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The framework of relativistic energy density functionals is extended to include correlations related to the
restoration of broken symmetries and fluctuations of collective variables. A new implementation is developed for
the solution of the eigenvalue problem of a five-dimensional collective Hamiltonian for quadrupole vibrational and
rotational degrees of freedom, with parameters determined by constrained self-consistent relativistic mean-field
calculations for triaxial shapes. The model is tested in a series of illustrative calculations of potential energy
surfaces and the resulting collective excitation spectra and transition probabilities of the chain of even-even
gadolinium isotopes.
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I. INTRODUCTION

Nuclear structure models based on energy density func-
tionals (EDFs) have successfully been used over the whole
nuclide chart, from relatively light systems to superheavy
nuclei, and from the valley of β stability to the particle drip
lines [1–3]. In lowest order, i.e., the mean-field approximation,
an EDF is constructed as a functional of one-body nucleon
density matrices that correspond to a single product state—the
Slater determinant of single-particle or single-quasiparticle
states. This framework can thus also be referred to as a
single-reference (SR) EDF. The static nuclear mean field
is characterized by symmetry breaking—translational, rota-
tional, and particle number. Even though symmetry breaking
incorporates important static correlations, i.e., deformations
and pairing in the SR EDF, this framework can only de-
scribe ground-state properties such as binding energies and
charge radii. Excitation spectra and electromagnetic transition
probabilities can only be calculated by including correlations
beyond the static mean field through the restoration of broken
symmetries and configuration mixing of symmetry-breaking
product states. The most effective approach to configuration
mixing calculations is the generator coordinate method (GCM)
[4], with multipole moments used as collective coordinates
that generate the symmetry-breaking product wave functions.
In such a multireference (MR) EDF approach, families of static
mean-field configurations are mixed to restore symmetries
and to take into account fluctuations of collective variables.

*Current address: School of Physics, Peking University, Beijing,
China.

The corresponding EDFs are functionals of transition densities
built from pairs of symmetry-breaking product states.

In the first two parts of this work [5,6], we extended the
framework of relativistic energy density functionals to include
correlations related to the restoration of broken symmetries
and to fluctuations of collective variables. A model has
been developed that uses the GCM to perform configuration
mixing of angular-momentum and particle-number projected
relativistic wave functions. The geometry is restricted to
axially symmetric shapes, and the intrinsic wave functions
are generated from the solutions of the relativistic mean-
field+Lipkin-Nogami BCS equations, with a constraint on the
mass quadrupole moment. The model employs a relativistic
point-coupling (contact) nucleon-nucleon effective interaction
in the particle-hole channel, and a density-independent δ
interaction in the particle-particle channel. This approach
enables a quantitative description of the evolution of shell
structure, deformation, and shape coexistence phenomena in
nuclei with soft potential energy surfaces.

In the first application [7], the GCM based on relativistic
EDFs was employed in a study of shape transitions in Nd
isotopes. It has been shown that the microscopic framework
based on universal EDFs, adjusted to nuclear ground-state
properties, and extended to take into account correlations
related to symmetry restoration and fluctuations of collective
variables, describes not only general features of shape tran-
sitions but also the unique behavior of the excitation spectra
and transition rates at the X(5) critical point of the quantum
shape phase transition. However, an exact diagonalization of
the X(5) Hamiltonian carried out in Ref. [8] has shown that
many properties of the solution are dominated by β-γ coupling
induced by the kinetic energy operator. The importance of
the explicit treatment of the triaxial degree of freedom, i.e.,
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inclusion of β-γ coupling, was also emphasized in two recent
studies of shape transitions in the Nd isotopic chain [9,
10], which used the self-consistent Hartree-Fock-Bogoliubov
model, based on the finite-range and density-dependent Gogny
interaction, to generate potential energy surfaces in the β-γ
plane.

While GCM configuration mixing of axially symmetric
mean-field states has been implemented by several groups
and routinely used in nuclear structure studies, the application
of this method to triaxial shapes is a much more difficult
problem. Only very recently a model has been introduced [11]
based on the mean-field states generated by triaxial quadrupole
constraints that are projected on particle number and angular
momentum and mixed by the generator coordinate method.
This method is equivalent to a seven-dimensional GCM cal-
culation, mixing all five degrees of freedom of the quadrupole
operator and the gauge angles for protons and neutrons.
However, the numerical implementation of the model is very
complex, and applications to medium-heavy and heavy nuclei
are still computationally too demanding and time consuming.
In addition, the use of general EDFs, i.e., with an arbitrary
dependence on nucleon densities, in GCM-type calculations
often leads to discontinuities or even divergences of the energy
kernels as a function of deformation [12,13]. Only for certain
types of density dependence can a regularization method be
implemented [14], which corrects energy kernels and removes
the discontinuities and divergences.

In an alternative approach to five-dimensional quadrupole
dynamics that includes rotational symmetry restoration and
takes into account triaxial quadrupole fluctuations, a col-
lective Bohr Hamiltonian is constructed, with deformation-
dependent parameters determined from microscopic self-
consistent mean-field calculations [15,16]. The collective
Hamiltonian can be derived in the Gaussian overlap ap-
proximation (GOA) [4] to the full five-dimensional GCM.
With the assumption that the GCM overlap kernels can be
approximated by Gaussian functions, the local expansion of
the kernels up to second order in the nonlocality transforms
the GCM Hill-Wheeler equation into a second-order differ-
ential equation—the Schrödinger equation for the collective
Hamiltonian. The kinetic part of this Hamiltonian contains
an inertia tensor [17], and the potential energy is determined
by the diagonal elements of the Hamiltonian kernel, and
the collective energy surface also includes zero-point en-
ergy (ZPE) corrections [18]. The adiabatic time-dependent
Hartree-Fock (ATDHF) theory [19] provides an alternative
way to derive a classical collective Hamiltonian, and, after
requantization, a Bohr Hamiltonian of the same structure is
obtained but with different microscopic expressions for the
inertia parameters [20]. There is a long-standing debate in
the literature about masses in the collective Bohr Hamiltonian
[21], i.e., whether the GCM-GOA expressions (the so-called
Yoccoz masses [22]) or the ATDHF expressions (the so-called
Thouless-Valatin masses [23]) should be used. The Thouless-
Valatin masses have the advantage that they also include the
time-odd components of the microscopic wave functions and,
in this sense, the full dynamics of a nuclear system. In the
GCM approach, these components can only be included if, in
addition to the coordinates qi , the corresponding canonically

conjugate momenta pi are also taken into account, but this
is obviously a very complicated task. In many applications a
further simplification is thus introduced in terms of cranking
formulas [18,24], i.e., the perturbative limit for the Thouless-
Valatin masses, and the corresponding expressions for ZPE
corrections. This approximation was applied in recent studies
using models based on both the Gogny interaction [25] and
Skyrme energy density functionals [26].

In this work, we develop a new implementation for the
solution of a five-dimensional collective Hamiltonian that
describes quadrupole vibrational and rotational degrees of
freedom, with parameters determined in the framework of
relativistic EDF. An initial study along this line, which,
however, did not include ZPE corrections, was reported in
Ref. [27].

The theoretical framework is described in Sec. II: the
method of solution of the eigenvalue problem of the general
collective Hamiltonian, and the calculation of the mass
parameters, moments of inertia, and ZPE corrections. In
Sec. III the model is tested in the calculation of collective
excitation spectra of the chain of even-even Gd isotopes, and
results are compared with available data. Section IV presents
a summary and an outlook for future studies. Technical details
about the solution of the Dirac equation in triaxial geometry,
the calculation of moments of inertia, ZPE corrections, and
numerical tests are included in Appendix A–D.

II. THEORETICAL FRAMEWORK

A. Collective Hamiltonian in five dimensions

Nuclear excitations determined by quadrupole vibrational
and rotational degrees of freedom can be treated simulta-
neously by considering five quadrupole collective coordi-
nates αµ,µ = −2,−1, . . . , 2, that describe the surface of
a deformed nucleus: R = R0[1 + ∑

µ αµY ∗
2µ]. To separate

rotational and vibrational motion, these coordinates are usually
parametrized in terms of two deformation parameters β and
γ and three Euler angles (φ, θ, ψ) ≡ �, which define the
orientation of the intrinsic principal axes in the laboratory
frame,

αµ = D2
µ0(�)β cos γ + 1√

2

[
D2

µ2(�) + D2
µ−2(�)

]
β sin γ,

(1)

where Dλ
µν is the Wigner function [28]. The three terms of

the classical collective Hamiltonian, expressed in terms of the
intrinsic variables β, γ and Euler angles as

Hcoll = Tvib(β, γ ) + Trot(β, γ,�) + Vcoll(β, γ ), (2)

denote the contributions from the vibrational kinetic energy

Tvib = 1
2Bβββ̇2 + βBβγ β̇γ̇ + 1

2β2Bγγ γ̇ 2, (3)

the rotational kinetic energy

Trot = 1

2

3∑
k=1

Ikω
2
k, (4)
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and the collective potential energy Vcoll(β, γ ). The mass
parameters Bββ, Bβγ , Bγγ , and the moments of inertia
Ik depend on the quadrupole deformation variables β

and γ .
The Hamiltonian (2) is quantized according to the general

Pauli prescription [29]: for the classical kinetic energy,

T = 1

2

∑
ij

Bij (q)q̇i q̇j , (5)

and the corresponding quantized form reads

Ĥkin = −h̄2

2

1√
detB

∑
ij

∂

∂qi

√
detB(B−1)ij

∂

∂qj

. (6)

The kinetic energy tensor in Eq. (2) takes the block diagonal
form

B =
(

Bvib 0

0 Brot

)
, (7)

with the vibrational part of the tensor

Bvib =
(

Bββ βBβγ

βBβγ β2Bγγ

)
. (8)

In general, the rotational part is a complicated function of
the Euler angles, but, using the quasicoordinates related to
the components of the angular momentum in the body-fixed
frame, it takes a simple diagonal form

(Brot)ik = δikIk, k = 1, 2, 3, (9)

with the moments of inertia expressed as

Ik = 4Bkβ
2 sin2(γ − 2kπ/3). (10)

This particular functional form is motivated by the fact
that all three moments of inertia vanish for the spherical
configuration (β = 0), and, additionally, Iz and Iy vanish
for axially symmetric prolate (γ = 0◦) and oblate (γ = 60◦)
configurations, respectively. The resulting determinant reads

detB = detBvib × detBrot = 4wrβ8 sin2 3γ , (11)

where w = BββBγγ − B2
βγ and r = B1B2B3. The quantized

collective Hamiltonian can hence be written in the form

Ĥ = T̂vib + T̂rot + Vcoll, (12)

with

T̂vib = − h̄2

2
√

wr

{
1

β4

[
∂

∂β

√
r

w
β4Bγγ

∂

∂β

− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

]
+ 1

β sin 3γ

[
− ∂

∂γ

×
√

r

w
sin 3γBβγ

∂

∂β
+ 1

β

∂

∂γ

√
r

w
sin 3γBββ

∂

∂γ

]}
,

(13)

and

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

, (14)

where Ĵk denotes the components of the angular momentum
in the body-fixed frame of a nucleus. Vcoll is the collective
potential. The Hamiltonian describes quadrupole vibrations,
rotations, and the coupling of these collective modes. The
determinant in Eq. (11) determines the volume element in the
collective space,∫

dτcoll =
∫

d�dτ0
√

wr

=
∫ ∞

0
dβ β4

∫ 2π

0
dγ | sin 3γ |

∫
d�

√
wr, (15)

and the quantized Hamiltonian of Eq. (12) is Hermitian with
respect to the collective measure in Eq. (15).

The methods used to solve the eigenvalue problem of the
general collective Hamiltonian Eq. (12) can be divided into
two classes. The first is based on a direct numerical solution of
a system of partial differential equations using finite-difference
methods [30–32]. The second approach uses an expansion of
eigenfunctions in terms of a complete set of basis functions
that depend on the deformation variables β and γ and the
Euler angles φ, θ , and ψ [33–36]. The eigenvalue problem
reduces to a simple matrix diagonalization, and the main task
is the construction of an appropriate basis for each value of the
angular-momentum quantum number.

In this work, we employ the second approach and construct
basis states according to the method described in Refs. [25,36–
39]. For each value of the angular momentum I , one chooses
a complete set of square integrable functions

φIM
Lmn(β, γ,�) = e−µ2β2/2βn

{
cos mγ

sin mγ

}
DI∗

ML(�). (16)

The projections M and L are determined by the angular
momentum: M,L = −I, . . . , I . In principle, the parameter
n can take any non-negative integer value, but in actual
calculations a certain cutoff value nmax has to be imposed. The
allowed values of m are m = n, n − 2, . . . , 0 or 1. The choice
of the function e−µ2β2/2 ensures that the basis states generate
wave functions that vanish at large deformations (β → ∞).
The basis parameter µ has to be adjusted for each nucleus
individually, so that it minimizes the ground-state energy of
the nucleus. However, if the cutoff value nmax is large enough,
a stable ground-state solution can be found for a broad range
of values of the parameter µ.

The basis states have to fulfill certain symmetry conditions
that originate from the fact that the choice of the body-fixed
frame is not unique. For a given quadrupole tensor αµ in
the laboratory frame, there are 24 possible orientations of
the body-fixed right-hand coordinate system, corresponding
to different values of the variables β, γ , and �. The basis
states in the body-fixed frame must be invariant with respect
to the transformations that connect various choices of the
body-fixed frame, and which form a finite group isomorphic to
the octahedral point group O [30,40] (group of proper rotations
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that takes a cube or octahedron into itself). This symmetry
condition is fulfilled by linear combinations of the states (16)

ξ IM
Lmn(β, γ,�) = e−µ2β2/2βn

∑
K∈�I

f I
LmK (γ )�I

MK (�), (17)

invariant under the transformations of the octahedral group.
The angular part corresponds to linear combinations of the
Wigner functions

�I
MK (�) =

√
2I + 1

16π2(1 + δK0)

[
DI∗

MK (�)

+ (−1)IDI∗
M−K (�)

]
, (18)

and the summation in Eq. (17) is over the allowed set of the K

values:

�I =
{

0, 2, . . . , I for I mod 2 = 0,

2, 4, . . . , I − 1 for I mod 2 = 1.
(19)

In the next step, linearly independent functions have to be
selected from the over-complete basis set Eq. (17). In addition,
some of the basis states have to be discarded to enforce the
correct behavior of solutions on the γ = nπ/3 axes [30]. A
simple and elegant solution of both problems is provided by
group theoretical methods [41]. Finally, the basis states of
Eq. (17) are not orthogonal. Although the Hamiltonian could
also be diagonalized directly in a nonorthogonal basis [35],
we choose to orthogonalize the basis states by applying the
Cholesky-Banachiewicz method [42].

The diagonalization of the collective Hamiltonian yields
the energy spectrum EI

α and the corresponding eigenfunctions

�IM
α (β, γ,�) =

∑
K∈�I

ψI
αK (β, γ )�I

MK (�). (20)

Using the collective wave functions (20), various observables
can be calculated and compared with experimental results. For
instance, the quadrupole E2 reduced transition probability:

B(E2; αI → α′I ′) = 1

2I + 1
|〈α′I ′‖M̂(E2)‖αI 〉|2, (21)

and the spectroscopic quadrupole moment of the state |αI 〉:

Qspec,αI = 1√
2I + 1

CII
II20〈αI‖M̂(E2)‖αI 〉, (22)

where M̂(E2) denotes the electric quadrupole opera-
tor. Detailed expressions for the reduced matrix element
〈α′I ′‖M̂(E2)‖αI 〉 can be found in Ref. [30].

The shape of a nucleus can be characterized in a qualitative
way by average values of the invariants β2, β3 cos 3γ , as well
as their combinations. For example, the average value of the
invariant β2 in the state |αI 〉

〈β2〉Iα = 〈
�I

α

∣∣β2
∣∣�I

α

〉 =
∑

K∈�I

∫
β2

∣∣ψI
α,K (β, γ )

∣∣2
dτ0, (23)

and the average values of the deformation parameters β and γ

in the state |αI 〉 are calculated from

〈β〉Iα =
√

〈β2〉Iα, (24)

〈γ 〉Iα = 1

3
arccos

〈β3 cos 3γ 〉Iα√
〈β2〉Iα〈β4〉Iα

. (25)

The mixing of different intrinsic configurations in the state
|αI 〉 can be determined from the distribution of the projection
K of the angular momentum I on the z axis in the body-fixed
frame:

NK = 6
∫ π/3

0

∫ ∞

0

∣∣ψI
α,K (β, γ )

∣∣2
β4| sin 3γ |dβ dγ, (26)

where the components ψI
α,K (β, γ ) are defined in Eq. (20).

For large deformations, the K quantum number is to a
good approximation conserved. Consequently, only one of the
integrals of Eq. (26) will give a value close to unity. A broader
distribution of NK values in the state |αI 〉 provides a measure
of mixing of intrinsic configurations.

B. Parameters of the collective Hamiltonian

The entire dynamics of the collective Hamiltonian is
governed by the seven functions of the intrinsic deformations
β and γ : the collective potential, the three mass parameters
Bββ, Bβγ , Bγγ , and the three moments of inertia Ik . These
functions are determined by the choice of a particular
microscopic nuclear energy density functional or effective
interaction. As in our previous two studies of configuration
mixing effects [5,6], in this work we also use the relativistic
functional PC-F1 (point-coupling Lagrangian) [43] in the
particle-hole channel, and a density-independent δ force is
the effective interaction in the particle-particle channel. The
parameters of the PC-F1 functional and the pairing strength
constants Vn and Vp have been adjusted simultaneously to
the nuclear matter equation of state and to ground-state
observables (binding energies, charge and diffraction radii,
surface thickness, and pairing gaps) of spherical nuclei [43],
with pairing correlations treated in the BCS approximation.

The choice of the point-coupling effective Lagrangian
determines the self-consistent relativistic mean-field (RMF)
energy of a nuclear system in terms of local single-nucleon
densities and currents:

ERMF =
∫

d r ERMF(r)

=
∑

k

∫
d r v2

k ψ̄k(r) (−iγ∇ + m) ψk(r)

+
∫

d r
(

αS

2
ρ2

S + βS

3
ρ3

S + γS

4
ρ4

S + δS

2
ρS�ρS

+ αV

2
jµjµ + γV

4
(jµjµ)2 + δV

2
jµ�jµ

+ αTV

2
j

µ

TV(jTV)µ + δTV

2
j

µ

TV�(jTV)µ + αTS

2
ρ2

TS

+ δTS

2
ρTS�ρTS + e

2
ρpA0

)
, (27)

where ψ denotes the Dirac spinor field of a nucleon. The
local isoscalar (S) and isovector scalar (TS) densities, and
corresponding isoscalar and isovector (TV) currents for a
nucleus with A nucleons

ρS(r) =
∑

k

v2
k ψ̄k(r)ψk(r), (28)
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ρTS(r) =
∑

k

v2
k ψ̄k(r)τ3ψk(r), (29)

jµ(r) =
∑

k

v2
k ψ̄k(r)γ µψk(r), (30)

j
µ

TV(r) =
∑

k

v2
k ψ̄k(r)γ µτ3ψk(r), (31)

are calculated in the no-sea approximation: the summation in
Eqs. (27)–(31) runs over all occupied states in the Fermi sea,
i.e., only occupied single-nucleon states with positive energy
explicitly contribute to the nucleon densities and currents. v2

k

denotes the occupation factors of single-nucleon states. In
Eq. (27), ρp is the proton density, and A0 denotes the Coulomb
potential. α, β, γ , and δ denote the 11 parameters of the
PC-F1 relativistic density functional in the corresponding
space-isospace channels.

The single-nucleon wave functions represent self-
consistent solutions of the Dirac equation:

{α · [−i∇ − V (r)] + V (r) + β(m + S(r))}ψi(r) = εiψi(r).

(32)

The scalar and vector potentials

S(r) = �S(r) + τ3�TS(r), (33)

V µ(r) = �µ(r) + τ3�
µ

TV(r), (34)

contain the nucleon isoscalar-scalar, isovector-scalar,
isoscalar-vector, and isovector-vector self-energies defined by
the following relations:

�S = αSρS + βSρ
2
S + γSρ

3
S + δS�ρS, (35)

�TS = αTSρTS + δTS�ρTS, (36)

�µ = αV jµ + γV (jνj
ν)jµ + δV �jµ − eAµ 1 − τ3

2
, (37)

�
µ

TV = αTVj
µ

TV + δTV�j
µ

TV, (38)

respectively. Because of charge conservation, only the third
component of the isovector densities and currents contributes
to the nucleon self-energies. In this work, we only consider
even-even nuclei, i.e., time-reversal invariance is assumed,
which implies that the spatial components of the single-
nucleon currents vanish in the nuclear ground state.

The Dirac equation (32) is solved by expanding the nucleon
spinors in the basis of a three-dimensional harmonic oscillator
in Cartesian coordinates. In this way, both axial and triaxial
nuclear shapes can be described. In addition, to reduce the
computational task, it is assumed that the total densities are
symmetric under reflections with respect to all three planes
xy, xz, and yz. When combined with time-reversal invari-
ance, this also implies that parity is conserved. Under these
restrictions, we consider only even-multipole deformations,
whereas solutions for odd multipoles vanish. The method of
solution of the Dirac equation is described in more detail in
Appendix A.

In addition to the self-consistent mean-field potential, for
open-shell nuclei, pairing correlations have to be included in
the energy functional. In this work, pairing is treated using the
BCS formalism. Following the prescription from Ref. [43],
we employ a δ force in the pairing channel, supplemented

with a smooth cutoff determined by a Fermi function in the
single-particle energies. The pairing contribution to the total
energy is given by

Ep(n)
pair =

∫
Ep(n)

pair (r) d r = Vp(n)

4

∫
κ∗

p(n)(r)κp(n)(r)d r, (39)

for protons and neutrons, respectively. κp(n)(r) denotes the
local part of the pairing tensor, and Vp(n) is the pairing strength
parameter.

The center-of-mass correction is included by adding the
expectation value

Ec.m. = −
〈
P̂ 2

c.m.

〉
2mA

(40)

to the total energy. Finally, the expression for the total energy
reads

Etot =
∫ [

ERMF(r) + Ep
pair(r) + En

pair(r)
]
d r + Ec.m.. (41)

The entire map of the energy surface as a function of the
quadrupole deformation is obtained by imposing constraints
on the axial and triaxial mass quadrupole moments. The
method of quadratic constraints uses an unrestricted variation
of the function

〈H 〉 +
∑

µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)2, (42)

where 〈H 〉 is the total energy, and 〈Q̂2µ〉 denotes the
expectation value of the mass quadrupole operator:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (43)

Here q2µ is the constrained value of the multipole moment,
and C2µ the corresponding stiffness constant [4].

The single-nucleon wave functions, energies, and occupa-
tion factors, generated from constrained self-consistent solu-
tions of the RMF+BCS equations, provide the microscopic
input for the parameters of the collective Hamiltonian.

The moments of inertia are calculated according to the
Inglis-Belyaev formula [24,44]

Ik =
∑
i,j

(uivj − viuj )2

Ei + Ej

|〈i|Ĵk|j 〉|2 k = 1, 2, 3, (44)

where k denotes the axis of rotation, and the summation
runs over the proton and neutron quasiparticle states. The
quasiparticle energies Ei , occupation probabilities vi , and
single-nucleon wave functions ψi are determined by solutions
of the constrained RMF+BCS equations. The mass parameters
associated with the two quadrupole collective coordinates
q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are also calculated in the cranking
approximation [18]

Bµν(q0, q2) = h̄2

2

[
M−1

(1)M(3)M−1
(1)

]
µν

, (45)

with

M(n),µν(q0, q2) =
∑
i,j

〈i|Q̂2µ|j 〉〈j |Q̂2ν |i〉
(Ei + Ej )n

(uivj + viuj )2.

(46)
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The collective energy surface includes the energy of
the zero-point motion, which has to be subtracted. The collec-
tive zero-point energy (ZPE) corresponds to a superposition of
zero-point motion of individual nucleons in the single-nucleon
potential. In the general case, the ZPE corrections on the
potential energy surfaces depend on the deformation. The ZPE
includes terms originating from the vibrational and rotational
kinetic energy, and a contribution of potential energy

�V (q0, q2) = �Vvib(q0, q2) + �Vrot(q0, q2)

+�Vpot(q0, q2). (47)

The latter is much smaller than the contribution of kinetic
energy and is usually neglected [25]. Simple prescriptions
for the calculation of vibrational and rotational ZPE have
been derived in Ref. [18]. Both corrections are calculated
in the cranking approximation, i.e., on the same level of
approximation as the mass parameters and moments of inertia.
The vibrational ZPE is given by the expression

�Vvib(q0, q2) = 1
4 Tr

[
M−1

(3)M(2)
]
. (48)

The rotational ZPE is a sum of three terms:

�Vrot(q0, q2) = �V−2−2(q0, q2) + �V−1−1(q0, q2)

+�V11(q0, q2), (49)

with

�Vµν(q0, q2) = 1

4

M(2),µν(q0, q2)

M(3),µν(q0, q2)
. (50)

The individual terms are calculated from Eqs. (50) and (46),
with the intrinsic components of the quadrupole operator
defined by

Q̂21 = −2iyz, Q̂2−1 = −2xz, Q̂2−2 = 2ixy. (51)

The potential Vcoll in the collective Hamiltonian (12) is
obtained by subtracting the ZPE corrections from the total
mean-field energy defined in Eq. (41):

Vcoll(q0, q2) = Etot(q0, q2) − �Vvib(q0, q2) − �Vrot(q0, q2).

(52)

Detailed expressions for the parameters of the collective
Hamiltonian are given in Appendixes B and C.

III. ILLUSTRATIVE CALCULATIONS: THE GADOLINIUM
ISOTOPIC CHAIN

In this section, the new implementation is tested in a
series of illustrative calculations of potential energy surfaces
and the resulting collective excitation spectra of the chain
of even-even Gd isotopes: 152−160Gd. The transition between
different shapes, from the weakly deformed transitional 152Gd
to the well-deformed prolate 160Gd, is illustrated in Fig. 1,
where we plot the self-consistent RMF+BCS binding energy
curves for the axially symmetric configurations as functions of
the deformation parameter β. Negative values of β correspond
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E
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154Gd
156Gd
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FIG. 1. (Color online) Self-consistent RMF+BCS binding en-
ergy curves of the 152−160Gd isotopes, as functions of the axial
deformation parameter β. Negative values of β correspond to the
(β > 0, γ = 180◦) axis on the β-γ plane.

to the β > 0, γ = 180◦ axis on the β-γ plane. 152Gd is
characterized by the coexistence of two weakly deformed
prolate (β ≈ 0.2) and oblate (β ≈ −0.2) minima, with the
prolate minimum ≈ 4 MeV below the spherical configuration.
With the addition of more neutrons, the deformed minima
become deeper and gradually shift to larger values of β.
For 160Gd, the constrained RMF+BCS calculation with the
PC-F1 interaction predicts a pronounced prolate minimum
at (β ≈ 0.35), more than 10 MeV below the corresponding
spherical configuration.

In Figs. 2–6 we display the self-consistent RMF+BCS
triaxial quadrupole binding energy maps of 152−160Gd in the
β-γ plane (0 � γ � 60◦), obtained by imposing constraints on
the expectation values of the quadrupole moments 〈Q̂20〉 and
〈Q̂22〉 [cf. Eq. (42)]. Filled circles denote absolute minima; all

48
42

34

26
22
18

1410
76543

3

2
2 1

152Gd

β

β
γ (deg)

0.2

0.2

0.4

0.4

0.6

0.6

0.8

0.8

1.0

1.0

0

20

40

60

0

FIG. 2. (Color online) Self-consistent RMF+BCS triaxial
quadrupole binding energy map of 152Gd in the β-γ plane
(0 � γ � 60◦). All energies are normalized with respect to the binding
energy of the absolute minimum (large red dot). The contours join
points on the surface with the same energy (in MeV).
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FIG. 3. (Color online) Same as Fig. 2, but for the nucleus 154Gd.

energies are normalized with respect to the binding energy of
the absolute minimum. The contours join points with the same
energy. The energy maps nicely illustrate the gradual increase
of deformation of the prolate minimum with increasing number
of neutrons. One notes, however, that the oblate minima shown
in the axial plots in Fig. 1 are not true minima but rather saddle
points in the β-γ plane.

Starting from constrained self-consistent solutions, i.e.,
using the single-particle wave functions, occupation probabil-
ities, and quasiparticle energies that correspond to each point
on the energy surfaces shown in Figs. 2–6, the parameters
that determine the collective Hamiltonian, that is, the mass
parameters Bββ, Bβγ , Bγγ , three moments of inertia Ik , as
well as the zero-point energy corrections, are calculated as
functions of the deformations β and γ . As an illustration,
for 154Gd the contour map of the inertia parameter Bx [cf.
Eq. (B19)] is shown in Fig. 7, and the mass parameter Bββ in
Fig. 8. The inertia parameter decreases with the increase of
the axial deformation β, but the dependence on γ is very
weak. The mass parameters, on the other hand, display a
pronounced dependence on both intrinsic deformations β and
γ . We notice that Bββ generally increases with the increase of γ
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FIG. 4. (Color online) Same as Fig. 2, but for the nucleus 156Gd.
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FIG. 5. (Color online) Same as Fig. 2, but for the nucleus 158Gd.

from prolate (γ ≈ 0◦) toward oblate (γ ≈ 60◦) configurations.
The somewhat erratic behavior of Bββ , in particular, is mainly
caused by the fluctuations of pairing correlations as function
of β and γ [cf. Eq. (46) with its strong dependence on the
quasiparticle energies]. This effect is illustrated in Figs. 9
and 10, where we plot the contour maps of the proton and
neutron pairing energies, respectively, in the β-γ plane. The
fluctuations of pairing energies reflect the underlying shell
structure, and because pairing correlations are described in the
BCS approximations, pairing is strongly reduced wherever
the level density around the Fermi level is small. As a result,
mass parameters are locally enhanced in regions of weak
pairing.

Figure 11 displays the contour plot of the rotational zero-
point energy correction [Eq. (49)] for 154Gd. The rotational
ZPE, of course, increases with the axial deformation β, but
we also notice a pronounced dependence on γ . The ZPE
corrections are of the order of several MeV even in the region
close to the minimum and can, therefore, present a significant
contribution to the potential of the collective Hamiltonian.
This is illustrated for 154Gd in Fig. 12, where we plot the
potential Vcoll [Eq. (52)] in the β-γ plane. When this plot is
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FIG. 6. (Color online) Same as Fig. 2, but for the nucleus 160Gd.
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FIG. 7. (Color online) Map of the Inglis-Belyaev inertia parame-
ter Bx of 154Gd in the β-γ plane (0 � γ � 60◦).

compared with the total mean-field energy of Eq. (41) (cf.
Fig. 3), one notes that the main effect of ZPE corrections
is to shift the position of the minimum to a larger prolate
deformation and to modify the shape of the potential around the
minimum.

The diagonalization of the resulting Hamiltonian yields the
excitation energies and the collective wave functions for each
value of the total angular momentum and parity Iπ . In addition
to the yrast ground-state band, in deformed and transitional
nuclei, excited states are usually also assigned to (quasi) β

and γ bands. This is done according to the distribution of the
angular-momentum projection K quantum number defined in
Eq. (26). Excited states with predominant K = 2 components
in the wave function are assigned to the γ band, whereas
the β band comprises states above the yrast characterized by
dominant K = 0 components. As an example, in Fig. 13 we
display the PC-F1 excitation spectrum of 154Gd, in comparison
with available data [45]. The relative excitation energies within
all three theoretical bands are scaled by the common factor of
≈0.69, determined in such a way that the calculated energy of
the 2+

1 state coincides with the experimental value. This leaves
the bandheads of the γ and β bands unaltered and corresponds
to an enhancement of the effective moment of inertia by ≈45%.
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FIG. 8. (Color online) Cranking mass parameter Bββ of 154Gd in
the β-γ plane (0 � γ � 60◦).
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FIG. 10. (Color online) Neutron pairing energy of 154Gd in the
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FIG. 12. (Color online) Potential Vcoll [Eq. (52)] of 154Gd in the
β-γ plane (0 � γ � 60◦). The contours join points on the surface with
the same energy (in MeV).

The scaling of the relative excitation energies is introduced
because of the well-known fact that the Inglis-Belyaev (IB)
formula (44) predicts effective moments of inertia that are
considerably smaller than empirical values. More realistic
values are only obtained if one uses the Thouless-Valatin (TV)
formula [23], but this procedure is computationally much more
demanding, and it has not been implemented in the current
version of the model. Here we rather follow the prescription
of Ref. [25] where, by comparing the TV and IB moments of
inertia as functions of the axial deformation for superdeformed
bands in the A = 190–198 mass region, it was shown that the
Thouless-Valatin correction to the perturbative expression IB
is almost independent of deformation and does not include
significant new structures in the moments of inertia. It was
thus suggested that the moments of inertia to be used in

the collective Hamiltonian can be simply related to the IB
values through the minimal prescription Ik(q) = I IB

k (q)(1 +
α), where q denotes the generic deformation parameter, and
α is a constant that can be determined in a comparison with
data. The value of α ≈ 0.45 used for the excitation spectrum
of 154Gd is somewhat larger than the values determined in the
mass A = 190–198 region [25].

When the IB effective moments of inertia are renormalized
to the empirical values by scaling the relative excitation
energies to reproduce the experimental position of the state
2+

1 , the resulting bands are in good agreement with data. This
is illustrated in Figs. 14–16, where we plot the excitation
energies with respect to bandheads, for the ground-state, γ ,
and β bands, respectively, in 152−160Gd. For each nucleus, the
relative excitation energies within the three bands are scaled by
a common factor, adjusted to the experimental energy of the 2+

1
state, as explained above. These factors are rather similar for
four isotopes: 0.69 for 154Gd, 0.67 for 156Gd, 0.69 for 158Gd,
and 0.72 for 160Gd. An exception is the lightest Gd isotope con-
sidered here: 152Gd, for which this factor is actually 1.08, i.e.,
the theoretical 2+

1 state (Ex = 0.318 MeV) is slightly below the
experimental 2+

1 state (Ex = 0.344 MeV). However, as shown
in Figs. 14–16, for this nucleus, the calculated ground-state
band, as well as the (quasi) γ and β bands, do not follow
very closely the experimental spectra. The deviation from the
experimental trend at higher angular momenta can probably be
explained by the fact that this is a weakly deformed transitional
nucleus for which the assumption of a constant moment of
inertia, implicit in the expression Ik(q) = I IB

k (q)(1 + α), and
of relatively pure β and γ bands, does not present a very good
approximation.

The calculated β bands are compared with available data
in Fig. 16. In comparison with the γ bands (cf. Fig. 15),
the agreement with data is better in 152Gd, but the deviation
from experiment is more pronounced in 156Gd. To understand
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FIG. 13. (Color online) Level scheme of 154Gd calculated with the PC-F1 relativistic density functional, in comparison with experimental
data [45]. The relative excitation energies are scaled by the common factor ≈ 0.69, adjusted to the experimental energy of the state 2+
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B(E2) values are given in Weisskopf units.
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FIG. 14. (Color online) Relative ground-state band excitation
energies in 152−160Gd. For each nucleus, the theoretical energies are
scaled by a common factor, adjusted to the experimental energy of
the 2+

1 state.

in more detail the discrepancy between the calculated and
empirical β and γ bands, we need to consider the distribution
of the angular-momentum projection K quantum number [cf.
Eq. (26)] in these bands. As explained above, the calculated
second and third eigenstate for each angular momentum are
assigned to either the β or γ band, on the basis of the
predominant K = 0 or K = 2 components, respectively. The
distributions of K components in the wave functions of
the calculated second and third 2+, 4+, and 6+ states are
plotted in Figs. 17–19, respectively. In the case of 152Gd,
in particular, we find a pronounced mixing of the K = 0 or
K = 2 components, and with increasing angular momentum,
contributions of higher K components are present in the wave
functions. This is consistent with the observation that 152Gd is
a transitional nucleus, and therefore excited states can be only
approximately assigned to (quasi) β and γ bands. Increasing
the neutron number toward heavier and more deformed Gd
isotopes, the distributions of K components become sharp,
and states can unambiguously be grouped into β and γ bands.
This is, of course, characteristic for well-deformed nuclei. One
exception, however, is the calculated spectrum of 156Gd, where
we find significant mixing of K = 0 and K = 2 components
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FIG. 15. (Color online) Comparison between the theoretical and
experimental γ -band excitation energies for 152−160Gd. The scaling
factors are the same as for the ground-state bands in Fig. 14.

in the wave functions of second and third 2+, 4+, and 6+
states, as well as for higher angular momenta. The more
pronounced mixing between the β and γ bands occurs because,
in this particular isotope, the calculated second and third
even-spin states are almost degenerate in energy, as shown in
Fig. 20.

The level of K mixing is reflected in the staggering in energy
between odd- and even-spin states in the (quasi) γ bands (cf.
Fig. 15). The staggering can be quantified by considering the
differential quantity [46]

S(J )

= {E[J+
γ ] − E[(J − 1)+γ ]} − {E[(J − 1)+γ ] − E[(J − 2)+γ ]}

E[2+
1 ]

,

(53)

which measures the displacement of the (J − 1)+γ level relative
to the average of its neighbors, J+

γ and (J − 2)+γ , normalized
to the energy of the first excited state of the ground-state band,
2+

1 . Because of its differential form, S(J ) is very sensitive to
structural changes. For an axially symmetric rotor, S(J ) is, of
course, constant. In a nucleus with a deformed γ -soft potential,
S(J ) oscillates between negative values for even-spin states
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FIG. 16. (Color online) Same as in Fig. 15, but for the β bands
in 152−160Gd. The scaling factors are the same as for the ground-state
bands in Fig. 14.

and positive values for odd-spin states, with the magnitude
slowly increasing with spin. For a triaxial potential, the level
clustering in the (quasi) γ band is opposite, and S(J ) oscillates
between positive values for even-spin states and negative
values for odd-spin states. In this case, the magnitude of S(J )
increases more rapidly with spin, as compared to the γ -soft
potential. In a recent study of staggering of γ -band energies
and the transition between different structural symmetries in
nuclei [47], the experimental energy staggering in γ bands of
several isotopic chains was investigated as a signature for the γ

dependence of the potential. In Fig. 21, we plot the staggering
in the γ band for the chain of Gd isotopes, calculated with
the PC-F1 relativistic density functional. One notices how the
pronounced K mixing in 152Gd and 156Gd (cf. Figs. 17–19)
leads to the strong staggering observed in the corresponding
(quasi) γ bands. The calculation reproduces both the empirical
oscillatory behavior and, with the exception of low-spin states
in 156Gd, also the magnitude of S(J ). Starting from the γ -soft
152Gd (negative values for even-spin states and positive values
for odd-spin states), S(J ) evolves toward the axially symmetric
rotor limit [S(J ) = 0.33] in 158Gd and 160Gd.

The assignment of even-spin states above the yrast either
to the β or γ bands, on the basis of the predominant K =

TABLE I. Average values of the deformation parameters β and
γ [cf. Eqs. (24) and (25)] for the calculated first, second, and third
2+, 4+, and 6+ states in 152−160Gd. γ is in degrees.

State 2+ 4+ 6+

〈β〉 〈γ 〉 〈β〉 〈γ 〉 〈β〉 〈γ 〉
152Gd J +

1 0.24 17.0 0.26 15.3 0.28 13.7

J +
2 0.26 19.0 0.31 13.9 0.32 12.8

J +
3 0.29 16.3 0.28 20.5 0.30 20.1

154Gd J +
1 0.31 12.8 0.32 12.0 0.33 11.3

J +
2 0.33 12.8 0.33 12.4 0.34 12.2

J +
3 0.29 19.8 0.32 17.6 0.34 16.2

156Gd J +
1 0.34 11.3 0.35 11.0 0.36 10.6

J +
2 0.34 13.0 0.34 14.0 0.35 13.6

J +
3 0.35 13.0 0.36 12.5 0.37 12.0

158Gd J +
1 0.36 10.8 0.36 10.6 0.36 10.5

J +
2 0.36 14.3 0.36 13.8 0.37 13.4

J +
3 0.36 11.0 0.37 10.7 0.38 10.4

160Gd J +
1 0.36 10.3 0.37 10.2 0.37 10.1

J +
2 0.37 13.4 0.37 13.2 0.37 12.9

J +
3 0.38 10.3 0.38 10.0 0.39 9.8

0 or K = 2 components (Figs. 17–19) and the level of K

mixing inferred from the differential quantity S(J ) of Eq. (53)
(Fig. 21), has a correspondence in the calculated average values
of the deformation parameters β and γ [cf. Eqs. (24) and (25)].
In Table I, we collect the average β and γ deformations for
the calculated first, second, and third 2+, 4+, and 6+ states in
152−160Gd. For those nuclei where the K mixing is weak [sharp
distribution of K components in Figs. 17–19, weak staggering
of S(J ) in Fig. 21], i.e., 154Gd, 158Gd, and 160Gd, the average
values of the deformation parameters are almost identical for
states belonging to the ground-state band and those assigned
to the β band. States assigned to the γ band (K = 2) are
consistently characterized by larger average values of the angle
γ . This distinction does not appear in the spectra of the two
nuclei for which the model predicts pronounced K mixing:
152Gd and 156Gd.

An important advantage of using structure models based
on self-consistent mean-field single-particle solutions is that
physical observables, such as transition probabilities and
spectroscopic quadrupole moments, are calculated in the
full configuration space, and there is no need for effective
charges. Using the bare value of the proton charge in the
electric quadrupole operator M̂(E2), the transition proba-
bilities between eigenvectors of the collective Hamiltonian
can be directly compared with data. In addition to the
calculated energy spectrum of 154Gd, in Fig. 13 we have also
compared the resulting B(E2) values (in Weisskopf units) for
transitions within the ground-state band, and the transitions
2+

β → 0+
β and 0+

β → 2+
g.s., with available experimental values.

The agreement between theoretical B(E2) values and data
is very good, especially considering that the calculation of
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FIG. 17. (Color online) Distribution of the K components (pro-
jection of the angular momentum on the body-fixed symmetry axis)
in the collective wave functions for the states 2+

2 and 2+
3 .

transition probabilities is completely parameter-free. We also
notice the remarkable prediction for the interband transition
0+

β → 2+
g.s., in excellent agreement with experiment. Finally,

in Fig. 22, we plot the calculated B(E2) values (in Weisskopf
units) for the ground-state band transitions J+

1 → (J − 2)+1
in 152−160Gd, together with the available experimental values.
The model clearly reproduces the empirical trend of ground-
state band transitions in Gd isotopes; and, except perhaps
for the transitional nucleus 152Gd, the theoretical predictions
are in excellent agreement with data even for higher angular-
momentum states.

IV. SUMMARY AND OUTLOOK

To describe complex excitation patterns and electromag-
netic transition rates associated with the evolution of shell
structures starting from stable nuclei and extending toward
regions of exotic short-lived systems far from β stability,
nuclear structure methods must be developed that are based
on a universal microscopic framework. Properties of a vast
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FIG. 18. (Color online) Same as Fig. 17, but for the states 4+
2

and 4+
3 .

majority of nuclides with a large number of valence nucleons
are best described by nuclear energy density functionals.
However, for a quantitative description of energy spectra and
transition probabilities, one must be able to go beyond the
lowest order in which the EDFs are implemented—the mean-
field approximation—and systematically include correlations
related to the restoration of broken symmetries and to fluctua-
tions of collective variables. In the framework of nonrelativistic
EDFs, several models have been developed in recent years
that use the generator coordinate method (GCM) to perform
configuration mixing calculations with angular-momentum
and particle-number projected mean-field (SR EDF) states.
In most applications, the calculations have been restricted to
axially symmetric, parity-conserving configurations.

In a recent series of papers, of which the present is
the third part, we have extended the relativistic EDFs to
include symmetry restoration and fluctuations of quadrupole
deformations. While in the first two parts, the GCM was used
in configuration mixing calculations with axially symmetric
relativistic wave functions, this work has been focused on
the description of general triaxial shapes. We have developed
a new implementation for the solution of the eigenvalue
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FIG. 19. (Color online) Same as Fig. 17, but for the states 6+
2

and 6+
3 .

problem of a five-dimensional collective Hamiltonian for
quadrupole vibrational and rotational degrees of freedom,
with parameters determined by constrained self-consistent
relativistic mean-field calculations for triaxial shapes. In
addition to the self-consistent mean-field potential of the PC-
F1 relativistic density functional in the particle-hole channel,
for open-shell nuclei, pairing correlations are included in
the BCS approximation. The resulting single-nucleon wave
functions, energies and occupation factors, as functions of
the quadrupole deformations, provide the microscopic input
for the parameters of the collective Hamiltonian: three mass
parameters Bββ, Bβγ , Bγγ , three moments of inertia Ik , and
the collective potential including zero-point vibrational and
rotational energy corrections. The moments of inertia are
calculated using the Inglis-Belyaev formula, and the mass pa-
rameters associated with the quadrupole collective coordinates
are determined in the cranking approximation. An extensive
test has been carried out in calculations of potential energy
surfaces, and the resulting collective excitation spectra and
transition probabilities, for the chain of even-even gadolinium
isotopes. Results for excitation energies in ground-state and
(quasi) β and γ bands, and the corresponding interband and
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FIG. 20. (Color online) Excitation energies of the second and
third states 2+, 4+, and 6+ in the Gd isotopic chain, as functions of
the neutron number.

intraband transition probabilities have been compared with
available data on even-even Gd isotopes: 152−160Gd.

Some obvious improvements need to be implemented in the
model. For instance, because the Inglis-Belyaev formula gives
effective moments of inertia that are lower than empirical val-
ues, all the calculated relative excitation energies in 152−160Gd
have to be scaled with respect to the experimental energy
of the 2+

1 states. The moments of inertia can be improved
by including the Thouless-Valatin dynamical rearrangement
contributions. For the rotational degrees of freedom for which
the collective momenta are known, the inertia parameters can
be obtained from the solutions of cranked RMF equations.
For the deformation coordinates q0 and q2, the situation
is more complicated, because the corresponding momentum
operators P̂0 and P̂2 have to be calculated from the solution
of Thouless-Valatin equations [23] at each deformation point.
Because cranking breaks time-reversal symmetry, in both cases
the inclusion of pairing correlations necessitates the extension
of the model from the simple RMF+BCS to the full relativistic
Hartree-Bogoliubov framework [2].
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FIG. 21. (Color online) Staggering S(J ) [Eq. (53)] in the γ bands
of 152−160Gd. Theoretical predictions are compared with experimental
values.
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APPENDIX A: THREE-DIMENSIONAL SOLUTION OF THE
DIRAC EQUATION

To solve the Dirac equation (32) for triaxially deformed
potentials, the single-nucleon spinors are expanded in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
(HO) in Cartesian coordinates [48–51]. In one dimension,

φnµ
(xµ) = b−1/2

µ Hnµ
(ξµ)e−ξ 2

µ/2 (µ ≡ x, y, z), (A1)
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FIG. 22. (Color online) B(E2) values (in Weisskopf units) for
the ground-state band transitions J +

1 → (J − 2)+1 in 152−160Gd.
Theoretical values calculated with the PC-F1 relativistic density
functional are compared with data.

ξµ ≡ xµ/bµ, and the oscillator length is defined as

bµ =
√

h̄

mωµ

. (A2)

Hn(ξ ) denotes the normalized Hermite polynomials∫ ∞

−∞
Hn(ξ )Hn′(ξ )e−ξ 2

dξ = δnn′ . (A3)

The basis state can be defined as the product of three HO wave
functions (one for each dimension) and the spinor:

�α(r; ms) = φnx
(ξx)φny

(ξy)φnz
(ξz)χms

, (A4)

where the notation is α ≡ {nx, ny, nz}. It will be more
convenient to use the eigenstates of the x-simplex operator
defined by the relation

Ŝx = P̂ e−iπJx , (A5)

where P̂ denotes the parity operator. It is easily verified that
the x-simplex operator acting on the state �α(r; ms) leads to

Ŝx�α(r; ms) = −i(−1)nx �α(x, y, z; −ms). (A6)
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The eigenstates of the x-simplex operator with positive and
negative eigenvalues read

�α(r; +) = φnx
(x)φny

(y)φnz
(z)

iny

√
2

[χ+ − (−1)nx χ−], (A7)

�α(r; −) = φnx
(x)φny

(y)φnz
(z)

× iny

√
2

(−1)nx+ny+1[χ+ + (−1)nx χ−]. (A8)

For the Dirac spinor with positive simplex eigenvalue, the large
component corresponds to positive, and the small component
to negative eigenvalues

ψi(r,+) =
(

fi(r,+)

igi(r,−)

)
. (A9)

The large and small component are expanded in terms of the
basis states (A7) and (A8) to

fi(r; +) =
αmax∑
α

f α
i �α(r; +)

and

gi(r; −) =
α̃max∑
α̃

gα̃
i �α̃(r; −). (A10)

To avoid the occurrence of spurious states, αmax and α̃max are
chosen in such a way that the corresponding major quantum
numbers N = nx + ny + nz are not larger than some arbitrary
NF for the expansion of large components, and not larger
than NF + 1 for the expansion of small components [52]. The
single-nucleon Dirac equation(

V + m∗ σ · ∇
−σ · ∇ V − m∗

) (
fi(r; +)
gi(r; −)

)
= εi

(
fi(r; +)
gi(r; −)

)
, (A11)

with the effective nucleon mass m∗ = m + S, reduces to a
symmetric matrix eigenvalue problem(Aαα′ Bαα̃′

Bα̃α′ Cα̃α̃′

) (
f α′

i

gα̃′
i

)
= εi

(
f α′

i

gα̃′
i

)
, (A12)

of dimension αmax + α̃max.
The time-reversal operator T̂ = −iσyK̂ exchanges the

simplex eigenvalues

T̂ �α(r; +) = −�α(r; −)

and
T̂ �α(r; −) = �α(r; +), (A13)

and, thus, when acting on the Dirac spinors,

T̂ ψi(r; +) = T̂

(
fi(r; +)

igi(r; −)

)
=

(
T̂ fi(r; +)

−iT̂ gi(r; −)

)

=
(−fi(r; −)

−igi(r; +)

)
= −ψi(r; −). (A14)

Time-reversed single-particle states correspond to opposite
simplex eigenvalues. Because of time-reversal invariance, for
each solution of the Dirac equation (A11) with positive simplex
eigenvalue ψi(r; +), there exists a degenerate time-reversed
solution with negative simplex eigenvalue ψi(r; −). Both

solutions contribute equally to the densities, and in practice
only the Dirac equation for positive simplex eigenstates is
solved.

In the current implementation of the model, parity is also
imposed as a conserved symmetry. This means that the basis
states split into two parity blocks, which can be diagonalized
separately. In addition, we require that the densities are
symmetric under reflections with respect to the yz, xz, and
xy planes.

ρs,v(x, y, z) = ρs,v(−x, y, z) = ρs,v(x,−y, z)

= ρs,v(x, y,−z). (A15)

The symmetries of the scalar and vector densities are, of
course, fulfilled by the corresponding self-consistent scalar
and vector potentials:

S(x, y, z) = S(−x, y, z) = S(x,−y, z) = S(x, y,−z),

(A16)

V (x, y, z) = V (−x, y, z) = V (x,−y, z) = V (x, y,−z).

(A17)

The self-consistent symmetries (A16) and (A17) simplify the
evaluation of the matrix elements Aαα′ and Cα̃α̃′ . First, the
symmetry under reflections with respect to the xy, yz, and xz

planes means that we need to calculate only matrix elements
between states φα and φα′ for which

(−1)nx = (−1)n
′
x , (−1)ny = (−1)n

′
y ,

and
(−1)nz = (−1)n

′
z . (A18)

Furthermore, three-dimensional integrals reduce to the octant
x, y, z � 0. The matrix elements of the vector and scalar
potentials read

Aαα′ = 〈α; +|m∗ + V |α′; +〉
= 8(−1)(ny−n′

y )/2
∫ ∞

0

∫ ∞

0

∫ ∞

0
φnx

(x)φny
(y)φnz

(z)

× (V + m∗)φn′
x
(x)φn′

y
(y)φn′

z
(z) dV, (A19)

Cα̃α̃′ = 〈α̃; −|V − m∗|α̃′; −〉
= 8(−1)(ny−n′

y )/2
∫ ∞

0

∫ ∞

0

∫ ∞

0
φnx

(x)φny
(y)φnz

(z)

× (V − m∗)φn′
x
(x)φn′

y
(y)φn′

z
(z) dV. (A20)

Note that the condition (A18) means that the difference (ny −
n′

y) must be even, hence the matrix elements (A19) and (A20)
are real.

The matrix elements of the kinetic energy term Bαα̃′ can be
calculated analytically using the expression

∂µφnµ
(xµ) = 1√

2bµ

[−√
nµ + 1φnµ+1(xµ) + √

nµφnµ−1(xµ)
]
,

(A21)

together with the orthogonality relation (A3). The operator
σ · ∇ consists of three terms:

Bαα̃′ = 〈α; +| − σx∂x − σy∂y − σz∂z|α̃′; −〉
= Bx

αα̃′ + By

αα̃′ + Bz
αα̃′ , (A22)
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and the corresponding matrix elements are calculated from

Bx
αα̃′ = (−1)ny δnyn′

y
δnzn′

z

1√
2bx

×
[
−√

n′
x + 1δnxn′

x+1 + √
n′

xδnxn′
x−1

]
, (A23)

By

αα̃′ = (−1)n
′
y δnxn′

x
δnzn′

z

1√
2by

×
[√

n′
y + 1δnyn′

y+1 +
√

n′
yδnyn′

y−1

]
, (A24)

Bz
αα̃′ = (−1)n

′
x+n′

y+1δnxn′
x
δnyn′

y

1√
2bz

×
[
−

√
n′

z + 1δnzn′
z+1 +

√
n′

zδnzn′
z−1

]
. (A25)

The set of self-consistent solutions of the single-nucleon Dirac
equation determines the scalar and vector densities:

ρv(r) = 2
∑

i

v2
i ψ

†
i (r; +)ψi(r; +), (A26)

ρs(r) = 2
∑

i

v2
i ψ

†
i (r; +)βψi(r; +). (A27)

Because of time-reversal symmetry, the summation is over
positive simplex solutions. To calculate densities in coordinate
space, one needs explicit expressions for the products of basis
states:

φ†
α(r; +)φα′ (r; +) = (−1)(n′

y−ny )/2φnx
(x)φn′

x
(x)φny

× (y)φn′
y
(y)φnz

(z)φn′
z
(z), (A28)

φ†
α(r; −)φα′ (r; −) = (−1)(ny−n′

y )/2φnx
(x)φn′

x
(x)φny

× (y)φn′
y
(y)φnz

(z)φn′
z
(z). (A29)

Note that the symmetry requirement in Eq. (A15) imposes the
condition (A18), and again the difference (ny − n′

y) is even,
so the contributions (A28) and (A29) to the densities are both
real.

APPENDIX B: MOMENTS OF INERTIA

The basic ingredient of the Inglis-Belyaev formula for the
moments of inertia Eq. (44) are the matrix elements of the
angular-momentum operators in the simplex basis (A7) and
(A8). Here we present in detail the calculation of the matrix
element of the Ĵx component between basis states with positive
simplex eigenvalue

〈α; +|Ĵx |α′; +〉. (B1)

For the other matrix elements, only the final expressions will
be listed.

The x component of the total angular-momentum operator
is the sum of the spin and the spatial contributions:

Ĵx = h̄

2
σ̂x + L̂x = h̄

2
σ̂x − ih̄(y∂z − z∂y). (B2)

The spatial parts of the basis states are unaffected by the σ̂x

operator, thus generating the product of Kronecker δ symbols

δnx,n′
x
δny ,n′

y
δnz,n′

z
. The contribution from the spin factors of the

basis states is given by

[χ †
+ − (−1)nx χ

†
−]σ̂x[χ+ − (−1)nx χ−]

= (−1)nx+1 + (−1)n
′
x+1, (B3)

and the spin matrix element reads

h̄

2
〈α; +|σ̂x |α′; +〉 = h̄

2
δnx,n′

x
δny ,n′

y
δnz,n′

z
(−1)nx+1. (B4)

Next, the contribution from the operator L̂x is calculated

〈α; +|L̂x |α′; +〉 = −ih̄〈α; +|y∂z − z∂y |α′; +〉. (B5)

The spin factors of the basis states are not affected by the L̂x

operator:

[χ †
+ − (−1)nx χ

†
−][χ+ − (−1)nx χ−] = 1 + (−1)nx+n′

x . (B6)

To calculate the matrix elements of Eq. (B5), the following
relations are used:

xµφnµ
= bµ√

2

[√
nµ + 1φnµ+1(xµ) + √

nµφnµ−1(xµ)
]
,

(B7)

∂µφnµ
(xµ) = 1√

2bµ

[−√
nµ + 1φnµ+1(xµ)

+√
nµφnµ−1(xµ)

]
, (B8)

together with the orthonormality relation (A3). The total
matrix element reads

〈α; +|Ĵx |α′; +〉

= h̄

2
(−1)nx+1δnx,n′

x
δny,n′

y
δnz,n′

z

+ h̄

2
δnx,n′

x

(
by

bz

− bz

by

)[√
n′

y + 1
√

n′
z + 1δny,n′

y+1δnz,n′
z+1

+
√

n′
y

√
n′

zδny,n′
y−1δnz,n′

z−1

]

− h̄

2
δnx,n′

x

(
by

bz

+ bz

by

)[√
n′

y + 1
√

n′
zδny,n′

y+1δnz,n′
z−1

+
√

n′
y

√
n′

z + 1δny,n′
y−1δnz,n′

z+1

]
. (B9)

The following relations can easily be proved:

〈α; +|Ĵx |α′; +〉 = −〈α; −|Ĵx |α′; −〉
and

〈α; +|Ĵx |α′; −〉 = 〈α; −|Ĵx |α′; +〉 = 0. (B10)

The final expression for the moment of inertia Ix ≡ I1 is

Ix = 2
∑
i,j>0

(uivj − viuj )2

Ei + Ej

∣∣∣∣∣
∑
αα′

f α
i f α′

j 〈α; +|Ĵx |α′; +〉

−
∑
α̃α̃′

gα̃
i gα̃′

j 〈α̃; +|Ĵx |α̃′; +〉
∣∣∣∣∣
2

. (B11)
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We include only the final results for the matrix elements of Ĵy

and Ĵz:

〈α; +|Ĵy |α′; −〉 = i
h̄

2
(−1)ny δnx,n′

x
δny ,n′

y
δnz,n′

z

+ i
h̄

2
δny,n′

y
(−1)nx+ny

(
bz

bx

− bx

bz

)

×
[√

n′
x + 1

√
n′

z + 1δnx,n′
x+1δnz,n′

z+1

−
√

n′
y

√
n′

zδnx,n′
x−1δnz,n′

z−1

]
+i

h̄

2
δny,n′

y
(−1)nx+ny

(
bz

bx

+ bx

bz

)

×
[√

n′
x + 1

√
n′

zδnx,n′
x+1δnz,n′

z−1

−√
n′

x

√
n′

z + 1δnx,n′
x−1δnz,n′

z+1

]
, (B12)

〈α; −|Ĵy |α′; +〉 = −〈α; +|Ĵy |α′; −〉,
and

〈α; +|Ĵy |α′; +〉 = 〈α; −|Ĵy |α′; −〉 = 0, (B13)

〈α; +|Ĵz|α′; −〉 = h̄

2
(−1)nx+ny+1δnx,n′

x
δny,n′

y
δnz,n′

z

+h̄

2
δnz,n′

z
(−1)nx+ny+1

(
bx

by

− by

bx

)

×
[√

n′
x + 1

√
n′

y + 1δnx,n′
x+1δny,n′

y+1

+√
n′

x

√
n′

yδnx,n′
x−1δny,n′

y−1

]
+ h̄

2
δnz,n′

z
(−1)nx+ny+1

(
bx

by

+ by

bx

)

×
[√

n′
x + 1

√
n′

yδnx,n′
x+1δny,n′

y−1

+√
n′

x

√
n′

y + 1δnx,n′
x−1δny,n′

y+1

]
, (B14)

〈α; −|Ĵz|α′; +〉 = 〈α; +|Ĵz|α′; −〉,
and

〈α; +|Ĵz|α′; +〉 = 〈α; −|Ĵz|α′; −〉 = 0, (B15)

The corresponding moments of inertia Iy ≡ I2 and Iz ≡ I3

read

Iy = 2
∑
i,j>0

(uivj − viuj )2

Ei + Ej

∣∣∣∣∣
∑
αα′

f α
i f α′

j 〈α; +|Ĵy |α′; −〉

−
∑
α̃α̃′

gα̃
i gα̃′

j 〈α̃; +|Ĵy |α̃′; −〉
∣∣∣∣∣
2

, (B16)

Iz = 2
∑
i,j>0

(uivj − viuj )2

Ei + Ej

∣∣∣∣∣
∑
αα′

f α
i f α′

j 〈α; +|Ĵz|α′; −〉

+
∑
α̃α̃′

gα̃
i gα̃′

j 〈α̃; +|Ĵz|α̃′; −〉
∣∣∣∣∣
2

. (B17)

All three moments of inertia vanish at the spherical point
β = 0. In addition, Iz vanishes for the γ = 0◦ configurations

(prolate deformed, with z as the symmetry axis), whereas Iy

vanishes at γ = 60◦ (oblate deformed, y is the symmetry axis).
These conditions are incorporated in the following functional
form:

Ik = 4Bkβ
2 sin2 (γ − 2kπ/3), with

(B18)
(1 ≡ x, 2 ≡ y, 3 ≡ z),

from which the inertia parameters Bx, By , and Bz follow:

Bk = Ik

4β2 sin2 (γ − 2kπ/3)
. (B19)

For the limiting cases described above, the following relations
are used:

Bx(β = 0) = By(β = 0) = Bz(β = 0) = Bγγ (β = 0),

(B20)

By(β, γ = 60◦) = Bγγ (β, γ = 60◦), (B21)

Bz(β, γ = 0◦) = Bγγ (β, γ = 0◦). (B22)

To calculate the mass parameters from Eqs. (45) and (46),
one needs the matrix elements of the operators x2, y2, and z2

in the simplex basis. These are combined and inserted into the
matrix elements

〈ψi |Q̂2µ|ψj 〉 =
∑
αα′

f α
i f α′

j 〈α; +|Q̂2µ|α′; +〉

+
∑
α̃α̃′

gα̃
i gα̃′

j 〈α̃; +|Q̂2µ|α̃′; +〉, (B23)

which determine the 2 × 2 matrix M(n),µν of Eq. (46). The
mass parameters Bµν(q0, q2) are then calculated from Eq. (45)
and transformed from the quadrupole coordinates q0, q2 to the
polar Bohr deformation variables β and γ .

APPENDIX C: ROTATIONAL ZERO-POINT ENERGY
CORRECTION

The rotational zero-point energy in Eq. (49) is determined
by the matrix elements of the quadrupole operators

Q̂21 = −2iyz, Q̂2−1 = −2xz, and Q̂2−2 = 2ixy.

(C1)

Using the expression

xµφnµ
(xµ) = bµ√

2

[√
nµ + 1φnµ+1(xµ) + √

nµφnµ−1(xµ)
]
,

(C2)

together with the orthogonality relation (A3), the calculation
of matrix elements is straightforward. Here we list only the
final expressions:

〈α; +|Q̂21|α′; +〉 = bybzδnx,n′
x

×
[
−

√
n′

y + 1δny,n′
y+1 +

√
n′

yδny,n′
y−1

]
×

[√
n′

z + 1δnz,n′
z+1 +

√
n′

zδnz,n′
z−1

]
,

(C3)

〈α; −|Q̂21|α′; −〉 = −〈α; +|Q̂21|α′; +〉, (C4)
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〈α; +|Q̂21|α′; −〉 = 〈α; −|Q̂21|α′; +〉 = 0, (C5)

〈α; +|Q̂2−1|α′; −〉 = (−1)n
′
x+n′

y bxbzδny,n′
y

×
[√

n′
x + 1δnx,n′

x+1 + √
n′

xδnx,n′
x−1

]
×

[√
n′

z + 1δnz,n′
z+1 +

√
n′

zδnz,n′
z−1

]
(C6)

〈α; −|Q̂2−1|α′; +〉 = −〈α; +|Q̂2−1|α′; −〉, (C7)

〈α; +|Q̂2−1|α′; +〉 = 〈α; −|Q̂2−1|α′; −〉 = 0, (C8)

〈α; +|Q̂2−2|α′; −〉 = (−1)n
′
x+n′

y+1bxbyδnz,n′
z

×
[√

n′
x + 1δnx,n′

x+1 + √
n′

xδnx,n′
x−1

]
×

[√
n′

y + 1δny,n′
y+1 −

√
n′

yδny,n′
y−1

]
,

(C9)

〈α; −|Q̂2−2|α′; −〉 = −〈α; +|Q̂2−2|α′; +〉, (C10)

〈α; +|Q̂2−2|α′; −〉 = 〈α; −|Q̂2−2|α′; +〉 = 0. (C11)

APPENDIX D: NUMERICAL DETAILS

In Fig. 23, we check the convergence of the RMF+BCS
quadrupole constrained calculations as a function of the
maximal number of oscillator shells used in the expansion
of the Dirac spinors. The binding energy curves for 154Gd
are plotted as functions of the axial β deformation. These
curves correspond to calculations with 10, 12, 14, and 16
major oscillator shells. For moderate deformations considered
in this study (|β| < 0.65), the RMF results show convergence
at NF = 14.

The self-consistent RMF+BCS equations are solved on a
mesh over the first sextant of the β-γ plane:

β � 0, �β = 0.05, 0 � γ � 60◦, �γ = 6◦, (D1)

and the maximum value of the β deformation is βmax = 1.15.
The choice of the basis wave functions of Eq. (16)

introduces a factor e−µ2β2
into the integral over β in the matrix
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FIG. 23. (Color online) Self-consistent RMF+BCS binding en-
ergy curves of 154Gd, as functions of the axial deformation parameter
β. Negative values of β correspond to the (β > 0, γ = 180◦) axis on
the β-γ plane. The four energy curves correspond to calculations in
the three-dimensional harmonic oscillator basis with 10, 12, 14, and
16 major oscillator shells.

elements of the collective Hamiltonian. With the substitution
y ≡ µ2β2, we obtain the weight function appropriate for
Gauss-Laguerre quadrature. The integrals over γ are evaluated
by Gauss-Legendre quadrature. The corresponding number
of mesh points are nβ = 24 and nγ = 24, respectively. The
parameters of the collective Hamiltonian in the Gaussian
mesh points are calculated by interpolation from the values
calculated on the equidistant mesh in Eq. (D1). To avoid
extrapolation, the minimum value of the basis parameter µ

is restricted to √
ynβ

µ
< βmax. (D2)

We have verified that both the calculated excitation spectra
and transition probabilities remain stable for any choice of µ

within the interval 8 � µ � 15. All calculations presented in
this work are performed with µ = 9.
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