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1. Introduction

Classical electrodynamics is based on four Maxwell equations and Lorentz force
equation. These five equations imply constancy of the speed of light in all reference
frames, which is one of the basic assumptions of special theory of relativity. The
sixth equation, conservation of electric current, can be understood as a consequence
of the Maxwell equations.

In literature one can find many derivations of a subset of these five equations
from the special theory of relativity and some additional assumptions.

In the Frisch and Wilets paper [1], Lorentz force law and the Maxwell equations
are derived from Lorentz transformations, Gauss’s law on the flux of the electric
field, and two additional postulates on electromagnetic force. Their derivation is
complete and relatively simple, but the basic expression for the force transforma-
tion comprises quantities defined in both the initial and the final frame, which is
somewhat unexpected.

In the Berkeley Physics Course [2], the magnetic field is derived basically under
the same assumptions: Gauss’s law, special theory of relativity, and the existence
of a frame in which the force does not depend on the test-particle velocity (velocity
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of the particle on which the force acts). The derivation has been done only for very
special choices of velocities of force sources and test particles.

The kinematic analysis of the Lorentz transformation of a force (Lorentz force
transformation) is often met in the standard textbooks like Møller [3] or Goldstein
[4]. In these textbooks, the starting point is always the Newton’s second law of
motion, and force is treated like a three-vector object (see Eq. (20)). The obtained
results therefore hold generally, and can be applied on every force, including also
the Lorentz force.

The derivation of the Lorentz force transformation using the Lorentz transfor-
mations of electromagnetic field is given by Jefimenko [5].

In the Feynman Lectures on Physics [6], the Lorentz transformation properties
of time and space coordinates are used to derive the expressions for transformations
of the scalar and vector potential. Using the definition of electric field in terms of
scalar and vector potential, it is shown that the expression for the force of a system
of electric charges in motion contains the “magnetic term”, q(v/c)×B.

The intention of this paper is to show that, starting from the simple force
transformation law given in the Berkeley Physics Course and the notion of the
Thomas-Wigner rotation [7, 8], one can derive the general force transformation
as in the Frisch and Wilets paper. Although this derivation is longer and more
complicated, we find it to be more intuitive. Especially, it shows how the interplay
between various representations of the Lorentz group can be used, and the role of
the Thomas-Wigner rotation when combining two non-parallel boosts.

In the second section we expose the problem of derivation of Lorentz force from
the Gauss’s law and special theory of relativity as it was treated in Refs. [1] and
[2]. In the third section we present our derivation of the Frisch and Wilets formula
for the force transformation. Fourth section compares the two derivations of the
Lorentz force transformation and discusses some of the consequences.

2. Earlier derivations of the Lorentz transformations of

electric and magnetic fields

Frisch and Wilets [1] started from the kinematic definition of the general force,

F =
dp

dt
, (1)

used the Møller’s expression for Lorentz transformation of the force [3], and rear-
ranged it to obtain the specific dependence on the test-particle velocity,

F′ = β̂(β̂F) + γ
[

β̂ × (F× β̂) + β
′

2 × (F× β)
]

, (2)

where a×b is the cross product of two vectors and ab their scalar product. F′ and
F are the forces on the test particle in the S′ and S frames, respectively, with S and
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S′ being two arbitrary inertial frames. Moreover, β = v/c, β′

2
= v′

2
/c, v is velocity

of the frame S′ relative to the S frame, v′

2
is velocity of the test particle in the

S′ frame, and γ = (1− β2)−
1

2 . Hatted vectors denote unit vectors or directions of
the coresponding vectors. Frisch and Wilets argumented that if there is a reference
frame in which the force does not depend on the velocity of the test particle, the
force in any other reference frame can be written as

F = e+ β2 × b, (3)

where both e and b are independent of the test-particle velocity. That completes
their derivation of the Lorentz force from the Gauss’s law and the special theory of
relativity. Further, comparing this expression with the force in the frame S′,

F′ = e′ + β′

2
× b′, (4)

one can obtain the transformation for the e and b components of the force

e′ = β̂(β̂e) + γ
[

β̂ × (e× β̂) + β × b

]

, (5)

b′ = β̂(β̂b) + γ
[

β̂ × (b× β̂)− β × e
]

. (6)

In order to derive the Maxwell equations for general motion of source and test
particle, Frisch and Wilets had to pose four postulates:

1) The invariance of charge expressed as a requirement that the Gauss’s law is
valid in all inertial frames. Notice that this assumption is one of the Maxwell
equations.

2) The electric field E is independent of the test-particle velocity. Accepting
postulate 1., postulate 2. is equivalent to the Lorentz force law.

3) The speed of light being finite, the electric and magnetic fields at time t are
determined by the behaviour of the point source(s) at time t− r/c.

4) The electric field does depend only on first and second derivatives of the
source position.

The existence of the magnetic field is a simple consequence of the first and second
postulate. In addition, (5) and (6) present the Lorentz transformations of the elec-
tric and magnetic fields. In fact, Frisch and Wilets do not derive Maxwell equations
directly, but they construct the expressions for a point-source electric and magnetic
field from the above postulates, and those were known to be the only ones which
Maxwell equations do admit [9].

In his book [10], Jackson stresses that special theory of relativity and the Lorentz
force transformation (2) are not sufficient to deduce the existence of the magnetic
field without additional assumptions. He cites Frisch andWilets paper as a reference
in which Maxwell equations were correctly derived.
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First two of the above postulates are used in the Purcell’s book [2] to derive
magnetic field from electric field for some special directions of velocities of the
sources of the electric field and of the test particle. The Lorentz force

F = q(E+ β ×B) (7)

is not derived but assumed, although the second postulate is equivalent to the
Lorentz force law, and was used to derive the expression for the magnetic field. In
the derivation, the special transformations of the force and electric field are being
used. The force boost transformation from the inertial frame in which the test
particle is momentary at rest, SR, to the arbitrary inertial frame, S′, reads

F′ = β̂(β̂FR) +
1

γ

[

FR − β̂(β̂FR)
]

, (8)

where the notation is the same as in (2), with FR corresponding to F in the test-
particle rest frame. The inverse force boost transformation, that is the force boost
transformation from S′ frame to the SR frame, is obtained replacing 1/γ → γ in
(8). Notice that, if in (2) one puts β

′

2 = −β, Eq. (8) is reproduced. Purcell also
used the transformation of the electric field from the frame in which all sources
are at rest to an arbitrary Lorentz frame. The transformation of the electric field
is performed for a pair of uniformly charged parallel planes with opposite surface
charge densities, moving parallel or perpendicularly to the electric field produced
by the planes. The results obtained are assumed to be valid for any set of charges,

E′ = β̂(β̂E) + γ
[

E− β̂(β̂E)
]

. (9)

Here E is the electric field in the rest frame of all sources, and E′ is the correspond-
ing electric field in an arbitrary inertial frame. A magnetic field contribution does
not appear since in the initial frame all sources are assumed to be at rest. Using
these two transformations, and very specific configuration of the sources corre-
sponding to a simplified model of a neutral current in the laboratory frame, Purcell
derived an expression for the magnetic field which corresponds to the third term
in (6). This term was derived for the test-particle velocity direction, β̂, parallel to
the neutral current. Purcell generalizes this result without checking it for general
velocity directions of the sources and the test particle.

Generally, there is no frame in which all sources are at rest [10]. Therefore, we
will not use (9) in our discussion on electric and magnetic field transformations.
We will keep only the force transformation (8) which is simple and quite intuitive.
Using a combination of two such Lorentz transformations of force we will derive
the Frisch and Wilets expression for the general force transformation.
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3. Two-step force transformation

To find the Lorentz transformation of force using only the simple Lorentz trans-
formation (8), we need three reference frames: the initial laboratory frame S, the
final laboratory frame S′ and SR, in which the test charge is momentarily at rest.
We will boost the force first between the frames S and SR, and then between the
frames SR and S′, and correct the obtained result for the Thomas-Wigner rotation
which appears for two non-parallel boosts. The Thomas-Wigner rotation for forces
is the same as for coordinates or momenta, but the boosts of forces and coordinates
are different, since the force is not a four-vector. In the calculation we need the force
in the frame S, the boost between the frames SR and S and the boost between the
frames SR and S′. We imagine that the force in the frame S, and the velocities of
the frames S, v = cβ, and SR, vR = cβR, are defined with respect to the frame
S′. We write down the velocities in terms of the rapidity parameters and velocity
directions,

β = β̂ tanh η , βR = β̂R tanh ηR , (10)

and the corresponding γ parameters in terms of the rapidity parameters only,

γ = cosh η , γR = cosh ηR. (11)

As an example, for coordinate boost transformation we give the coordinate trans-
formation between SR and S′ frames, L(−βR)

µ
ν , in the matrix form,

x′ = L(−βR)xR

=

(

γR γRβR

γRβR 1+ (γR − 1)β̂R ⊗ β̂R

)

xR, (12)

where 1 is 3× 3 unit matrix and ⊗ denotes tensor product. The boost between S
and S′ frame is L(−β). The parameters γS and βS for boost between frames SR

and S are determined by β and βR,

γS = γRγ(1− βRβ) ,

γSβS = γβ − γγRβR + (γR − 1)γββ̂R(β̂Rβ̂) . (13)

Product of two boosts connecting three successive inertial frames in any represen-
tation of the Lorentz group can be written as a boost between the first and the last
reference frame and Thomas-Wigner rotation defined by these two boosts [11]. For
instance,

LF(−βR)LF (−βS) = LF(−βS)WF(−βR,−βS) (14)

shows how the two force-boosts combine into the corresponding Thomas-Wigner
rotation and the boost between the first and the third reference frame. Therefore,
the force in the frame S′ is given by

F′ = LF(−βR)LF(−βS)W
−1

F
(−βR,−βS) F . (15)

FIZIKA A (Zagreb) 19 (2010) 3, 109–118 113



ilakovac and popov: Two-step Lorentz transformation of force

The force boost transformations LF(−βR) and LF(−βS) are defined by transfor-
mation (8) and its inverse, respectively,

LF(−βR) =
1

γR
1+

(

1−
1

γR

)

β̂R ⊗ β̂R, (16)

LF(−βS) = γS1+ (1− γS)β̂S ⊗ β̂S . (17)

The Thomas-Wigner rotation of forces is the same as for the coordinates,

WF(−βR,−βS) = W (−βR,−βS)

= L−1(−β)L(−βS)L(−βR)

= 1+
1

γS + 1

[

ββRγγR(−β̂ ⊗ β̂R + β̂R ⊗ β̂)

+ (γ − 1)(γR − 1)
(

− β̂ ⊗ β̂ − β̂R ⊗ β̂R

+ 2(β̂β̂R)β̂ ⊗ β̂R

)

]

. (18)

The expression (18) agrees with the inverse of the expression for the Thomas-
Wigner rotation derived in Ref. [12] using three-space tensor algebra techniques.

The inverse Thomas-Wigner rotation (18) is obtained by exchanging β̂ and β̂R.
Putting the expressions (16), (17) and (18) into (15) and arranging the terms, one
obtains the force transformation

F′ = γ(1− ββR)F+ (1− γ)β̂(β̂F) + γβ(βRF), (19)

which is identical to the Frisch and Wilets force transformation (2), if one identifies
βR = −β′. That is the main result of this paper.

4. Discussion and comments

The main idea of the Frisch and Wilets derivation of the force transformation
is to replace the velocity of the test particle v2 in the standard (e.g. Møller’s)
expression for the force transformation,

F′ =
dp′

dt′

=
γ
[

β̂(β̂F)− β(β̂2F)
]

+
[

F− β(β2F)
]

γ(1− ββ2)
, (20)
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with the velocity in the S′ frame,

β =
γ
[

β + β̂(β̂β′

2)
]

+
[

(β′

2 − β(ββ′

2)
]

γ(1 + ββ′

2)
. (21)

Rearrangement of terms leads to (2).

In the case that the postulate 2. of [1] is satisfied, as it is for the electric force in
the rest frame of the point-source electric field, the force in any inertial frame can
be written in terms of the force in the frame in which the force does not depend
on the velocity of the test particle. For instance, for a point source Q at rest in the
frame S acting on the point source q, the force in the frame S′ reads [1],

F′ = q
{

β̂(β̂E) + γ
[

β̂ × (E× β̂) + β′

2 × (E× β)
]}

, (22)

where E is the electric field in the frame S, induced by the source charge Q. In (22)
the postulate 1. is also assumed. In the case of several source charges, each with its
rest frame Si, the expression for the force reads

F′ =
[

∑

i

qiβ̂i(β̂iEi) + qiγi{β̂i × (Ei × β̂i)}
]

+ β′

2 ×
[

∑

i

qi(Ei × βi)
]

. (23)

The only quantity independent of the sources is the velocity of the test charge v′

2.
That allows to interpret the quantities in the square brackets as the electric field
and magnetic field of the set of source charges moving with different velocities. It
also shows that the electric and magnetic fields may be understood as a conse-
quence of electric charges only, in agreement with Ampère’s idea of magnetic fields
[13]. In addition, comparing the expressions in the square brackets in two different
frames S′, one obtains directly the boost transformation for the electric field and
magnetic field given in (5) and (6), as shown in Ref. [1]. Also, that implies that
electric and magnetic field form a six-component object concerning their Lorentz
transformations, and therefore inevitably forms an antisymmetric tensor of rank 2.

There is also an interesting connection between the Thomas-Wigner rotations
(18) and the contributions to the magnetic force qi(Ei ×βi) in (23). To find it, we
have to use Eqs. (15 – 19), replacing F → Fi = qiEi and β → βi. One has to note
that the magnetic force in (19) is contained in terms involving βR, and that only the
last term in (19) contains an antisymmetric term, particularly [γ(β⊗βR−βR⊗β)]F.
This antisymmetric term corresponds to the antisymmetric term in the inverse
of the Thomas-Wigner rotation in (18), since the other two matrices in (15) are
symmetric. Therefore, the i-th term of the magnetic force and the corresponding
contribution to the magnetic field are proportional to the antisymmetric part of
the Thomas-Wigner rotation W−1(−βR,−βi), which is proportional to the sine of
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the Thomas-Wigner-rotation angle,

sinψi =
2 sinφi(τi − cosφi)

1 + τ2i − 2τi cosφi
, (24)

where cosφi = β̂iβ̂R and

τi =

[

(γR + 1)(γi + 1)

(γR − 1)(γi − 1)

]1/2

. (25)

More precisely, it is proportional to the ratio of sines

sinψi

sinφi
, (26)

because the antisymmetric part of the Thomas-Wigner rotation is proportional to

the antisymmetric combination β̂i⊗ β̂R− β̂R⊗ β̂i which is proportional to sinφi. As
the magnetic force does contain both antisymmetric and symmetric combinations

of tensor products of unit vectors β̂i and β̂R, and the symmetric one is generally
proportional to unity, one obtains the result (26).

We obtained the result (24) from (18) for both velocities in the x-y plane, and
it agrees up to the sign of cosφi with the corresponding result in [12]. This is the
second interesting result of our paper.

5. Conclusion

We have derived the Lorentz transformation of force using only two force boost
transformations from the inertial frame in which the test particle is momentar-
ily at rest to an arbitrary inertial frame, and the corresponding Thomas-Wigner
rotation. The expression for the Thomas-Wigner rotation of the coordinates and
force rotation is explicitly given, and it agrees with the corresponding results in
literature obtained using different calculation techniques. The force transformation
is in accordance with expressions found previously in the literature, using direct
boosting between initial and final frame. In our derivation, the dependence on the
velocity in the final inertial frame appears naturally.

We have stressed some of the consequences of this force transformations, which
are usually not connected with the Lorentz force transformation in the literature.
Particularly, we showed that the magnetic field contributions are proportional to
the Thomas-Wigner rotations corresponding to the pairs of boost transformations
from the source rest frames, over the test-particle rest frame, to the laboratory
frame.
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LORENTZOVA TRANSFORMACIJA SILA U DVA KORAKA

Izvodi se Lorentzova transformacija sile na prirodniji način primjenom dviju
“boost” transformacija i odgovarajuće Thomas-Wignerove rotacije. Daju se neki
zaključci o toj transformaciji.
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