − Im ln�AK,n�t�� . �3�

The quasiparticle amplitude �1�, and hence LK,n�t� and
�K,n�t�, can be calculated within several different approaches
to the scattering problem. In the following sections we shall
employ three complementary methods for their calculation
and combine them to establish a global picture of the dynam-
ics of IS-electron scattering from low density of random ad-
sorbates.

II. CALCULATION OF THE QUASIPARTICLE SURVIVAL
PROBABILITY IN THE SELF-ENERGY APPROACH

The quantum-mechanical problem of electron scattering
by a random array of impurities in solids has a long history
and has been addressed within several different formalisms.
A good physical insight into the various stages of dynamics
of electrons excited into an empty surface band, where their
propagation becomes affected by the interactions with local-
ized scatterers, can be obtained in the Green’s function or
spectral approach to the calculation of propagation ampli-
tudes and survival probabilities. This formalism enables a
direct contact with the results of earlier treatments of the
decay and dephasing of electronic states in surface bands
based on the Fermi golden rule approach and also provides a
suitable framework for discussions of the results obtained by
complementary methods described in Secs. III and IV.

In this section we present a calculation of the scattered
IS-electron Green’s function in the self-energy approach. The
development and use of this formalism is explained in detail
in Ref. 47. In the present problem it is assumed that the
electron is initially injected48 �i.e., excited or pumped by
photon absorption at an instant within the pump pulse dura-
tion� into an unperturbed momentum eigenstate �K ,n=IS� in
the unoccupied IS band from which it evolves into a state
perturbed by the interaction with adsorbates. Introducing the
creation and annihilation operators cK,n

† and cK,n, respec-
tively, for electron states characterized by quantum numbers
K and n, we may express the wave functions appearing in
Eq. �1� as

��K,n
0 �0�� = cK,n

† �0� , �4�

and

��K,n�t�� = exp�− iHt�cK,n
† �0� , �5�

where �0� denotes empty IS band and exp�−iHt� is the evo-
lution operator �we use atomic units in which �=1� in which
H is the one-electron Hamiltonian describing electron motion
in the IS band in the presence of interactions with adsorbates.
This enables to represent propagation amplitude �1� in terms
of the retarded single-electron Green’s function GK,n�t� as
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AK,n�t� = �0�cK,n exp�− iHt�cK,n
† �0���t� = iGK,n�t� . �6�

The Hamiltonian H is represented as a sum of the unper-
turbed part and the interaction with adsorbates

H = H0 + V . �7�

The unperturbed part is expressed as

H0 = �
K

EK,IScK,IS
† cK,IS, �8�

where EK,IS denote the unperturbed one-electron energies in
the IS band. The interaction part that describes electron scat-
tering from adsorbates is given by

V = �
K�,K

VIS�K� − K���K� − K�cK�,IS
† cK,IS. �9�

Here VIS�K�−K�= �K� , IS�V�R−R j ,z−zj��K , IS� is the intra-
band matrix element of the single-adsorbate potential V�R
−Rj ,z−zj� centered at �R j ,zj�, and

��K� − K� = �
j

e−i�K�−K�Rj �10�

is the two-dimensional Fourier transform �2D FT� of the den-
sity � j��R−Rj� of adsorbates �scattering centers� randomly
distributed over the surface. In all expressions the symbols
R= �x ,y� denote radius vectors parallel to the surface and z is
the coordinate perpendicular to the surface plane. In the fol-
lowing we omit the band indices IS as we consider only
intraband scattering processes.

The retarded Green’s function GK�t� is calculated from its
spectral representation

GK�t� = − i��t�	
−�

�

d	e−i	tSK�	� , �11�

where the spectrum SK�	� is expressed in terms of the qua-
siparticle self-energy arising from the interaction with adsor-
bates. For the self-energy represented as the sum of real and
imaginary parts in the form 
K�	�=�K�	�− i�K�	�, the
spectrum is given as

SK�	� =
1




�K�	�
�	 − EK − �K�	��2 + �K�	�2 , �12�

and satisfies the normalization condition 
−�
� d	SK�	�=1.

This approach to obtaining GK�t� has several numerical and
analytical advantages because it can make use of the calcu-
lation of Green’s functions in the energy representation in
which various contributions to the self-energy can be conve-
niently discerned and analyzed.49

Calculation of the electron self-energy for the case of in-
teractions with a random array of scattering centers is based
on the ensemble averaging of the Green’s function GK�	�

over random positions Rj of the scatterers.47 This amounts to
averaging the various products of functions �10� appearing in
the Dyson expansion of GK�	�. Such a procedure generates
an expansion of the electron self-energy in powers of the
concentration of adsorbates on the surface

c = nad/L2, �13�

where nad is the total number of adsorbates and L2 is the
surface area. For low concentrations c one may retain only
the linear terms and obtain the expansion of the self-energy
in powers of VIS whose lowest-order Feynman diagrams are
shown in Fig. 1 �the validity of this approximation will be
further discussed and substantiated in Secs. III and IV�. It
should be noted that in each diagram of this expansion the
dashed lines symbolizing the interaction potentials are all
joined in a single vertex, which denotes repeated electron
scattering from the same adsorbate. In each such process the
total momentum transfer is zero. Scattering contributions
from different adsorbates add incoherently and give rise to
self-energy terms proportional to higher powers of concen-
tration �13�.47

The leftmost diagram depicted in Fig. 1 describes the
lowest-order forward scattering of electrons by adsorbates
and gives a purely real contribution to the electron self-
energy. As such, it can only contribute to a rigid shift or
K-independent renormalization of the energies of electron
band states but not to their dephasing. In the following we
shall assume that this static energy shift has been incorpo-
rated into the renormalized values of EK and focus on the
dynamical aspects of the problem described by higher-order
terms in the expansion of quasiparticle self-energy.

If the scattering potentials are weak the leading contribu-
tion to the dephasing processes is described by the imaginary
part of the middle diagram in Fig. 1. The approximation in
which the self-energy expansion is terminated after the sec-
ond term depicted in Fig. 1 is equivalent to calculating the
electron scattering rate within the FGR approach. For intra-
band electron scattering by the dipolar potential of adsor-
bates discussed in Ref. 17 such an approximation seems to
be well justified �see below� and we shall pursue it in this
section. In this case we obtain for the imaginary part of the
self-energy

�K�	� = nad
�
K�

�VIS�K − K���2��	 − EK�� , �14�

in which the substitution nad=cL2 yields an expression
proportional to c and free from the box normalization
factor L2 that enters through VIS�K�−K��L−2 and

FIG. 1. �Color online� Lowest-order self-energy diagrams which
are linear in the concentration of adsorbates. The full lines symbol-
ize electron propagators and dashed lines the adsorbate scattering
potential centered at the same site �denoted by small vertex
quadrangle�.
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�K�→L2 / �2
�2
d2K�. The real part of the self-energy is ob-
tained from the Hilbert transform

�K�	� =
1



	

−�

�

d	�
�K�	��
	 − 	�

, �15�

where the integral is the Cauchy principal value. The on-the-
energy-shell constrained expression

2�K�EK� = nad2
�
K�

�VIS�K − K���2��EK − EK�� �16�

gives the bare FGR result for the scattering �decay� rate or
inverse lifetime 1 /�K

FGR of the electron promoted into the
initial state with momentum K and energy EK. The total
cross section for electron scattering from adsorbates per
single adsorbate is then given by17

�K =
2�K�EK�

cjK
, �17�

where jK=K /me is the electron current in the state �K�.
Expression �17� was employed in Ref. 17 to calculate the

cross section for IS-electron scattering from Cu adsorbates
on Cu�100� surface starting from the assumption that long-
range dipolar potential of adatoms favors small-momentum-
transfer scattering events and thus dominantly determines
elastic intraband transitions responsible for dephasing.50 The
validity of this approach was tested by comparing the cross
sections obtained from expressions �14� and �17� and the
ones measured in time-resolved 2PPE experiments.17 In the
present calculation of the electron self-energy based on ex-
pressions �14� and �15� we shall adopt the model dipolar
potential and electron wave functions from Ref. 17 in order
to facilitate comparison and discussion of the dynamics of
electron scattering reported in that work. For Cu�100� sur-
face covered with Cu adatoms nad can be expressed in terms
of the relative coverage � as nad=�L2 /dnn

2 yielding c
=� /dnn

2 where dnn is the nearest-neighbor distance between
two Cu atoms in the �100� crystal plane. This enables the
calculation of the FGR scattering rate �16� that is plotted in
Fig. 2 for �=0.7%.

Figures 3 and 4 show the functions �K�	�, �K�	�, and

�	−EK� which determine spectrum �12� for the coverage
�=0.7%, effective electron mass me=1, dnn=2.54 Å �4.80
a.u.�, and two values of �K�=K that correspond to initial state
electron energies of 0 and 13.6 meV above the IS band bot-
tom denoted as 	=0. The plots of �K�	� and �K�	� for
wave vectors K corresponding to initial electron energies of
100 and 400 meV relevant to the experiments described in
Ref. 17 exhibit qualitatively similar behavior. The most
prominent characteristic of �K�	� in both figures is a sharp
drop from a finite value to zero at the band bottom. For large
positive values of 	 lying outside the plot range the values of
�K�	� fall off rapidly and this provides an effective cutoff
equivalent to a finite bandwidth in all the integrals involving
spectral density �12�. This behavior is a direct consequence
of the finiteness of scattering matrix element VIS�Q� for zero
momentum transfer Q=0 and the two-dimensional character
of IS band. As a consequence, the real part of the self-energy
�K�	�, given by the Hilbert transform of �K�	� through Eq.

FIG. 2. �Color online� Excited IS-electron scattering or decay
rate calculated from Fermi’s golden rule expression �16� for the
long-range dipole electron-adsorbate interaction taken from Ref. 17
and �=0.7%. Energy scale in a.u. �left� and meV �right�.

FIG. 3. �Color online� Plots of the imaginary part �K�	� �full
thick curve� and real part �K�	� �dashed thick curve� of the self-
energy 
K�	� for initial wave vector K=0. All energies are mea-
sured from the IS-band bottom 	=0. The intersection of �K�	�
with the thin line 	−EK below the band bottom determines the
energy of bound state in spectrum �19�.

FIG. 4. �Color online� Same as in Fig. 3 but for initial wave
vector K=0.0316 a.u. corresponding to electron energy EK
=13.6 meV. Note that for this value of initial electron energy there
appears three intersections of �K�	� with the line 	−EK. The en-
ergy of leftmost intersection slightly below the band bottom deter-
mines the energy of bound state whereas the ones above the bottom
give rise to complex poles �resonances� that give rise to maxima in
the band part of spectrum �19�.
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�15�, exhibits a two-sided logarithmic divergence at the band
bottom and falls off asymptotically as 1 /	 for bands of finite
effective width. All these characteristics of �K�	� and �K�	�
profoundly affect the general features of quasiparticle spec-
trum �12�.

In the subthreshold region 	�0 where �K�	�=0 there
will always exist an intersection of the logarithmically diver-
gent �K�	� with the line 	−EK �cf. Figs. 3 and 4�. This
gives rise to an isolated pole in spectrum �12� of the form

SK
B �	� = ZK

B ��	 − 	K
B � �18�

at the value 	K
B satisfying the equation �	K

B −EK−�K�	K
B ��

=0, with the weight given by ZK
B =1 / �1−��K�	K

B � /�	K
B �.

Hence the full spectrum �12� of an electron scattered by at-
tractive impurities splits in two components, the simple pole
contribution �18� below the IS-band bottom and the continu-
ous part SK

c �	� within the range of IS band. Hence, expres-
sion �12� takes the form

SK�	� = ZK
B ��	 − 	K

B ���− 	� + SK
c �	���	� . �19�

The appearance of subthreshold pole �18� in spectrum �19�
signifies the existence of a bound electronic state �hence in-
dex B� localized by the scattering potential. Such bound
states are generic of the 2D systems with attractive scattering
potentials51 irrespective of the strength of interaction which
can only affect the position 	K

B and spectral weight ZK
B of the

bound state. Their occurrence has been predicted for the in-
teractions of quasi-two-dimensional electrons with surface
defects in the various theoretical models27,29–31 and also con-
firmed experimentally in a number of systems.52

The magnitude of ZK
B in Eq. �19� diminishes rapidly as EK

is increased so that in going from EK=0 meV to EK
=13.6 meV it drops from 0.666 to 0.0365. For low values of
EK for which there are no real intersections of the line 	
−EK with �K�	� in the band region 	�0, the pole of SK

c �	�
will lie far away from the real axis in the complex plane and
the spectrum will exhibit a type of the behavior shown in
Fig. 5. On the other hand, the intersections of �K�	� with the
line 	−EK for which EK��K�EK� give rise to resonances
whose widths are controlled by the values of �K�	� at the
intersection points. Such a situation is illustrated in Fig. 4.
The intersection slightly above the band bottom gives rise to
a narrow threshold resonance in the spectrum �cf. Fig. 6�
whose weight rapidly decreases with the increase in EK, in
the same fashion as does the weight ZK

B of the bound state. In
this case the majority of the spectral weight is associated
with the pole appearing at the complex zero of the denomi-
nator of Eq. �12�, whose real part is controlled by the inter-
section of 	−EK with the postlogarithmic part of �K�	�.
This pole gives rise to a Lorentzian-type peak in the spec-
trum SK

c �	� �cf. Figs. 6 and 7� and in the following will be
referred to as the self-consistent FGR pole because its deter-
mination requires self-consistent solution of equations in-
volving off-the-energy-shell values of �K�	� and �K�	�. As
will be shown below, the existence and characteristics of this
pole determine temporal evolution of the excited quasiparti-

cle over broad time scales. Another important general feature
of Eq. �19� that arises from the 2D character of the scattering
event is the threshold behavior

lim
	→0

SK
c �	� � ��	�/�ln 	�2 �20�

which in turn determines the long time �asymptotic� behavior
of the propagation amplitude through Eq. �11�. The evolution
of the discussed features of SK

c �	� with the increase in EK are
illustrated in Figs. 5–7. For initial IS-electron energies EK
�100 meV the spectra are qualitatively similar to the spec-
trum shown in Fig. 7.

At this point it is important to notice that the above ob-
tained characteristics of �K�	� and �K�	� also persist if
higher-order terms in the self-energy proportional to higher

FIG. 5. �Color online� Band or continuous part of spectrum
�19� for initial electron momentum K=0 or EK=0. The contribution
of this part to the total spectral weight is 23.4% and the remainder
is located in the bound state located at 	K

B =−0.000216 a.u.
=−5.87 meV below the band bottom. The FGR pole is not well
defined for EK=0 and the spectrum is dominated by bound state
�18� and threshold behavior �20�.

FIG. 6. �Color online� Illustration of the two-pole structure of
the band part of spectrum �19� for initial electron momentum K
=0.0316 a.u. corresponding to the energy EK=13.6 meV. The
contribution of this part to the total spectral weight is 96.3% and the
remainder is associated with the pole located at the bound-state
energy 	K

B =−1.468�10−6 a.u.=−0.0399 meV below the band
bottom. The threshold resonance slightly above the band bottom has
a small weight ��2.3%� relative to the FGR-pole-derived peak at
	�0.0003 a.u. ��8 meV�.
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powers of the coupling constant �here the strength of
electron-adatom dipolar interaction� are taken into account.
For small dipole strengths their effect amounts to producing
corrections to the leading contributions given by Eqs. �14�
and �15� and thereby to the values of bound state and band
resonance energies and intensities, etc., but not to changes in
the general characteristics of spectrum �12� and the corre-
sponding electron propagation amplitude �11�. Therefore, the
general behavior of quasiparticle survival probability may be
assessed using Eqs. �11�–�20� with a proviso that in the pres-
ence of IS-electron interactions with electrons in other bands
of a real three-dimensional �3D� system both the subthresh-
old bound state would be resonantly broadened and the band
states additionally broadened by interband transitions and
dynamical interactions.29,38,39

The effects of resonant broadening of bound state �18� on
propagation amplitude �1� cannot be assessed from the
present one-band approach. They can be modeled29 by add-
ing a phenomenological exponentially decaying factor to
GK

B �t� obtained by applying Eq. �11� to Eq. �18�, viz.

GK
B �t� → ZK

B exp�− i	K
B t − �Bt/2���t� . �21�

Such a modified GK
B �t� complements the contribution GK

c �t�
arising from the band part of spectrum SK

c �	� in Eq. �19�.
Here �B is the value of bound-state resonance full width at
half maximum �FWHM� that should be estimated or calcu-
lated separately from multiband models or taken from ex-
periment. Note that this ansatz is equivalent to treating the
interband transitions at the FGR level which, in view of the
large widths of bulk bands, may represent a reliable approxi-
mation. In the following discussion we shall adopt the value
�B=14 meV used in Ref. 29. With these prerequisites one
can discuss general features of the evolution of excited qua-
siparticles using Eqs. �2�–�6� and �11�. Quite generally, the

excited quasiparticle evolves through three distinct intervals
characterized by different types of temporal behavior. The
physics underlying these distinct types of evolutions is dis-
cussed below.

Evolution of the IS-electron survival probabilities for
three different initial momenta corresponding to the band
energies of 0, 100, and 400 meV are shown in Figs. 8–10,
respectively. Also shown for comparison are the FGR-
derived survival probabilities

LK
FGR�t� = exp�− 2�K�EK�t� = exp�− t/�K

FGR� , �22�

with the on-the-energy-shell values of 2�K�EK� calculated
for the same initial quasiparticle momenta �cf. Fig. 2�. The

FIG. 7. �Color online� Same as in Fig. 6 but for initial electron
momentum K=0.0857 a.u. corresponding to the energy EK
=100 meV. The spectrum is dominated by the FGR-pole-derived
Lorentzian-shaped maximum whose position is to a good approxi-
mation determined by the zero of expression �	−EK−�K�	�� in
the postlogarithmic region. The bound state slightly below and the
threshold resonance slightly above the band bottom �see inset� carry
negligible spectral weight.

FIG. 8. �Color online� IS-electron survival probability LK�t� as a
function of time �1 a.u.=2.4189�10−2 fs or 1 fs=41.34 a.u.� for
initial quasiparticle momentum K=0. The dashed curve is the bare
FGR decay described by expression �22�. Note logarithmic scale on
the vertical axis. Notable in the depicted behavior of LK�t� is the
absence of an intermediate evolution interval during which the sur-
vival probability could be well approximated by the FGR decay.
Here the early Zeno behavior �23� is directly superseded by the
nonexponential dephasing �28� at around t=8000 a.u. ��200 fs�.

FIG. 9. �Color online� Same as in Fig. 8 but for initial quasipar-
ticle momentum K=0.0857 a.u. corresponding to the energy EK
=100 meV. Here a strong interference between exponential and
postexponential dephasings that cause survival collapse extend over
the interval �70 000–130 000 a.u. ��1750–3250 fs�. The inset
shows the early Zeno behavior �23�.
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early evolution of the quasiparticle state is governed by the
Heisenberg energy uncertainty which gives rise to a qua-
dratic initial decay of the survival probability known as the
“quantum Zeno effect”49,53

LK�t� � 1 − t2/�Z
2 + O�t4� . �23�

Here the so-called Zeno time is given by

�Z
−2 = ��2 − �1

2� , �24�

where �1 and �2 are the first and second energy moments of
spectrum �12�, respectively. For the studied system both mo-
ments are finite and produce the Zeno time in accord with
time-dependent perturbation theory54,55

�Z
−2 =

1



	

0

�

d	�K�	� = �K,IS�V2�K,IS�c, �25�

where V2 comprising interaction �9� is ensemble averaged
over the impurities in the same fashion as the second-order
self-energy diagram in Fig. 1. This yields the contribution
linearly proportional to defect concentration c �hence sub-
script c associated with the matrix element on the right-hand
side �RHS� of expression �25�� from which the processes of
consecutive forward scattering by different adatoms that lead
to c2 contributions are excluded. Therefore,

�Z � c−1/2. �26�

In the present one-band model in which the �K� states are 2D
plane waves the matrix element on the RHS of expression
�25� turns out independent of the initial electron wave vector
K �and thereby of the initial energy within the IS band�, as
one would expect for ballistic motion, and for the adatom
coverage �=0.7% yields �Z=22.9 fs.

As is clear from the expression for the Zeno time, the
early decay is affected only by the gross features �i.e., mo-
ments� of the spectrum because the energy conservation can-
not be established during the ultrashort initial evolution pe-

riod of the order of the inverse band width. In calculating
these moments in the present one-band model one should
also take care to represent the bound-state spectrum by Eq.
�18� and use expression �21� only in the sum with the Fourier
transform of the continuous part of spectrum �12� in order to
suppress unphysical saturation of the survival probability for
t→� at the value �ZK

B �2.
As the duration of evolution grows longer the energy con-

servation sets in and the scattering processes become more
and more constrained to the energy shell. This is the period
in which the quasiparticle survival probability becomes
dominantly affected by the poles of spectrum �12� in the
lower part of the complex 	 plane that determine the self-
consistent scattering rates �14� and energy shifts �15�, as well
as the appearance of bound state �18� arising from the mul-
tiple scattering processes. In the present one-band model de-
scription of a two-dimensional electron system there arise
three poles from zeros of the denominator of expression �12�:
a pole at the energy of the already discussed bound state for
negative 	=	K

B , its counterpart across the band bottom
which appears as a result of intersection of 	−EK with the
logarithmically divergent threshold part of �K�	�, and the
FGR pole from the intersection of 	−EK with the post-
threshold part of �K�	�. Since the weight of the FGR pole
increases rapidly with the increase in EK the decay of quasi-
particle survival probability will in this case be dominantly
exponential, in accord with a standard picture of quasiparti-
cle propagation in the band.

The spectral structure around the FGR pole determines
the regime of steady state decay of the quasiparticle typical
of Markovian dynamics which for large values of K behaves
as

LK
sc�t� = aK exp�− 2�K

sct� = aK exp�− t/�K
sc� . �27�

Here aK is the quasiparticle weight in the region of exponen-
tial decay given by the absolute square of the residue of FGR
pole determined as the rightmost self-consistent zero �K

sc

− i�K
sc of the denominator of Eq. �12�. Here the deviation of

the survival probability from the simple exponential law �22�
is small and hence the concept of a scattering cross section
calculated from the bare FGR transition rate �17� is appli-
cable. It is also noteworthy that the crossover from Zeno to
self-consistent FGR type of behavior �Eq. �27�� is smooth in
all the cases considered. A systematic decrease in both �K

sc

and on-the-energy-shell �K�EK� with the increase in K is in
accord with the earlier reported17 behavior of �K defined by
Eq. �17�. However, it should be noted that for very small
initial K’s the contribution from the FGR pole may be miss-
ing or insufficient to produce a long-lasting exponential
dephasing and the initial Zeno decay is in that case directly
taken over by the asymptotic decay. As is evident in Fig. 8,
for K=0 this takes place already around 8000 a.u.
��200 fs�. In this context it should also be noted that the
characteristic lifetimes introduced in Eqs. �23� and �27�
which govern the quasiparticle decay in the Zeno and FGR
regimes exhibit different scaling with the concentration c of
scatterers, viz. �Z�1 /
c and �K

sc�1 /c. Hence, the crossovers
from one regime to the other are generally affected by the

FIG. 10. �Color online� Same as in Fig. 9 but for initial quasi-
particle momentum K=0.172 a.u. corresponding to the energy EK
=400 meV. The survival collapse is not reached on the time scale
of the plot �3400 fs. Inset: Blow up of the early Zeno decay �23�
shown on the time scale of 400 a.u. ��10 fs�.
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variation of c and this property may be used to easier access
and discern these intervals experimentally.

For yet longer evolution intervals the propagating quasi-
particle explores the details of the spectral structure near the
band bottom because for long times the destructive interfer-
ence between the states in that region is smaller than for the
states farther away from the threshold. Here the peculiar
threshold behavior of spectrum �20� gives rise to a contribu-
tion to the survival probability that asymptotically goes as

lim
t→�

LK�t� �
1

t2�ln t�4 , �28�

i.e., falls off slower than the contribution from the poles that
decay exponentially. Whereas the asymptotic inverse power-
law decay of the survival probability was predicted long
ago56–59 and derived for a variety of model systems,49,54 the
appearance of additional logarithmic factor60 in Eq. �28� is
generic of 2D systems. Here it should be noted that the cross-
over from self-consistent FGR type of dephasing �Eq. �27��
to asymptotic behavior �Eq. �28�� is not smooth but rather
characterized by a collapse of the survival probability49,54

due to strong interferences between the contributions from
two distinct evolution intervals. This is clearly visible in Fig.
9 where the survival probability first reaches a minimum
around 100 000 a.u.�2500 fs and then recovers through
oscillations before reaching the asymptotic decay �28�. Such
behavior reflects a drastic change in the phase of survival
amplitude �3� which beyond the crossover interval loses the
simple quasiparticle features determined by the FGR pole of
spectrum �12�. This is illustrated in Fig. 11.

As is illustrated in Figs. 8–10, a striking qualitative and
quantitative difference arises between the survival probabili-
ties and bare exponential FGR-derived decay of initial elec-
tron states with lower excitation energies �i.e., small initial

wave vectors�. There are two main sources of such a behav-
ior. One is the presence of the bound state whose contribu-
tion may alter the survival probability �22� calculated by
taking into account only the band states as final scattering
states. The other is the effect of band bottom which induces
different quantum interferences between the electron states
near the excitation threshold than higher up in the band
where the one-pole approximation for the spectral density
based on the dominance of FGR pole �cf. Fig. 7� yields the
self-consistent FGR dephasing rate.49 These points will be
further discussed in Sec. V.

III. CALCULATION OF THE QUASIPARTICLE
SURVIVAL PROBABILITY IN THE WAVE-

PACKET PROPAGATION APPROACH

In this section we address the problem of dynamics of
electrons excited into IS band by considering a 2D one-
particle Schrödinger equation in the coordinate representa-
tion

i
���x,y,t�

�t
= −

�2

2me
��x,y,t� + V�x,y���x,y,t� , �29�

in which the 2D potential V�x ,y� describes electron interac-
tions with impurities �adsorbates� randomly distributed over
the surface plane. In accordance with Sec. II, all quantities
are expressed in atomic units and the effective mass of IS
electron is me=1. The total potential V�x ,y� is obtained as

V�x,y� = �
j

��IS�z��V�R − Rj���IS�z�� = �
j

Vj�R� , �30�

where the potential of a single scattering center Vj�R� is the
same as used in the self-energy approach of Sec. II. The
positions of the scattering centers Rj are chosen at random
�with respect to the uniform probability distribution�, and an
example of a single realization of this distribution is depicted
in Fig. 12.

The dynamics of IS electron is described by the time-
dependent wave function ��x ,y , t�. To study the evolution of
electrons which are initially excited into momentum eigen-
states in IS bands, we start from the initial-state wave func-
tion �K�x ,y , t=0�=exp�iKR� /
L2. Since this is not an
eigenstate of the system with impurities, subsequent electron
dynamics depends on the potential V�x ,y�. From this the
survival probability of the initial electron state is obtained in
the form

LK�t� = �	 dxdy�K
� �x,y,0���x,y,t��2

, �31�

which is simply Eq. �2� with the wave functions represented
in coordinate representation. The evolution of the thus de-
fined LK�t� depends on the specificities of the potential Vj of

FIG. 11. �Color online� Evolution of the phase ��t� �modulo
2
� of the survival amplitude �see Eqs. �6� and �3�� of IS electron
for initial momentum K=0.0857 a.u. corresponding to the energy
EK=100 meV shown in the range 90 000� t�130 000 a.u.
��2200� t�3000 fs�. In this interval the corresponding survival
probability shown in Fig. 9 exhibits a survival collapse and cross-
over from the FGR to the asymptotic decay. The initial quasiparticle
phase grows linearly with time as −i��t�=−iEKt but in the cross-
over interval starts oscillating around a finite asymptotic value. In
this interval the initial quasiparticle identity is lost.

GUMHALTER et al. PHYSICAL REVIEW B 78, 155410 �2008�

155410-8



a single scattering center, concentration of the scatterers c,
and the magnitude of initial momentum K= �K�. In our nu-
merical simulations of electron scattering by random arrays
of impurities we assume periodic boundary conditions in a
square box of area L2 so that the number of scattering centers
in the box is N=cL2 �cf. Sec. II�. The electron dynamics is
assessed by solving Eq. �29� numerically with the use of
standard split-step Fourier technique to evaluate ��x ,y , t�
=exp�−iHt��K�x ,y ,0� from the initial-state wave function.
Due to the finite size of the present system, evolution of
LK�t� depends also on a particular distribution of the scatter-
ing centers. In order to gain insight into the dynamics beyond
this effect numerical simulations must be repeated several
times, each time with a different realization of the defect
distribution. It is reasonable to assume that for an infinite
generic system the converged temporal evolution would cor-
respond to the values obtained by averaging over many pos-
sible realizations of the scattering centers. As an illustration
of the relation between concentration and wavelength of the
initially excited electron, Fig. 12 also displays Re exp�iKx�
for K=0.0836, and K=0.1672 a.u.

In the following we present the results of a series of simu-
lations that explore the behavior of LK�t� for three values of
the initial-state wave vector, K=0, K=0.0836, and K
=0.1672 a.u., which correspond to the energies of 0, 95, and
380 meV, respectively. Figures 13–15 show the survival
probability obtained for concentration c=0.0003 a.u. �corre-
sponding to experimental �=0.7% in Ref. 17� which is iden-
tical to that of Sec. II and calculated on a numerical grid of
256�256 points on an area corresponding to 300
�300 a.u. Figure 13 shows LK�t� for K=0 for three differ-
ent realizations of the scattering centers and c=0.0003. Simi-
larly, Figs. 14 and 15 show LK�t� for K=0.0836 a.u. and
0.1672 a.u., respectively. These figures demonstrate that
there is a fairly large numerical window in which the decay
of the initial state �K�x ,y ,0� is governed by Fermi’s golden
rule. Numerical fits of these curves within the FGR window

show that decay rates for the three calculated momenta are
approximately 0.52�10−4, 1.31�10−4, and 0.86
�10−4 a.u. for K=0, K=0.0836, and K=0.1672 a.u., re-
spectively. Despite the fact that these values were obtained
from a limited number of simulations and therefore are ex-
pected to exhibit a large scatter, they are of the same order as
the ones obtained within the FGR approach in Sec. II �see
Fig. 2�.

In the self-energy approach of Sec. II we have only
treated the scattering processes linear in the concentration c
of impurities by systematically neglecting contributions from
the self-energy terms proportional to higher powers of c,
which is justified for low concentrations. On the other hand,

FIG. 12. �Color online� Single realization of a potential V�x ,y�
describing randomly distributed scattering centers depicted in an
area of 300�300 Bohr radius squared. The concentration is c
=0.0003 a.u. The white solid lines depict the functions
Re exp�iKx�, where K=0.0836 and K=0.1672 a.u. �see text�.
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FIG. 13. �Color online� Survival probability LK�t� for K=0 at
low density of the scattering centers, c=0.0003 a.u. The three
curves correspond to three different configurations of the scattering
centers. The dot-dashed line is the fitted FGR decay exp�−2�t� with
2�=0.52�10−4 a.u. �see text and Fig. 2�. The inset shows the
computed early decay �symbols� and fits �full line� to quadratic
Zeno behavior �23� which yields �Z=988 a.u.=23.9 fs. The dot-
dashed line is the same as in the main plot.
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FIG. 14. �Color online� Same as in Fig. 13 but for
K=0.0836 a.u. The dot-dashed line is the fitted FGR decay
exp�−2�t� with 2�=1.31�10−4 a.u. �see text and Fig. 2�.
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by repeating the same simulations with much higher concen-
tration, c=0.007 a.u., we find that the FGR decay is not
nearly as dominant decay mode as at small concentrations. In
this case the FGR decay is superseded by a much earlier
collapse of the survival probability which again manifests
itself as a sharp decrease in LK�t� in a narrow time interval.

The present simulations also enable us to explore the
early Zeno decay �see insets of Figs. 13–15� and the varia-
tion of Zeno time with the concentration of scatterers beyond
the framework of the model discussed in Sec. II. Figure 16
shows �Z as a function of concentration in the experimental
range of Ref. 17. These results support the findings of Sec. II
both qualitatively ��Z�1 /
c and independent of initial K�
and quantitatively within the numerical accuracy.

Additional insight into the dynamics of scattering pro-
cesses with different initial wave vector can be obtained
by inspecting the evolution of Fourier momentum spectrum of the wave functions P�K , t�= ��̃�Kx ,Ky , t��2, where

�̃�Kx ,Ky , t� is the Fourier transform of the wave function
��x ,y , t� with respect to spatial coordinates. Figure 17
shows quasiparticle momentum relaxation, viz. the evolution
of momentum spectra with initial K=0 and K=0.1672 a.u.
for a single-shot propagation for the concentration of scatter-
ers c=0.007 a.u. Here we clearly see the spread of the pro-
jection of perturbed wave function in the course of time over
the band eigenstates �K�� of the unperturbed Hamiltonian.
The projections with the largest weight are peaked around
the unperturbed wave functions with the magnitude of the
wave vectors equal to that of the initial state, viz. �K��=K.

Finally, let us briefly comment on some important aspects
of the present simulations. In contrast to the self-energy
method employed in Sec. II, the numerical wave-packet
propagation method can treat larger concentrations easier
and with higher accuracy, mainly because the decrease in the
survival probability occurs on shorter time scales. Thus, one
can use larger numerical grids covering greater area with the
same accuracy. For larger areas and larger defect concentra-
tions the finite-size effects become less important. Also, for
larger concentrations a smaller numerical area L2 is less in-
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FIG. 15. �Color online� Same as in Fig. 14 but for K=0.1672.
The dot-dashed line is the fitted FGR decay exp�−2�t� with 2�
=0.86�10−4 a.u. �see text and Fig. 2�.
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FIG. 16. �Color online� Numerical values of the Zeno time as a
function of concentration of scatterers. Data are extracted from
simulations of the quasiparticle survival probability �31� using ex-
pression �23�. The full curve is a power-law fit to numerical values
which yields �Z=0.339c−0.527 fs, in very good agreement with the
analytical result �Z�c−1/2 derived in Sec. II. The inverted triangle is
the value of �Z obtained in Sec. II for the concentration c=0.0003
��=0.7%�.

FIG. 17. �Color online� �a� The momentum spectrum of the
wave function at time t=0 �small open circle�, and at time t
=80 fs. The initial wave function corresponds to the wave vector
magnitude K=0. �b� Same as in �a� but for the wave function with
initial wave vector magnitude K=0.1672 a.u. �small open circle�
pointing in the x direction. The radius of the big K� circle is equal
to initial K �see text for details�.
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fluenced by the finite-size effects. In this sense, the self-
energy method and the present numerical method of wave-
packet propagation are complementary.

IV. CALCULATION OF THE QUASIPARTICLE SURVIVAL
PROBABILITY IN THE TIGHT-BINDING APPROACH

In this section we extend our studies of IS-electron dy-
namics by mapping the impurity scattering problem de-
scribed by a 2D Schrödinger equation �for clarity we restore
the factor ��

−
�2

2me
�2��x,y� + V�x,y���x,y� = E��x,y� �32�

onto a tight-binding representation of electron dynamics.
This is achieved by discretizing spatial coordinates x and y in
Eq. �32� which enables establishing a tight-binding model of
the system similar to the ones employed in earlier studies of
non-Markovian electron dynamics.49 By choosing a square
mesh with the size of 2D square lattice a in both directions
we obtain the discretized representation of Eq. �32� in the
form

−
�2

2mea
2 ���x + a,y� + ��x − a,y� + ��x,y + a� + ��x,y − a�� + �V�x,y� + 4

�2

2mea
2 − E���x,y� = 0. �33�

This equation can be interpreted as a diagonalization condi-
tion for the tight-binding Hamiltonian defined as

H = �
i

Ei�i��i� + �
i,j

��i��j� , �34�

where Ei=Vi+4�2 / �2mea
2�, �=−�2 / �2mea

2�, and indices i
and j count the sites in a square lattice. The hopping is al-
lowed only to the nearest-neighbor lattice sites. This means
that the number of lattice sites corresponds to the number of
Cu atoms in the Cu�001� surface plane. Note that the poten-
tial appears in the diagonal part as a component of the site
“orbital” energy, whereas the kinetic energy appears in the
off-diagonal part �hopping term� of the Hamiltonian.

Any potential can be represented on a square mesh by
additive renormalization of the orbital energy by Vi
=V�xi ,yi� where �xi ,yi� are the coordinates of the ith site. To
represent the dipole potential fixed to a certain site, one
should in principle renormalize all the sites in a mesh due to
the infinite range of the potential. We shall, however, repre-
sent the effect of the dipole potential of an adatom only on a
single adsorption site. The reason for this is that the thus
obtained Hamiltonian can be most easily interpreted as the
so-called diagonal disorder Hamiltonian studied previously
in the context of Anderson’s localization �see, e.g., Refs. 61
and 62�. In order to represent the adatom dipole potential by
a single-site contact potential of the tight-binding model we
shall renormalize the energy of an array of impurity sites by
�Vi=3V�Q=0� / �2a2�, where V�Q=0� is the matrix element
of the potential for zero lateral momentum transfer �i.e., in-
tegral of the potential over lateral coordinates�. This expres-
sion has an obvious geometrical interpretation in terms of the
integral of the potential, i.e., the volume of “dipole potential
pyramid” erected above a particular lattice site. Note that the
potential scales with a−2 as does the hopping matrix element
�. In all the following calculations we put a=dnn=2.54 Å
�i.e., the nearest-neighbor spacing in the Cu�001� plane�. By
using such a model with the long-range dipolar potential
replaced by the on-site contact potential we do not expect to

retrieve the energy dependence of decay rates as found in
Secs. II and III. What we do expect from using this model,
however, is the possibility of treating large assemblies of
random impurities on surfaces in fast converged calculations
influenced little by the boundaries of the system. This en-
ables exploring long propagation times and thereby the ef-
fects of impurity concentration on the global behavior of
quasiparticle survival probabilities.

Conceptually the simplest approach to dynamics governed
by the Hamiltonian defined in Eq. �34� would be via its ei-
genvalues and eigenvectors. From this information one can
easily construct temporal evolution of an arbitrary initial
state.62 However, the need for diagonalization of the Hamil-
tonian matrix restricts the usefulness of this method to rather
small sizes of the lattice �about 100�100=104 sites�. To
avoid the effects of finite size of the system on the temporal
evolution, larger system sizes are required. To this end, ad-
equate numerical approaches must be implemented. One
possible approach consists of separating the Hamiltonian as

H = T + V , �35�

where T and V are the kinetic and potential energy operators,
respectively, and using this form for construction of the evo-
lution operator of the system exp�−iHt /��. The potential en-
ergy operator is represented by a diagonal matrix which can
be exactly exponentiated. For the exponentiation of the off-
diagonal kinetic energy operator we use the space-
partitioning algorithm �see, e.g., Ref. 63�. This permits exact
exponentiation of T. Then, the dynamics is assessed by re-
peated operation of the exponentiated potential and kinetic
energy matrices within a small time interval, �t, so that the
propagation of the wave function is obtained from

���t + �t�� = exp�− i
�t

�
H����t��

� exp�− i
�t

�
T�exp�− i

�t

�
V����t�� . �36�
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In the limit �t→0, Eq. �36� becomes exact �in matrix repre-
sentation this is the so-called Trotter’s product formula63�. In
numerical calculations, the time step �t must be carefully
chosen such that the approximate equality in the second line
of expression �36� holds to high degree of accuracy and that
none of the important aspects of time dependence be influ-
enced by this approximation. The method that we use can be
easily and accurately applied to lattices containing tens of
millions of sites �several thousands of sites along one side of
a square lattice�.

The wave function �36� can be written as an array of
complex values ci�t�, one per each site i of the lattice

���t�� = �c1�t�,c2�t�, . . . ,cN�t�� , �37�

where N is the total number of sites. In the limit when N
→�, the state vector becomes a two-dimensional complex
function ��x ,y , t�. Hence, in the lattice representation the
survival probability becomes

L�t� = ����0����t���2

= ��c1�0�,c2�0�, . . . ,cN�0��c1�t�,c2�t�, . . . ,cN�t���2

= ��
i=1

N

ci�0��ci�t��2

, �38�

where ���0�� diagonalizes Hamiltonian �34� in the absence
of renormalization potentials �Vi. Using this approach we
consider the same examples of IS-electron evolution as in
Secs. II and III for three initial electron energies of 0, 100,
and 400 meV.

Figure 18 shows the survival probability of the eigenstates
of lattice Hamiltonian �34� that are perturbed by random
renormalizations �Vi at 0.7% of the sites in a square lattice

comprising 2000�2000=4 000 000 sites. These results sub-
stantiate the global trends in the behavior of survival prob-
ability found in Secs. II and III, viz. the early quadratic decay
independent of initial energy �see inset of Fig. 18� followed
by the corrected exponential decay �27� in the intermediate
region. Fits of the curves in the intermediate region to ex-
pression �27� yield LE=0.94 exp�−0.0000395t� for E
=0 meV, LE=exp�−0.000148t� for E=100 meV, and LE
=exp�−0.000203t� for E=400 meV, with t measured in a.u.
of time. By further increasing E we have found that in the
tight-binding model with random scattering centers repre-
sented by contact potentials the extracted 2�E is an ascend-
ing function of the initial quasiparticle energy E, in contrast
to the results of Secs. II and III. However, this should not be
surprising in view of the use of a contact impurity potential
which in the K space corresponds to a constant and therefore
according to Eq. �16� produces the decay rate proportional to
the density of states that increases with energy in the lower
half of the tight-binding band.

We recall that the formalism developed in Sec. II was
employed under the assumption of low concentration of im-
purities which then yields the decay rates that are linearly
proportional to concentration c of the scatterers. The appli-
cability of this limit may be tested by numerical calculations
outlined in this section. In Fig. 19 we show survival prob-
abilities of a state with energy of 400 meV for three different
adsorbate concentrations. The proportionality of the decay
rate with adsorbate concentration holds up to an order of
magnitude larger concentration than the ones studied
experimentally.17,18

V. DISCUSSION

Theoretical studies of electron-adsorbate scattering in sur-
face bands carried out in the preceding sections by employ-

FIG. 18. �Color online� Survival probabilities of three eigen-
states diagonalizing the adsorbate-free lattice Hamiltonian for initial
energies E of 0, 100, and 400 meV �shaded lines�. The number of
lattice sites is 4 000 000, and the number of adsorbates is 28 000
��=0.7%�. The dashed lines are fits to form �22�. The inset shows
the early Zeno decays for initial EK=0 meV �triangles�, EK

=100 meV �circles�, and EK=400 meV �squares�, which all follow
the universal curve �23� independent of EK.

FIG. 19. �Color online� Survival probabilities of states diagonal-
izing the adsorbate-free lattice Hamiltonian for E=400 meV and
three different adsorbate coverages ��=0.7%, �=3.5%, and �
=7%� as denoted in the figure. The number of lattice sites is
4 000 000. The inset shows the decay rates in the exponential
�FGR� regime �dashed lines in the body of the figure� as functions
of the coverage of defects for initial energies of 100 and 400 meV.
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ing three complementary quantum-mechanical formalisms
enable establishing a global picture of excited quasiparticle
dynamics in the presence of low density of adatoms. The
wave functions �or propagators� of electrons promoted into
eigenstates within quasi-two-dimensional bands are strongly
perturbed by the electron-adatom interactions even at small
adatom concentrations. This results in the modification of
amplitude and phase of the quasiparticle wave function both
on the ultrashort �femtosecond� and asymptotic �picosecond�
time scale. Thus, quite generally, upon promotion of a qua-
siparticle into a state sufficiently above the band bottom its
subsequent evolution proceeds through three distinct inter-
vals in which the quasiparticle dynamics is discernibly dif-
ferent. Using the quasiparticle survival probability �absolute
square of propagators� and phase to characterize these inter-
vals, we are able to identify the following regimes of quasi-
particle motion in the presence of adsorbates: �i� Early qua-
dratic or ballistic decay of the quasiparticle initial state
�“quantum Zeno effect”� that is governed by the Heisenberg
uncertainty principle. The rate of the ballistic decay or Zeno
time �25� depends only on the gross features of the perturbed
system �energy moments of the spectrum, band widths, etc.�
in accord with the time-energy uncertainty principle. How-
ever, the duration of ballistic decay is not determined by the
Zeno decay time but rather by the onset of on-the-energy-
shell scattering processes. �ii� Intermediate or exponential
decay determined by a modified, self-consistent Fermi
golden rule decay rate describing on-the-energy-shell
electron-adsorbate scattering processes �cf. Eq. �27��. This
intermediate evolution smoothly succeeds the Zeno decay
and may extend over several thousands of femtoseconds,
with a duration growing longer as the initial quasiparticle
energy is increased. The corresponding decay rate and
weight appear, respectively, as twice the imaginary part of
the isolated pole and the square of its residue in the continu-
ous part of the quasiparticle energy spectrum above the band
bottom. The attractive dipolar electron-adsorbate interaction
also generates localization of a fraction of excited electron in
a bound state close below the band bottom but this effect
rapidly diminishes with the increase in electron initial en-
ergy. �iii� For long propagation intervals the quasiparticles
start to explore larger parts of the band with increasing phase
and amplitude variations. This gives rise to interference be-
tween the various multiple scattering processes and leads to a
collapse of the initial-state survival probability. After this the
amplitude and phase of the quasiparticle propagator change
so drastically that the initial quasiparticle identity is com-
pletely lost.

Our results demonstrate that the dynamics of intraband
electron scattering by defects is Markovian �quasistationary�
only in the above discussed intermediate interval �ii� in
which both the decay and phase variation of a quasiparticle
can be expressed in terms of rate constants. Outside this
range, i.e., in earlier and later intervals, the decay and/or
phase variations of excited quasiparticle wave functions are
more complex and cannot be described by simple rates. We
have found that for quasiparticle excitation energies EK
�50 meV the duration of the intermediate interval, which
can be identified with the lifespan of a standard quasiparticle
behavior, exceeds �850 fs and grows longer as EK is in-

creased. The formalisms employed in obtaining these results
enabled us to treat electron scattering from random arrays of
adsorbates of variable surface density and thereby explore
the effects of adsorbate concentration on the quasiparticle
dynamics. In Secs. III and IV we found that in the studied
system the quasiparticle evolution is dominated by the ef-
fects that are linear in concentration of random scatterers up
to c�7%, which amply covers the situations studied
experimentally.17,18

Electron spectroscopy measurements of the electronic
structure of gaseous and condensed matter involve in one
way or another the injection or removal of quasiparticles
�electrons or holes� into or from the states of the studied
system. These are highly nonadiabatic processes and descrip-
tions of quasiparticle propagation in the initial, intermediate,
or final states of the probed systems should therefore involve
propagators of the form described by Eq. �6� if the scattering
from defects may have strong impact on quasiparticle dy-
namics. Analogous situation occurs in the studies of quasi-
particle dynamics affected by the interactions with other
types of excitations �i.e., the dynamical degrees of freedom�
in the system.38,39 Hence, it is of general importance for
spectroscopic measurements to understand all the aspects of
quasiparticle dynamics on both the ultrafast and asymptotic
time scales. This particularly refers to simple modelings of
the dynamics of multiply excited systems because the valid-
ity of such descriptions may be restricted by the time scale�s�
of the various relaxation processes. Typical examples are the
modelings of 2PPE yields from bulk and surface bands of
solids in pump-probe experiments by optical Bloch equations
which in their standard form apply only to the studies of
relaxation processes in the Markovian regime. However, as
the present and recent38,39,42 studies of quasiparticle dynam-
ics in surface bands demonstrate strong deviations of quasi-
particle relaxations from the Markovian limit, particularly
for the quasiparticle states close to the respective band bot-
toms, great care should be taken in assessing the results of
applications of such phenomenological models to describe
the system response on ultrashort time scales. One of the
goals of the present study was to elucidate these aspects of
ultrafast electron dynamics on the example of ubiquitous
type of interactions in surface bands.

So far 2PPE experiments have been interpreted success-
fully using exponential decay as given by Fermi’s golden
rule. The initial quadratic decay occurs on time scales at the
lower end of the range which is available experimentally
��10 fs� at photon energies in the visible or ultraviolet.
With recent advances in attosecond spectroscopy64 the Zeno
decay regime might be accessible in the near future. Its ob-
servation and crossover to a different decay regime may be
additionally facilitated by the variation of characteristic de-
cay times with adsorbate concentration ��Z�1 /
c and �K

sc

�1 /c, cf. Fig. 16 and discussions following expressions �23�
and �27��, which according to our findings persist in a suffi-
ciently large interval of c values.

The collapse of the initial-state survival probability occurs
at propagation times easily accessible in experiments. How-
ever, the survival probability beyond collapse is extremely
small, so it would be hard to detect even in the best experi-
ments covering currently more than 5 orders of magnitude
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dynamical range. An exception is the case K=0 �see Fig. 8�,
however, there is no experimental evidence for a slower de-
cay rate15 or decreased intraband scattering rate near the
band bottom.17 A possible explanation could be that the lost
quasiparticle identity is restored in the second photoemission
step leading to the emission of an electron.

Elastic intraband scattering as considered here leads only
to a change in the momentum of the IS electron within the
same band.18 Therefore dephasing is usually observed in the
spectral rather than in the time domain. The deviation from
the FGR decay arises from the poles near the band bottom of
the spectra �see Figs. 5–7�. However, the spectral weight in
that region is rather small to be detected in a line shape
analysis. An exception occurs again for the case K=0. The
shift of the spectral weight with energy EK should influence
the dispersion and lead to a coverage-dependent effective
mass. The Zeno decay regime would be observable for ener-
gies far away from the main peak. The line shape analysis
would require an extremely careful spectral characterization
of the laser pulses and the transmission function of the en-
ergy analyzer. An additional difficulty arises, because the

spectral linewidth changes considerably with delay time for
small delays.35

It would be interesting to extend the current model to
more than one band. This would open the possibility to de-
scribe elastic interband scattering15 or dephasing in quantum
beats patterns.11,65

The main purpose of this work was to explore the time
range of exponential decay for elastic electron scattering by
random adsorbates, viz. the lifespan of standard quasiparticle
behavior. Three different methods were employed and they
yielded similar results. The observation of the deviation from
exponential decay currently remains an experimental chal-
lenge.
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