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Potential-energy surfaces and pairing energy maps of nuclei with triaxial shapes are studied in the framework
of the relativistic Hartree-Bogoliubov (RHB) model. The recently introduced separable pairing force, adjusted in
nuclear matter to the pairing gap of the Gogny force, is employed in the pairing channel of the three-dimensional
RHB model for triaxial shapes, and the density-dependent meson-exchange effective interaction (DD-ME2) is
used in the particle-hole channel. Even-A Pt isotopes with triaxial ground-state shapes and Sm nuclei with γ -soft
potential-energy surfaces are analyzed.
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I. INTRODUCTION

The structure of heavy complex nuclei with a large number
of active valence nucleons is, at present, best described by the
framework of nuclear energy density functionals (NEDF). A
variety of structure phenomena, not only in stable nuclei, but
also in regions of nuclei far from the valley of β stability
and close to the nucleon drip lines, have been described
with self-consistent mean-field models based on the Gogny
interaction, the Skyrme energy functional, and the relativistic
meson-exchange effective Lagrangians [1,2].

Self-consistent relativistic mean-field (RMF) models have
been employed in analyses of properties of ground and excited
states in spherical and deformed nuclei. For a quantitative
analysis of open-shell nuclei it is also necessary to consider
pairing correlations. Pairing has often been taken into account
in a very phenomenological way in the BCS model with
the monopole pairing force, adjusted to the experimental
odd-even mass differences. In many cases, however, this
approach presents only a poor approximation. The physics
of weakly bound nuclei, in particular, necessitates a unified
and self-consistent treatment of mean-field and pairing corre-
lations. This has led to the formulation and development of
the relativistic Hartree-Bogoliubov (RHB) model [3], which
represents a relativistic extension of the conventional Hartree-
Fock-Bogoliubov framework. In most applications of the RHB
model [2] the pairing part of the Gogny force [4] has be
employed in the particle-particle (pp) channel

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/µi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σP τ ), (1)

with the set D1S [5] for the parameters µi , Wi , Bi , Hi ,
and Mi (i = 1, 2). A basic advantage of the Gogny force
is the finite range, which automatically guarantees a proper
cutoff in momentum space. However, the resulting pairing
field is nonlocal and the solution of the corresponding Dirac-

Hartree-Bogoliubov integro-differential equations can be time
consuming, especially in the case of three-dimensional (3D)
calculations for nuclei with triaxial shapes. An alternative is the
use of a zero-range, possibly density-dependent, δ force in the
pp channel of the RHB model [6], but this approach introduces
an additional cutoff parameter in energy. The effective range
of the pairing interaction is determined by the energy cutoff,
and the strength parameter must be chosen accordingly in
order to reproduce empirical pairing gaps. In Ref. [7] we
have implemented a renormalization scheme for the relativistic
Hartree-Bogoliubov equations with a zero-range pairing inter-
action. The procedure is equivalent to a simple energy cutoff
with a position-dependent coupling constant, and the resulting
average pairing gaps and pairing energies do not depend on
the cutoff energy. A density-dependent strength parameter of
the zero-range pairing can be adjusted in such a way that the
renormalization procedure reproduces in symmetric nuclear
matter the pairing gap of the Gogny force equation (1).

In a series of recent articles [8–10] we have introduced a
separable form of the pairing force for RHB calculations in
spherical and axially deformed nuclei. The force is separable
in momentum space, and is completely determined by two
parameters that are adjusted to reproduce in symmetric nuclear
matter the bell-shape curve of the pairing gap of the Gogny
force. In applications to finite nuclei, when transformed from
momentum to coordinate space, this pairing force is no
longer separable because of translational invariance. It has
been shown, however, that a method developed by Talmi and
Moshinsky can be used to represent the corresponding pp
matrix elements as a sum of a finite number of separable
terms. When the nucleon wave functions are expanded in
a harmonic-oscillator basis, spherical or axially deformed,
the sum converges relatively quickly (i.e., a reasonably small
number of separable terms reproduce with high accuracy the
results of calculations performed in a complete basis). The
simple separable force considered in Refs. [8–10] reproduces
pairing properties of spherical and axially deformed nuclei
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calculated with the original Gogny force, but with the impor-
tant advantage that the computational cost is greatly reduced.

In the present work we extend the model to the calcula-
tion of energy surfaces of nuclei with triaxial shapes. The
three-dimensionsl (3D) RHB model with a separable pairing
interaction in the pp channel enables very efficient systematic
calculations of RHB binding-energy surfaces in the β-γ plane,
based on relativistic nuclear energy density functionals, that
can eventually be used as input for the generator coordinate
method configuration mixing of angular momentum projected
triaxial wave functions, or to determine the parameters of
a five-dimensional collective Hamiltonian for quadrupole
vibrational and rotational degrees of freedom [11]. In Sec. II we
introduce the 3D RHB model and derive the pp matrix element
of the pairing force as a sum of a finite number of separable
terms in the basis of a 3D harmonic oscillator. Illustrative
calculations for even-A Sm and Pt isotopes are presented in
Sec. III. Section IV summarizes the results and ends with an
outlook for future applications. Details on the expansion of
single-nucleon spinors in the 3D harmonic-oscillator basis,
the transformation of the product of harmonic-oscillator wave
functions to the center-of-mass frame, and calculation of
pairing matrix elements, are included in Appendixes A–C.

II. 3D RELATIVISTIC HARTREE-BOGOLIUBOV MODEL
WITH A SEPARABLE PAIRING INTERACTION

The relativistic Hartree-Bogoliubov framework [2] pro-
vides a unified description of ph and particle-particle pp corre-
lations on a mean-field level by using two average potentials:
the self-consistent mean field that encloses all the long-range
ph correlations, and a pairing field �̂ which sums up the pp
correlations. The ground state of a nucleus is described by a
generalized Slater determinant |�〉 that represents the vacuum
with respect to independent quasiparticles. The quasiparticle
operators are defined by the unitary Bogoliubov transformation
of the single-nucleon creation and annihilation operators,

α+
k =

∑
l

Ulkc
+
l + Vlkcl, (2)

where U and V are the Hartree-Bogoliubov wave functions
determined by the solution of the RHB equation. In coordinate
representation

(
hD − m − λ �

−�∗ −h∗
D + m + λ

) (
Uk(r)

Vk(r)

)
= Ek

(
Uk(r)

Vk(r)

)
.

(3)

In the relativistic case the self-consistent mean field corre-
sponds to the single-nucleon Dirac Hamiltonian ĥD . In the
usual σ , ω, and ρ meson-exchange representation, and for
the stationary case with time-reversal symmetry (i.e., for the
ground-state of an even-even nucleus),

ĥD = −iα∇ + β[m + gσσ (r)] + gωω0(r)

+ gρτ3ρ
0(r) + e

1 − τ3

2
A0(r). (4)

The classical meson fields are solutions of the stationary Klein-
Gordon equations:(−� + m2

σ

)
σ (r) = −gσ (ρ)ρs(r), (5)(−� + m2

ω

)
ω0(r) = gω(ρ)ρ(r), (6)(−� + m2

ρ

)
ρ0(r) = gρ(ρ)ρ0

3 (r), (7)

−�A0(r) = ρp(r), (8)

for the σ meson, the timelike components of the ω meson and
ρ meson, and the Poisson equation for the vector potential,
respectively. In the general case when the meson-nucleon
couplings gσ , gω, and gρ explicitly depend on the nucleon
(vector) density ρ, there is an additional contribution to the
nucleon self-energy—the rearrangement term [2], essential for
the energy-momentum conservation and the thermodynamical
consistency of the model.

In Eq. (3) m is the nucleon mass, and the chemical potential
λ is determined by the particle number subsidiary condition in
order that the expectation value of the particle number operator
in the ground state equals the number of nucleons. The pairing
field � reads

�ab(r, r ′) = 1

2

∑
c,d

Vabcd (r, r ′)κcd (r, r ′), (9)

where Vabcd (r, r ′) are the matrix elements of the two-body
pairing interaction, and the indices a, b, c, and d denote
the quantum numbers that specify the Dirac indices of the
spinor. The column vectors denote the quasiparticle wave
functions, and Ek are the quasiparticle energies. The dimension
of the RHB matrix equation is two times the dimension
of the corresponding Dirac equation. For each eigenvector
(Uk, Vk) with positive quasiparticle energy Ek > 0, there
exists an eigenvector (V ∗

k , U ∗
k ) with quasiparticle energy

−Ek . Since the baryon quasiparticle operators satisfy fermion
commutation relations, the levels Ek and −Ek cannot be
occupied simultaneously. For the solution that corresponds to
a ground state of a nucleus with an even particle number, one
usually chooses the eigenvectors with positive eigenvalues Ek .

The single-particle density and the pairing tensor, con-
structed from the quasiparticle wave functions

ρcd (r, r ′) =
∑
k>0

V ∗
ck(r)Vdk(r ′), (10)

κcd (r, r ′) =
∑
k>0

U ∗
ck(r)Vdk(r ′), (11)

are calculated in the no-sea approximation (denoted by k > 0):
the summation runs over all quasiparticle states k with
positive quasiparticle energies Ek > 0 but omits states that
originate from the Dirac sea. The latter are characterized by a
quasiparticle energy larger than the Dirac gap (≈1200 MeV).

Pairing correlations in nuclei are restricted to an energy
window of a few MeV around the Fermi level, and their
scale is well separated from the scale of binding energies,
which are in the range of several hundred to a thousand MeV.
There is no empirical evidence for any relativistic effect in the
nuclear pairing field �̂ and, therefore, a hybrid RHB model
with a nonrelativistic pairing interaction can be formulated.
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For a general two-body interaction, the matrix elements of the
relativistic pairing field read

�̂a1p1,a2p2 = 1

2

∑
a3p3,a4p4

〈a1p1, a2p2|V pp

× |a3p3, a4p4〉aκa3p3,a4p4 , (12)

where the indices (p1, p2, p3, p4 ≡ f, g) refer to the large and
small components of the quasiparticle Dirac spinors:

U (r, s, t) =
(

fU (r, s, t)

igU (r, s, t)

)
, V (r, s, t) =

(
fV (r, s, t)

igV (r, s, t)

)
.

(13)

In practical applications of the RHB model to finite open-shell
nuclei, only the large components of the spinors Uk(r) and
Vk(r) are used to build the nonrelativistic pairing tensor κ̂ in
Eq. (10). The resulting pairing field reads

�̂a1f,a2f = 1

2

∑
a3f,a4f

〈a1f, a2f |V pp|a3f, a4f 〉aκa3f,a4f . (14)

The other components, �̂fg , �̂gf , and �̂gg , can be safely
omitted [12].

The Dirac-Hartree-Bogoliubov equations and the equations
for the meson fields are solved by expanding the nucleon
spinors U (r, s, t) and V (r, s, t), and the meson fields, in
the basis of a three-dimensional harmonic oscillator (HO)
in Cartesian coordinates. In this way both axial and triaxial
nuclear shapes can be described. In addition, to reduce the
computational task, it is assumed that the total densities are
symmetric under reflections with respect to all three planes
xy, xz, and yz. When combined with time-reversal invariance,
this also implies that parity is conserved. The single-nucleon
basis is defined in Appendix A.

In Ref. [8] a new separable form of the pairing interaction
has been introduced, with parameters adjusted to reproduce
the pairing properties of the Gogny force in nuclear matter.
The gap equation in the 1S0 channel reads

�(k) = −
∫ ∞

0

k′2dk′

2π2
〈k|V 1S0 |k′〉 �(k′)

2E(k′)
, (15)

and the pairing force is separable in momentum space,

〈k| V 1S0 |k′〉 = −Gp(k)p(k′). (16)

By assuming a simple Gaussian ansatz p(k) = e−a2k2
, the

two parameters G and a have been adjusted to reproduce the
density dependence of the gap at the Fermi surface, calculated
with a Gogny force. For the D1S parametrization [5] of the
Gogny force: G = −728 MeVfm3 and a = 0.644 fm. When
the pairing force Eq. (16) is transformed from momentum to
coordinate space, it takes the form

V (r1, r2, r ′
1, r ′

2) = Gδ(R − R′)P (r)P (r ′) 1
2 (1 − P σ ), (17)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center of

mass and the relative coordinates, and P (r) is the Fourier
transform of p(k),

P (r) = 1

(4πa2)3/2
e−r2/4a2

. (18)

The pairing force has finite range and, because of the
presence of the factor δ(R − R′), it preserves translational
invariance. Even though δ(R − R′) implies that this force is not
completely separable in coordinate space, the corresponding
antisymmetrized pp matrix elements

〈αβ̄|V |γ δ̄〉a = 〈αβ̄|V |γ δ̄〉 − 〈αβ̄|V |δ̄γ 〉, (19)

can be represented as a sum of a finite number of separable
terms in the basis of a 3D harmonic oscillator (see Appendix C
for details):

〈αβ̄|V |γ δ̄〉a = G

N0
x∑

Nx=0

N0
y∑

Ny=0

N0
z∑

Nz=0

(
V

NxNyNz

αβ̄

)∗
V

NxNyNz

γ δ̄
, (20)

where Nx , Ny , and Nz are the quantum numbers of the
corresponding one-dimensional (1D) HO’s in the center-of-
mass frame (cf. Appendix B). This means that the pairing field
can also be written as a sum of a finite number of separable
terms

�αβ̄ = G

N0
x∑

Nx=0

N0
y∑

Ny=0

N0
z∑

Nz=0

(
V

NxNyNz

αβ̄

)∗
PNxNyNz

, (21)

with the coefficients

PNxNyNz
=

∑
γ δ>0

V
NxNyNz

γ δ̄
κγ δ̄. (22)

The advantage of using the separable pairing interaction
Eq. (17) is that the matrices V

NxNyNz

αβ̄
are calculated only once

at the beginning of a self-consistent calculation [the explicit
expression in a 3D Cartesian oscillator basis for which is given
by Eq. (C15)]. The coefficients PNxNyNz

are recalculated at
each iteration step, using the corresponding updated pairing
tensor κ .

The number of terms in Eqs. (20) and (21) is, in principle,
limited by the dimension of the oscillator basis. If single-
particle oscillator states |nxnynz〉 with nx + ny + nz � Nmax

f

form the basis, the summation over the quantum number of
the 1D HO in the center-of-mass frame in Eq. (C7) runs over
Nx = 0, . . . ,2Nmax

f . This means that the maximal total number
of terms in Eqs. (20) and (21) equals Nmax

tot = (2Nmax
f + 1)3.

However, results of calculations performed in Refs. [8,10]
suggest that the actual number of terms that give significant
contributions to the pairing field is much smaller. If a cutoff
condition is imposed

Nx � Nc
x , Ny � Nc

y , Nz � Nc
z , (23)

the total number of separable terms becomes

Nsep = 1
8

(
Nc

x + 2
)(

Nc
y + 2

)(
Nc

z + 2
)
. (24)

In the next section we will compare some results of illustrative
3D RHB calculations with those obtained assuming axial
symmetry [10]. For a meaningful comparison with results
calculated using the axial RHBZ code [10], we will make the
following choice: Nx + Ny � Nc

⊥ and Nz � Nc
z . In this case

the total number of separable terms equals

N axial
sep = 1

8 (Nc
⊥ + 1)2

(
Nc

z + 2
)
. (25)
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III. ILLUSTRATIVE CALCULATIONS

In this section we present the results of illustrative 3D RHB
calculations for two cases: a sequence of γ -soft Sm nuclei and
a chain of Pt isotopes that display minima in the γ plane. The
separable pairing force Eq. (17) is used in the pp channel,
and the mean field is determined by the density-dependent
meson-exchange effective interaction (DD-ME2) [13] in the
ph channel. DD-ME2 has been adjusted to empirical properties
of symmetric and asymmetric nuclear matter, binding energies,
charge radii, and neutron radii of spherical nuclei. The
interaction has been tested in calculations of ground-state
properties of a large set of spherical and deformed nuclei. An
excellent agreement with data has been obtained for binding
energies, charge isotope shifts, and quadrupole deformations.
When used in the relativistic random-phase approximation
(RPA), DD-ME2 reproduces with high accuracy data on
isoscalar and isovector collective excitations [13,14].

A. Ground-state shapes of Sm isotopes

In Figs. 1 and 2 we display the self-consistent RHB
triaxial quadrupole binding-energy maps of the 134–156Sm
isotopes in the β-γ plane (0◦ � γ � 60◦). The map of the
energy surface as a function of the quadrupole deformation
is obtained by imposing constraints on the axial and triaxial
quadrupole moments. The method of quadratic constraint uses
an unrestricted variation of the function

〈Ĥ 〉 +
∑

µ=0,2

C2µ(〈Q̂2µ〉 − q2µ)2, (26)

where 〈Ĥ 〉 is the total energy and 〈Q̂2µ〉 denotes the expecta-
tion value of the mass quadrupole operators

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (27)

q2µ is the constrained value of the multipole moment and C2µ

the corresponding stiffness constant [15].
The energy maps shown in Figs. 1 and 2 nicely illustrate

the gradual transition from the prolate and γ -soft deformed
light isotopes 134,136Sm, through the spherical N = 82 neutron
closed-shell nucleus 144Sm, to the strongly prolate deformed,
axial nuclei 154,156Sm. The isotopes below the N = 82 closed
shell are all γ soft and, just before the shell closure, one
finds a slightly oblate minimum in 140Sm. Sm nuclei with
N > 82 quickly develop a pronounced prolate deformation,
much stiffer with respect to the γ degree of freedom than
isotopes below N = 82. Heavy Sm isotopes are characterized
by axially symmetric shapes with pronounced prolate minima
at β > 0.3.

The binding-energy maps correspond to self-consistent
solutions of the RHB equations, obtained by expanding the
nucleon spinors and the meson fields in the basis of a three-
dimensional harmonic oscillator in Cartesian coordinates. In
the present calculation the basis includes Nmax

f = 14 major
oscillator shells. In Figs. 3 and 4 we plot the corresponding
contour maps of the proton and neutron pairing energies in the
β-γ plane for the three lighter isotopes 134,136,138Sm, and for
the three heavier nuclei 152,154,156Sm, respectively. By using
the separable pairing force Eq. (17), the pairing field Eq. (21)
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FIG. 1. (Color online) Self-consistent RHB triaxial quadrupole
binding-energy maps of the even-even isotopes 134–144Sm in the β–γ

plane (0 � γ � 60◦). All energies are normalized with respect to the
binding energy of the absolute minimum (red dot). The contours join
points on the surface with the same energy (in MeV).

and the pairing energy

Epair = G

N0
x∑

Nx=0

N0
y∑

Ny=0

N0
z∑

Nz=0

|PNxNyNz
|2 (28)

are calculated as sums of a finite number of separable terms.
Because pairing energy depends on the level density at the
Fermi surface for any given deformation, the plots in Figs. 3
and 4 show pronounced fluctuations that reflect the underlying
shell structure. The strong fluctuations in the pairing energy are
compensated to a large extent by the mean-field energy in the
ph channel, leading to the much smoother total binding-energy
maps shown in Figs. 1 and 2.

We have verified the 3D calculations in the pp channel by
comparing the results for ground-state properties of 134–154Sm
with those obtained using the axial RHBZ code with the same
separable pairing force [10] and with the pairing part of the
original Gogny force [5,16]. In the case when axial symmetry
is assumed, the expansion for the pairing field runs over the
quantum numbers Nz and Np of the HO in the center-of-
mass frame, corresponding to the z and ρ coordinates of the
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FIG. 2. (Color online) Same as described in the caption to Fig. 1
but for the isotopes 146–156Sm.

cylindrical coordinate system,

�12 = −G

N0
z∑

Nz

N0
p∑

Np

W
NzNp

12 PNz
PNp

. (29)

The maximal values for the quantum numbers in the expansion
of Dirac spinors are n0

z = Nmax
f and n0

p = Nmax
f /2, i.e., the

maximal values for the coefficients in expansion (29) are
N0

z = 2n0
z = 2Nmax

f and N0
p = 2n0

p = Nmax
f . In Ref. [10] it

has been shown that for axial calculations of prolate deformed
nuclei, sufficient accuracy is achieved if the expansion of
pairing matrix elements is limited to Np � N0

p = 5 and Nz �
N0

z = 14. For this choice of the cutoff in the expansion of the
pairing matrix elements in the basis of the HO in the center-
of-mass frame, the resulting pairing energies reproduce to a
very good approximation results obtained with the calculation
in the full basis, and also those obtained with the Gogny force
D1S in the pairing channel. In the present 3D calculation we
have, therefore, imposed the following cutoff condition for the
expansion in Eqs. (20), (21), and (22),

Nz = 0, 2, . . . , N0
z = 14 and

(30)
Nx + Ny = 0, 2, . . . , 2N0

p = 5.
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FIG. 3. (Color online) Proton (left column) and neutron (right
column) pairing energies Epp(nn) = −Epair in Eq. (28) for the nuclei
134,136,138Sm in the β–γ plane (0 � γ � 60◦). The contours join points
on the surface with the same energy (in MeV).

In Fig. 5 we display the 3D RHB ground-state binding
energies for the Sm isotopes (72 � N � 92) in comparison
with data from the compilation of Audi and Wapstra [17].
Calculations have also been performed with the axial RHBZ

code [10], and the inset plots the relative differences (in
percent): (ERHBZ − E3DRHB)/E3DRHB, between the corre-
sponding ground-state binding energies. As a further test,
Fig. 6 compares the 3D RHB and axial (RHBZ) results for
the self-consistent ground-sate quadrupole deformations and
neutron and proton pairing energies of even-A Sm isotopes.
In calculations with axial symmetry (RHBZ) both the separable
force and the Gogny D1S force [5] are used in the pairing
channel. The agreement between the three sets of results
demonstrates not only the numerical accuracy of the new 3D
computer code, but also that by using the separable pairing
force in deformed nuclei, virtually identical pairing energies
are calculated as with the original Gogny force.

B. Evolution of triaxial shapes in Pt isotopes

Even though a large majority of deformed nuclei display
axially symmetric prolate ground-state shapes, some regions
of the nuclide chart are characterized by the occurrence of
oblate deformed and triaxial shapes. One of the examples is the
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FIG. 4. (Color online) Same as described in the caption to Fig. 3
but for the isotopes 152,154,156Sm.

A ≈ 190 mass region, where both prolate to oblate shape
transitions as well as triaxial ground-state shapes have been
predicted. An extensive analysis of this region has recently
been performed using nonrelativistic Skyrme and Gogny in-
teractions [18]. The self-consistent Hartree-Fock-Bogoliubov
model has been used to study the evolution of the ground-state
shapes of Yb, Hf, W, Os, and Pt isotopes. In particular, it has
been shown that the isotopic chains with larger Z numbers in
this mass region display a tendency toward triaxial shapes.

In this study we present the results of 3D RHB calculations
of binding-energy maps for the sequence of even-A Pt isotopes
with neutron numbers in the interval from N = 106 to
N = 126. In Table I we list the calculated values of the
β and γ deformation parameters for the absolute minima
of the potential-energy surfaces (PES). One can follow the
transition from the prolate deformed 186Pt, through the region
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FIG. 5. Binding energy per nucleon for the sequence of Sm
isotopes, calculated with the 3D RHB model and compared to data
[17]. In the inset we display the relative differences (in %): (ERHBZ −
E3DRHB)/E3DRHB, between the binding energies calculated using the
3D RHB and the axial (RHBZ) relativistic Hartree-Bogoliubov models.

of triaxially deformed 188–198Pt isotopes, to the slightly oblate
200Pt, and finally to the spherical 202–204Pt isotopes. The
ground-state β deformation steadily decreases as the number
of neutrons increases and approaches the closed shell at
N = 126. In order to analyze the nature of the shape transition
in the Pt isotopic chain, in Fig. 7 we display the self-consistent
RHB quadrupole binding-energy maps of the even-A 190–200Pt
isotopes in the β-γ plane (0

◦ � γ � 60
◦
). All energies are

normalized with respect to the binding energy of the absolute
minimum, and the contours join points on the surface with
the same energy. The PES of 190−198Pt are γ soft, with shallow
minima at γ ≈ 30

◦
. The nucleus 200Pt displays a slightly oblate

minimum, signaling the shell closure at N = 126.
As an illustrative example for the microscopic origin of the

triaxial ground-state deformations, we consider the nucleus
192Pt. The axially symmetric binding-energy curve of 192Pt
is plotted in the left panel of Fig. 8 (positive values of
β correspond to prolate γ = 0

◦
, and negative β to oblate

γ = 60
◦

shapes). The plot in the panel on the right shows the
binding-energy curve of 192Pt at the fixed axial deformation
β = 0.18, which corresponds to the position of the ground-
state minimum, as a function of the triaxial deformation
parameter γ . A well-developed triaxial minimum, calculated
at γ = 33

◦
, has a depth of 0.8 MeV, whereas the oblate and

prolate minima seen in the left panel are only saddle points in
the β-γ plane.

The formation of deformed minima can be related to the
occurrence of gaps or regions of low single-particle level
density around the Fermi surface. In Figs. 9 and 10 we plot the

TABLE I. Calculated values of the β and γ deformation parameters for the absolute minima of the potential-energy
surfaces (PES) of even-A Pt isotopes with 186 � A � 204.

A 186 188 190 192 194 196 198 200 202 204

β 0.30 0.28 0.19 0.18 0.15 0.13 0.12 0.08 0 0
γ 0◦ 9◦ 34◦ 34◦ 34◦ 31◦ 33◦ 60◦ 0◦ 0◦
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FIG. 7. (Color online) Same as described in the caption to Fig. 1
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shapes). Right panel: binding-energy curve of 192Pt as a function of the
triaxial deformation parameter γ . The axial deformation is held fixed
at β = 0.18, which corresponds to the position of the ground-state
minimum.

parity, and short-dashed curves levels with negative parity. The
long-dashed (yellow) curve corresponds to the Fermi level. The
leftmost and the rightmost panels display prolate and oblate
axially symmetric single-particle levels, respectively, whereas
the middle panel shows the single-particle levels as functions
of γ for the fixed value of the axial deformation |β| = 0.18.
This type of plot has been introduced in Ref. [19] to enable the
identification of K quantum numbers of triaxial single-particle
levels in the limits of axial symmetry at γ = 0

◦
and γ = 60

◦
. In

Fig. 9 we notice the occurrence of the gap between the proton
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FIG. 9. (Color online) Proton canonical single-particle energy
levels of 192Pt. Solid curves denote levels with positive parity and
short-dashed curves levels with negative parity. The long-dashed
(yellow) curve corresponds to the Fermi level. The leftmost and
the rightmost panels display prolate and oblate axially symmetric
single-particle levels, respectively. The middle panel shows the
single-particle levels as functions of γ for the fixed value of the
axial deformation |β| = 0.18.
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FIG. 10. (Color online) Same as described in the caption to Fig. 9
but for neutron single-particle levels.

single-particle levels in the vicinity of the Fermi surface around
γ = 30

◦
. The energy gap predominantly results from the

down-sloping of one particular single-particle orbital, which
originates from the spherical d5/2 shell, as the deformation
parameter γ increases from γ = 0

◦
to γ = 60

◦
. This result is

in agreement with the findings of Ref. [18]. The corresponding
neutron single-particle levels, shown in Fig. 10, also display
a region of low-level density around the Fermi surface at
γ ≈ 30

◦
, although the gap is somewhat less pronounced in

comparison to the proton gap. Finally, in Fig. 11 we plot
the corresponding neutron and proton pairing energies as
functions of the deformation parameter γ at the axial minimum
|β| = 0.18. The decrease of the pairing energy reflects the low
single-particle level density around the Fermi surface, which
is the formation of gaps both for protons and neutrons.

IV. SUMMARY AND OUTLOOK

Realistic self-consistent mean-field calculations based on
finite-range interactions, including exchange terms and/or
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FIG. 11. Neutron and proton pairing energies in the 192Pt nucleus
as a function of the deformation parameter γ . The axial deformation
parameter is fixed at β = 0.18, which corresponds to the position of
the ground-state minimum.

pairing correlations, still present a considerable computational
challenge [20–23], particularly if one considers complex
triaxial shapes or extensions beyond the simplest mean-field
approximation. A great advantage of mean-field models based
on Skyrme-type zero-range interactions is that they provide
a simple and elegant treatment of Fock exchange and pairing
terms [24,25]. The disadvantage of such forces (i.e., the fact
that they are constant in momentum space and can induce
scattering of nucleons very high up into the continuum), does
not appear at the Hartree or Hartree-Fock level, at which one
considers only momenta up to the Fermi surface. In the pairing
channel, however, because of the specific form of the BCS or
Bogoliubov ansatz that takes into account pairing correlations
on the mean-field level, ultraviolet divergencies occur for
zero-range forces. One possible solution is the various cutoff
procedures that have been used in the literature (cf. Ref. [26]
and references therein). All these approximations, however,
include additional nonphysical cutoff parameters. This is not a
problem in calculations along the valley of beta stability, where
gap parameters can be deduced from experimental masses.
However, the use of cutoff parameters limits the predictive
power of such models in unknown regions of the nuclear chart,
such as for superheavy elements or very neutron-rich isotopes.

A completely different approach to the treatment of pairing
correlations is the use of separable forces. A separable form
of the pairing force for RHB calculations in finite nuclei
has recently been introduced [8]. The force is separable
in momentum space, and is completely determined by two
parameters that are adjusted to reproduce the bell-shape curve
of the pairing gap of the Gogny force in symmetric nuclear
matter. Because of translational invariance, the pairing force
is no longer exactly separable in coordinate space, but Talmi-
Moshinsky techniques allow a simple transformation into a
quickly converging series of separable terms in a harmonic-
oscillator basis. Although different from the Gogny force, the
corresponding effective pairing interaction has been shown
to reproduce with high accuracy pairing gaps and energies
calculated with the original Gogny force, both in spherical and
axially deformed nuclei. In particular, this approach retains
the basic advantage of the finite-range Gogny force (i.e., the
natural cutoff in momentum space.

Applications have so far been restricted to the description
of spherical [8] and axially deformed nuclei [10]. In this work
we have extended the model to describe triaxially deformed
nuclei. The numerical accuracy of the new model has been
analyzed by comparing results with those obtained in axially
symmetric calculations, using both the separable force as well
as the original Gogny D1S force in the pairing channel.

To illustrate the applicability of this force in the description
of realistic systems with possible triaxial deformations, we
have explored the chain of even-A Sm nuclei (Z = 62) in the
interval from 134Sm to 156Sm, and the sequence of Pt isotopes
(Z = 78) ranging from 186Pt to 204Pt. For the magic neutron
number N = 82 (i.e., for the 144Sm isotope), a stable spherical
minimum is found in the β-γ plane. The two neighboring
nuclei 142Sm and 146Sm are still spherical, but with much softer
energy surfaces. In heavier isotopes we find a rather rapid
transition to prolate shapes with well-pronounced minima and
increasing β deformation up to β ≈ 0.3. In these heavier nuclei
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we also find a soft saddle point on the oblate side that eventually
becomes a shallow second minimum in the isotope 156Sm.
Decreasing the neutron number below the closed shell at N =
82, a γ -soft valley develops with increasing β deformation.
For 140Sm isotope we find a shallow oblate minimum, whereas
for the lighter isotopes the minima are located on the prolate
side, but the calculation predicts large fluctuations in the γ

direction. In the case of Pt nuclei, starting with a prolate axially
symmetric minimum at 186Pt, we find an evolution of triaxial
shapes in the isotopes 188–198Pt, with pronounced minima of
the binding-energy maps close to γ = 30◦. 200Pt displays an
oblate shape and, with decreasing β deformation, spherical
shapes are predicted as the closed shell at N = 126 in 204Pt
is approached. The microscopic origin of the formation of
triaxial minima has been illustrated in the example of 192Pt.

One can envisage many possible applications of the sepa-
rable pairing force. The force is simple enough to be applied
in otherwise time-consuming calculations [e.g., description
of triaxial effects, rotating nuclei, the fission process, and
spherical and deformed quasiparticle random phase approx-
imation (QRPA)]. It can also be used in various beyond mean-
field extensions, such as restoration of broken symmetries,
fluctuations of quadrupole moments, and particle-vibration
coupling. In the current version of the model, the pairing force
has been adjusted to the pairing gap of the phenomenological
Gogny D1S force. However, one could also adjust the effective
pairing force to a pairing gap in nuclear matter calculated in
an ab initio approach [27], or even use a more sophisticated
separable representation of the NN interaction [28].
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APPENDIX A: THE SINGLE-NUCLEON BASIS

The Dirac single-nucleon spinors are expanded in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
in Cartesian coordinates. In one dimension,

φnµ
(xµ) = b−1/2

µ Nnµ
Hnµ

(ξµ)e−ξ 2
µ/2 (µ ≡ x, y, z), (A1)

ξµ ≡ xµ/bµ, and the oscillator length is defined as

bµ =
√

h̄

mωµ

. (A2)

The normalization factor reads

Nn = π−1/4(2nn!)−1/2, (A3)

and Hn(ξ ) denotes the Hermite polynomials [29]∫ ∞

−∞
Hn(ξ )Hn′(ξ )e−ξ 2

dξ = δnn′ . (A4)

The basis state can be defined as the product of three HO wave
functions (one for each dimension) and the spin factor:

φα(r; ms) = φnx
(ξx)φny

(ξy)φnz
(ξz)χms

, (A5)

where the notation is α ≡ {nx, ny, nz}. For each combination
of quantum numbers {nx, ny, nz}, the spin part is chosen
in such a way that the basis state is an eigenfunction of
the x-simplex operator Ŝx = P̂ e−iπĴx , where P̂ denotes the
parity operator. The positive and negative x-simplex operator
eigenstates [30],

|nxnynz; i = +〉 = |nxnynz〉 iny

√
2

[|↑〉 − (−1)nx |↓〉], (A6)

|nxnynz; i = −〉 = |nxnynz〉(−1)nx+ny+1

× iny

√
2

[|↑〉 + (−1)nx |↓〉], (A7)

are related by the time-reversal operator (T̂ = iσyK̂0)

|nxnynz; i = −〉 = T̂ |nxnynz; i = +〉. (A8)

For the Dirac spinor with a positive simplex eigenvalue, the
large component corresponds to positive eigenvalues and the
small component to negative eigenvalues,

ψi(r,+) =
(

fi(r,+)

igi(r,−)

)
. (A9)

The large and small components are expanded in terms of the
basis states Eqs. (A6) and (A7),

fi(r; +) =
αmax∑
α

f α
i φα(r; +) and

(A10)

gi(r; −) =
ᾱmax∑
ᾱ

gᾱ
i φᾱ(r; −).

Positive simplex eigenstates are denoted by |α〉 and negative
simplex eigenstates by |ᾱ〉. If the basis states are arranged as
{α1, . . . ,αM, ᾱ1, . . . ᾱM}, the x-simplex operator has a simple
block-diagonal form, whereas the time-reversal operator is
skew diagonal,

Ŝx = i

(
1 0

0 −1

)
and T̂ =

(
0 1

−1 0

)
. (A11)

If the dimension of each simplex block (i = ±) is M , the
dimension of the entire configuration space equals 2M . In the
present implementation of the model parity is also conserved,
and this allows a further reduction of the basis to four simplex-
parity blocks. For a given maximal number of oscillator shells
Nmax, the dimension of the HO basis can be determined as
follows. The states |nxnynz〉 within a major oscillator shell N

are arranged as
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nx ny nz

0 0 N

0 1 N − 1
...

...
...

0 N 0

1 0 N − 1
...

...
...

1 N − 1 0

N 0 0

and the number of 3D HO basis states in the shell N then
reads

nstates(N ) = (N + 1) + N + (N − 1) + · · · + 1

= 1
2 (N + 1)(N + 2). (A12)

Because parity is conserved, the basis can be separated into
positive and negative parity blocks. The dimension of each
block is determined by summing up the number of states in
even-N or odd-N shells:

npos. = 1

2

k+
max∑

k=0

(2k + 1)(2k + 2)

= 1

6
(k+

max + 1)(k+
max + 2)(4k+

max + 3), (A13)

nneg. = 1

2

k−
max∑

k=0

(2k + 2)(2k + 3)

= 1

6
(k−

max + 1)(k−
max + 2)(4k−

max + 9), (A14)

where k+
max = [Nmax/2] and k−

max = [(Nmax − 1)/2], and the
square brackets denote integer division.

APPENDIX B: TRANSFORMATION OF THE PRODUCT
OF 1D HO WAVE FUNCTIONS TO THE

CENTER-OF-MASS FRAME

By multiplying the generating function for the Hermite
polynomials

g(x, p, b) = e2xp/b−p2 =
∞∑

n=0

1

n!
pnHn(x/b), (B1)

with the factor 1√
b
π−1/4e−x2/2b2

, we obtain the generating
function for the HO wave functions:

1√
b
π−1/4e−x2/2b2+2xp/b−p2 =

∞∑
n=0

ηn(p)φn(x, b), (B2)

where ηn(p) denotes

ηn(p) = pn

√
2n

n!
. (B3)

For the product of two generating functions

g(x1, p1, b)g(x2, p2, b)

= 1

b
π−1/2e

− 1
2b2 (x2

1 +x2
2 )+ 2

b
(x1p1+x2p2)−(p2

1+p2
2)
, (B4)

a new set of coordinates is introduced,

x̃ = 1√
2

(x1 − x2)

X̃ = 1√
2

(x1 + x2)

}
⇐⇒

{
x1 = 1√

2
(X̃ + x̃)

x2 = 1√
2
(X̃ − x̃)

, (B5)

with an analogous relation for the variables p1 and p2. The
exponent in Eq. (B4) can now easily be expressed in terms of
the new coordinates,

g(x1, p1, b)g(x2, p2, b)

= 1

b
π−1/2e

− 1
2b2 (x̃2+X̃2)+ 2

b
(x̃p̃+X̃P̃ )−(p̃2+P̃ 2)

= g(X̃, P̃ , b)g(x̃, p̃, b). (B6)

By using the definition of the generating functions

g(X̃, P̃ , b)g(x̃, p̃, b)

=
∞∑

N=0

ηN (P̃ )φN (X̃, b)
∞∑

n=0

ηn(p̃)φn(x̃, b), (B7)

the coefficients ηN (P̃ ) and ηn(p̃) can be expressed in terms of
p1 and p2,

ηN (P̃ ) =
√

2N

N !
P̃ N =

√
1

N !
(p2 + p1)N

=
√

1

N !

N∑
M=0

(
N

M

)
pN−M

1 pM
2 , (B8)

ηn(p̃) =
√

2n

n!
p̃n =

√
1

n!
(p1 − p2)n

=
√

1

n!

n∑
m=0

(−1)n+m

(
n

m

)
pm

1 pn−m
2 . (B9)

The product of generating functions Eq. (B7) then reads

∞∑
n,N=0

φN (X̃, b)φn(x̃, b)

√
1

N !n!

N∑
M=0

n∑
m=0

(−1)n+m

×
(

N

M

) (
n

m

)
pN−M+m

1 pM+n−m
2 . (B10)

With the introduction of the auxiliary indices,

n1 = N − M + m and n2 = M + n − m, (B11)

the product Eq. (B10) can be rewritten in the form

g(X̃, P̃ , b)g(x̃, p̃, b)

=
∞∑

n1,n2=0

p
n1
1 p

n2
2

∞∑
n,N=0

φN (X̃, b)φn(x̃, b)

√
1

N !n!

×
N∑

M=0

n∑
m=0

(−1)n+m

(
N

M

)(
n

m

)
δn1,N−M+mδn2,M+n−m.

(B12)
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One of the Kronecker symbols can be used to eliminate the
sum over M ,

g(X̃, P̃ , b)g(x̃, p̃, b)

=
∞∑

n1,n2=0

p
n1
1 p

n2
2

∞∑
n,N=0

φN (X̃, b)φn(x̃, b)

√
1

N !n!
δn1+n2,N+n

×
n∑

m=0

(−1)n+m

(
N

N − n1 + m

) (
n

m

)
. (B13)

A comparison with the equivalent relation for the product
[cf. Eq. (B4)]

g(x1, p1, b)g(x2, p2, b)

=
∞∑

n1,n2=0

p
n1
1 p

n2
2

√
2n1+n2

n1!n2!
φn1 (x1, b)φn2 (x2, b), (B14)

leads to the final expression for the transformation of the
product of 1D HO wave functions,

φn1 (x1, b)φn2 (x2, b) =
∑
N,n

MnN
n1n2

φN (X̃, b)φn(x̃, b), (B15)

where MnN
n1n2

are the 1D Talmi-Moshinsky brackets [31–33]:

MnN
n1n2

=
√

n1!n2!

n!N !

√
1

2N+n
δn1+n2,n+N

∑
m

(−1)n+m

×
(

N

N − n1 + m

) (
n

m

)
. (B16)

For the calculation of matrix elements of the pairing interac-
tion, the center of mass and relative coordinates are used,

X ≡ 1

2
(x1 + x2) = 1√

2
X̃ and x ≡ x1 − x2 =

√
2x̃.

(B17)

The HO wave functions are expressed in terms of X and x,

φN (X̃, b) = φN (
√

2X, b) = 1√
b
NnHn(

√
2X/b)e−2x2/2b2

= 1√
2
φN (X,B), (B18)

φn(x̃, b) = φn(x/
√

2, b) = 1√
b
NnHn(x/

√
2b)e−x2/4b2

=
√

2φn(x, br ), (B19)

where we have defined the oscillator lengths B = b/
√

2 and
br = √

2b. Finally, the product of two HO wave functions ex-
pressed in terms of the center-of-mass and relative coordinates
reads

φn1 (x1, b)φn2 (x2, b) =
∑
N,n

MnN
n1n2

φN (X,B)φn(x, br ). (B20)

APPENDIX C: CALCULATION OF PAIRING
MATRIX ELEMENTS

The antisymmetric matrix elements of the pairing inter-
action Eq. (19) can be separated into a product of spin and

coordinate space factors

〈αβ̄|V |γ δ̄〉a = 〈αβ̄|W 1
2 (1 − P σ )|γ δ̄〉a. (C1)

The operator 1
2 (1 − P σ ) projects onto the S = 0 spin-singlet

product state

|γ δ̄〉S=0 = −|δ̄γ 〉S=0 = 1
2 in

γ
y +nδ

y (−1)n
δ
y+1

× δn
γ
x +nδ

x ,even[|↑↓〉 − |↓↑〉]|nγ nδ〉, (C2)

and the problem is reduced to the calculation of the spatial part
of the matrix element

〈αβ̄|V |γ δ̄〉a = (−i)n
α
y −n

β
y δ

nα
x +n

β
x ,eveni

n
γ
y −nδ

y

× δn
γ
x +nδ

x ,even〈nαnβ |W |nγ nδ1〉. (C3)

For W (r1, r2, r ′
1, r ′

2) = Gδ
(
R − R′)P (r)P (r ′) [cf. Eq. (17)],

the spatial part of the matrix element

〈nαnβ |W |nγ nδ〉 ≡
∫

φnα
(r1)φnγ

(r2)W (r1, r2, r ′
1, r ′

2)

×φnβ
(r ′

1)φnδ
(r ′

2)d3r1d
3r2d

3r ′
1d

3r ′
2 (C4)

can be decomposed into three Cartesian components

〈nαnβ |W |nγ nδ〉 = GWxWyWz. (C5)

Here we only derive a detailed expression for the x component

Wx =
∫

φnα
x
(x1, bx)φ

n
β
x
(x2, bx)P (x)δ(X − X′)P (x ′)

×φn
γ
x
(x ′

1, bx)φnδ
x
(x ′

2, bx)dx1dx2dx ′
1dx ′

2. (C6)

By transforming to the center of mass and relative coordinates
Eq. (B17), and making use of the 1D Talmi-Moshinsky
transformation Eq. (B20), the integrals over the center-of-mass
coordinates X and X′ are solved analytically, and we find

Wx =
∑
Nx

M
nxNx

nα
x n

β
x

Inx
(bx)M

n′
xNx

n
β
x nδ

x

In′
x
(bx), (C7)

where the selection rules

nx
α + nx

β = nx + Nx and nx
γ + nx

δ = n′
x + N ′

x. (C8)

have been used to eliminate the sums over nx and n′
x . Inx

(bx)
reads

Inx
(bx) =

∫
P (x)φnx

(x, bx,r )dx. (C9)

To evaluate this integral, we make use of the generating
function for the HO wave functions Eq. (B2), and calculate
the following expression:

J (p, b) =
∫ ∞

−∞
g(x, p, b)P (x)dx

= π−1/4

√
b

b2 + 2a2

∞∑
n=0

(−1)n
(

b2 − 2a2

b2 + 2a2

)n

p2n.

(C10)
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Using the definition of the generating function Eq. (B2), this
integral can also be written as follows:

J (p, b) =
∞∑

n=0

p2n

√
22n

(2n)!

∫ ∞

−∞
P (x)φ2n(x, b). (C11)

The series contains only even powers because P (x) is a
symmetric function. By comparing Eqs. (C10) and (C11), we
obtain∫ ∞

−∞
P (x)φn(x, b) = π−1/4

√
b

b2 + 2a2
(−1)n/2

×
(

b2 − 2a2

b2 + 2a2

)n/2

δn,even, (C12)

and finally, inserting the relative oscillator length br = √
2b

(cf. Appendix B),

In(b) = 1

(2π )1/4

√
b

b2 + a2
(−1)n/2

(
b2 − a2

b2 + a2

)n/2

δn,even.

(C13)

To summarize, we find that the antisymmetrized matrix
element of the pairing interaction Eq. (19),

〈αβ̄|V |γ δ̄〉a = G

N0
x∑

Nx=0

N0
y∑

Ny=0

N0
z∑

Nz=0

(
V

NxNyNz

αβ̄

)∗
V

NxNyNz

γ δ̄
, (C14)

can be represented as a sum of separable terms in a
3D Cartesian HO basis, with the single-particle matrix
elements

V
NxNyNz

αβ̄
= δ

nα
x +n

β
x ,eveni

nα
y −n

β
y V

Nx

nα
x n

β
x

(bx)V
Ny

nα
y n

β
y

(by)V Nz

nα
z n

β
z

(bz).

(C15)

The factors V nN
n1n2

(b) are given by

V N
n1n2

(b) = MnN
n1n2

In(b) with n = N − n1 − n2 . (C16)

The Talmi-Moshinsky brackets MnN
nαnβ

are defined in Eq. (B16),
and the integrals In(b) are given in Eq. (C13).
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