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We study the dynamics of coherent waves in nonlinear honeycomb lattices and show that nonlinearity breaks
down the Dirac dynamics. As an example, we demonstrate that even a weak nonlinearity has major qualitative
effects on one of the hallmarks of honeycomb lattices: conical diffraction. Under linear conditions, a circular
input wave packet associated with the Dirac point evolves into a ring, but even a weak nonlinearity alters the
evolution such that the emerging beam possesses triangular symmetry, and populates Bloch modes outside of the
Dirac cone. Our results are presented in the context of optics, but we propose a scheme to observe equivalent
phenomena in Bose-Einstein condensates.
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The past decade has witnessed considerable interest in
honeycomb lattices in many fields, ranging from carbon
nanotubes [1] and graphene [2–4] in condensed matter, cold
atoms in honeycomb optical lattices [5–8], and electromag-
netic waves in honeycomb photonic crystals [9–12] and
photonic lattices (waveguide arrays) [13–15]. The unique
features of the honeycomb lattice result from its unusual band
structure, displaying two intersecting bands. The vicinity of the
intersection points is conical, and excitations residing at the
close vicinity of the intersection points obey the massless Dirac
equation: a relativistic wave equation for massless spin-half
particles. As a consequence of this unusual linear dispersion
and the additional degrees of freedom (two sites in each unit
cell, referred as pseudospin), a variety of exciting phenomena
have been obtained: room-temperature quantum Hall effect
in graphene [16], conical diffraction in honeycomb photonic
lattices [13], negative magnetoresistance implying antilocal-
ization [17–19], and Klein tunneling [15,20–22], to name a
few. The dynamics of Dirac-like excitations in honeycomb
lattices has been well studied when the propagation equation
is linear (interaction-free). However, the dynamics can also
be nonlinear, as happens in the optical domain due to light-
matter interactions and for atomic Bose-Einstein condensates
(BECs) due to pairwise scattering. In either of these, the
nonlinear dynamics has received little attention in the context
of honeycomb lattices. The first study of nonlinear dynamics
in honeycomb lattices was conducted in [13], demonstrating
gap solitons, which had no overlap with Bloch modes residing
in the vicinity of the Dirac points. Later studies of nonlinear
dynamics in honeycomb lattices were a generalization of the
Dirac approximation [23–25], where a nonlinear version of the
massless Dirac equation was studied.

Here we study the nonlinear dynamics of waves in hon-
eycomb lattices, where initial wave packets are composed of
Bloch waves from the vicinity of the Dirac points. Such wave
packets are very well described by the massless Dirac equation.
However, even the presence of a fairly weak nonlinearity drives
the waves away from the vicinity of the Dirac points; hence
the nonlinearity breaks the Dirac dynamics associated with
honeycomb lattices. We demonstrate this dramatic change in
the dynamics by investigating conical diffraction: an initial

wave packet with circular symmetry that evolves into two
concentric rings (separated by a dark ring). Surprisingly, under
slightly nonlinear conditions, the same (circular) input beam
evolves into a triangular-ring beam. Interestingly, we find that
the resulting triangle is rotated by π when the nonlinearity
changes sign; that is, a given input beam subjected to a focusing
nonlinearity (attractive interactions for BECs) evolves into a
triangle that is rotated by π with respect to the triangle obtained
when the same input beam is subjected to a defocusing
nonlinearity (repulsive interactions for BECs). Hence, the
presence of nonlinearity (interactions) changes the wave
dynamics in honeycomb lattices dramatically, introducing
important changes to the unique phenomena associated with
the effective Dirac equation, such as conical diffraction and
Klein tunneling. Moreover, the nonlinear breakdown the Dirac
dynamics, in itself, gives rise to interesting new effects. Our
results are presented in the context of optics; however, we
propose a scheme to observe equivalent phenomena in BECs.

The paraxial propagation of a monochromatic field en-
velope ψ inside a photonic lattice with Kerr nonlinearity is
described by

i
∂ψ

∂z
= − 1

2k
∇2

⊥ψ − kδn(x,y)

n0
ψ − k

n0
n2|ψ |2ψ, (1)

where δn(x,y) is the modulation in the refractive index
defining the lattice as shown in Fig. 1(a), k is the wave
number in the medium, n0 is the background refractive index,
and n2 is the Kerr coefficient. The sign of n2 determines the
type of nonlinearity, where n2 > 0 corresponds to a focusing
nonlinearity (attractive interactions in the context of BECs).
The term kδn/n0 is referred to as the optical potential.

At low intensities (n2|ψ |2 � max{δn(x,y)}), the nonlinear
term is negligible and the propagation can be described by
linear methods. In the absence of the nonlinear term, Eq. (1)
has solutions of the form ψ(x,y,z) = U (x,y) exp(iβz), where
U (x,y) is a solution of the eigenvalue equation

Ĥ0U (x,y) = βU (x,y),
(2)

where Ĥ0 ≡ − 1

2k
∇2

⊥ − k

n0
δn(x,y),
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FIG. 1. (Color online) (a) Perfect honeycomb lattice that has two sites in a unit cell. (b) The first Brillouin zone with the high symmetry
points. (c) The first two bands. (d) The vicinity of the intersection (Dirac) point.

and the eigenvalue, β, is the propagation constant (analogous
to the energy in quantum mechanics with opposite sign, that
is, β ↔ −E). Since δn(x,y) is a periodic function in x and y,
the eigenfunctions of Ĥ0 can be chosen to be Bloch waves

Bq,m(r) = uq,m(r) exp (iq · r), (3)

where uq,n(x,y) has the same periodicity as the potential, q =
(qx,qy) is the lattice momentum, r = (x,y) is the transverse
coordinate, and m is the band index. We solve numerically
Eq. (2) in the first Brillion zone (BZ) [Fig. 1(b)] and obtain
the band structure β(q) [Fig. 1(c)]. Note the intersection of the
bands at the corners of the first BZ. According to Fig. 1(a),
it appears as if there are six intersection points; however,
these six points are in fact two triplets of two nonequivalent
points denoted by K± [Fig. 1(b)]. That is, there are only
two nonequivalent intersection points, since the corners are
connected by reciprocal lattice vectors [Fig. 1(b)]. The close
vicinity of the intersection points is conical [Fig. 1(d)]. In
the tight binding approximation, the effective Hamiltonian
describing the Bloch modes from the vicinity of these points
is the Dirac Hamiltonian for massless particles [26]. Hence,
these points are often referred to as Dirac points, and the
band structure in the vicinity of these points forms Dirac
cones. We emphasize that Bloch modes that reside outside
the Dirac cone cannot be described by the Dirac equation,
since the propagation constant β(q) is no longer linear in q,
and moreover it does not possess circular symmetry but rather
a threefold symmetry (as will be discussed later).

Our main interest in the article is the effect of nonlinearity
on the extremely unique diffraction pattern, named conical
diffraction, obtained for an input beam composed of Bloch
modes residing in the Dirac cone. Conical diffraction refers to
the fact that at a large enough propagation distance, the circular

(envelope) input beam evolves into two bright rings of constant
width separated by a dark ring and a vanishing intensity at the
origin [13,14]. A characteristic conical diffraction pattern is
shown in Fig. 2(b), where the first ring is separated from the
second ring that is just starting to form (for two distinct rings
see [14]). Experimentally, the input beam can be constructed
by means of a spatial light modulator (SLM) or by three plane
waves with wave vectors corresponding to the three equivalent
corners (say K+) of the BZ [14].

At high intensities, the nonlinear term comes into play.
The input wave packet has an envelope that possesses circular
symmetry. Hence, the optical potential induced through the
nonlinear term has circular symmetry as well. The initial
excitation is around the Dirac points, where the Dirac cone
approximation is excellent. Thus, one could expect that, even
though some qualitative differences would emerge, the result-
ing diffraction pattern would still have circular symmetry. This
educated guess is supported by analysis of the “nonlinear Dirac
equation” (Dirac equation with a nonlinear term) [23]. We test
this idea by solving Eq. (1) numerically using the split-step
Fourier algorithm in the presence of a focusing nonlinearity,
where the input beam is composed of Bloch modes from the
vicinity of the point K+. We construct the input beam using
k · p approximation

ψ(r,0) =
√
N [BK+,1(r) + iBK+,2(r)] exp (−r2/σ 2), (4)

where BK+,1(r) and BK+,2(r) are the two degenerate Bloch
modes corresponding to the K+ point, σ is the width of
the envelope, and N determines the beam’s power. Surpris-
ingly, we find that the diffraction pattern contradicts these
expectations by having a threefold symmetry [Fig. 2(c)]:
instead of the circular rings we obtain a triangle pointing
to the right. Even more surprising is the diffraction pattern

FIG. 2. (Color online) (a) Input beam from the vicinity of K+. (b) The output of the linear propagation. (c) The output of the nonlinear
propagation with focusing nonlinearity. (d) The output of the nonlinear propagation with defocusing nonlinearity.
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obtained when the sign of the nonlinearity is reversed:
defocusing instead of focusing [Fig. 2(d)]. In the defocusing
case, the emerging triangular diffraction pattern is almost
identical to the focusing case, but is rotated by π . The
values of the parameters used in the simulation are D = 35
(µm), where D is the lattice constant, max{δn} = 7 × 10−4,
max{n2|ψ |2} = 5 × 10−5, n0 = 1.5, k = 7.85 × 106 (m−1),
and the propagation distance Z = 8 (cm).

We find another interesting phenomenon by repeating
the numerical experiment with a similar input beam that is
centered around the other nonequivalent Dirac point K−: the
orientation of the triangle is reversed again. In other words, for
a focusing nonlinearity, similar input beams centered around
the different Dirac points evolve into triangles that are mirror
images of each other. We emphasize that the π rotation of the
intensity pattern that results from the different Dirac points is
exact, as opposed to the π rotation resulting from reversing the
sign of the nonlinearity. In the latter case, the orientations of the
triangles are indeed rotated, but the intensities are not identical,
as can be seen from Figs. 2(c) and 2(d). Therefore, even though
similar physical effects are obtained, their physical origin is
different.

In all these simulations, we find that the width of the
“triangular ring” is smaller than the width of the circular
ring (arising in the linear case), for both types (signs) of
nonlinearity. This result is surprising since generally the
focusing and the defocusing nonlinearities have opposite
effects on the width of the propagating wave packet. Namely,
in a homogeneous medium, the former will always decrease
the width of a finite beam, whereas the latter will increase
it. These opposite tendencies occur also in periodic structures,
where the action on the beam width is determined by the sign of
the nonlinearity with respect to the sign of the effective mass;
for example, in regions of anomalous diffraction (negative
effective mass) a focusing nonlinearity always broadens the
beam, whereas defocusing narrows it, etc. As stated previously,
the honeycomb lattice is also unique in the sense that the
expansion of the evolving triangular ring beam is not affected
by the sign of nonlinearity; the width of the ring decreases for
both cases [Figs. 2(c) and 2(d)]. Moreover, the mean radius of
the triangular ring beam, defined as

R ≡
√

〈ψ(z)|(x2 + y2)|ψ(z)〉, (5)

is the same for the linear and nonlinear diffraction patterns;
that is, the mean radius of the evolving beam is not affected
by the weak nonlinearity at all. The results of the numerical
experiment can be summarized as follows.

(1) The nonlinearity transforms conical diffraction into
triangular diffraction.

(2) The wave packet evolves into a triangular ring for both
focusing and defocusing nonlinearity, and nonlinearities of
opposite signs result in similar triangles pointing to opposite
directions.

(3) Two identical wave packets centered around different
Dirac points yet subject to the same nonlinearity evolve to
identical triangular rings pointing in opposite directions.

The rest of the article presents our explanation of these
unexpected observations that cannot be explained simply by
adding a nonlinear term to the Dirac equation.

In order to analyze the dynamics, we write the wave
function as a linear combination of Bloch modes (Bloch
decomposition):

ψ(r,z) =
∑
m

∫
BZ

d2qBq,m(r)gm(q,z), (6)

where gm(q,z) is the amplitude of each Bloch mode and
Bq,m(r) is a Bloch wave defined in Eq. (3). Substituting the
expansion of ψ into Eq. (1) it is clear that the nonlinear term
mixes four Bloch waves with different lattice momenta, q; that
is, the nonlinear term generates spatial four-wave-mixing and
therefore the output beam may include Bloch modes that were
not initially populated. Hence, even though the input beam is
very localized in k space around the Dirac point, it does not
necessarily remain localized during the propagation. In fact,
in previous theoretical and experimental work in nonlinear
photonic lattices it was clearly shown that the Bloch population
grows by virtue of four-wave-mixing [27], and in some cases
it even leads to spatial supercontinuum [28].

More quantitative analysis of the nonlinear evolution of the
distribution of Bloch modes reveals the underlying physics of
the triangular diffraction pattern. The population of the mth

band is defined as

Pm ≡
∫

BZ
d2q|〈ψ(z)|Bq,m〉|2 =

∫
BZ

d2q|gm(q,z)|2, (7)

and the population imbalance between the first two bands is
given by

�(z) = P1 − P2 =
∫

BZ
d2q[|g1(q,z)|2 − |g2(q,z)|2]. (8)

We calculate the projections of the input and output beams
on the Bloch waves of the first two bands and find very
interesting results: the Bloch distribution |gm(q,0)|2 of the
initial beam has circular symmetry (as expected), with no
population imbalance, whereas the Bloch distribution of the
output beam |gm(q,Z)|2 has threefold symmetry with a sig-
nificant population imbalance. Figure 3 presents the evolution
of the Bloch distribution for the beam of Fig. 2 and the
population in each band, for both types of nonlinearity. Clearly,
focusing nonlinearity increases the population in the first
band at the expense of the second band, thereby generating a
positive imbalance, whereas defocusing nonlinearity generates
a negative imbalance. While calculating the imbalance, �(z),
during the propagation we find that it is generated only in the
early stages of the propagation [Fig. 4(a)]. Moreover, the final
imbalance increases with the power of the beam [Fig. 4(b)].

This analysis leads to three main conclusions:
(1) The nonlinearity gives rise to population transfer to

Bloch modes that reside outside the Dirac cone; hence,
nonlinearity breaks the Dirac dynamics.

(2) The sign of nonlinearity determines the direction of
population transfer.

(3) The Bloch distribution of the output beam always has
threefold symmetry in k-space; hence, it is clear that the
intensity in real space has threefold symmetry as well.

These conclusions can be explained by more fundamental
arguments, where the most crucial step is to understand why

013830-3
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FIG. 3. (Color online) The Bloch mode decomposition of the input wave packet from the vicinity of the Dirac point. (a)–(d) The Bloch
distribution of the first band |g1(q)|2. (e)–(h) The Bloch distribution of the second band |g2(q)|2. In each figure we write the corresponding
population. Clearly, focusing nonlinearity transfers the energy to the first band, and defocusing nonlinearity transfers the population to the
second band.

the nonlinearity generates a population imbalance between the
bands. In order to do so, consider the functional

Hcl(z) = HL + HNL, (9)

where

HL ≡ −
∫ (

1

2k
|∇⊥ψ |2 − k

n0
δn(x,y)|ψ |2

)
d2x, (10)

HNL ≡
∫

k

2n0
n2(|ψ |2)2d2x. (11)

Note that Hcl is a constant of motion; that is, ∂zHcl = 0.
The evolution equation, Eq. (1), is derived from Hcl via the
variational principle:

i
∂ψ

∂z
= −δHcl

δψ∗ . (12)

0 0.02 0.07
0

0.2

0.4

0.6

0.8

1

Z [m]

1st band

2nd band

1st + 2nd bands

1 3 5
0

0.2

0.6

∆

max|n
2
||ψ|2

(b)(a)

× 10−5

FIG. 4. (Color online) (a) The population in the first two bands
during the propagation in the presence of defocusing nonlinearity,
where max{|n2||ψ |2} = 4 × 10−5. (b) The final population imbalance
as a function of the strength of the nonlinear refractive index.

It is instructive to note that HL can be interpreted as the mean
propagation constant of the wave packet in the absence of
nonlinearity:

HL(z) = 〈ψ(z)|Ĥ0|ψ(z)〉 =
∑

m=1,2

∫
BZ

d2qβm(q)|gm(q,z)|2.

(13)

Since Hcl is a constant of motion, we can write

HL(0) + HNL(0) = HL(z) + HNL(z). (14)

The initial beam is constructed around the Dirac point with
equal population of both bands. Since the bands are almost
symmetric, from Eq. (13) we find that HL(0) equals the
propagation constant at the Dirac point, βD . Since the spectrum
can be shifted by a constant without affecting the dynamics,
we can set HL(0) = βD = 0. During the propagation the beam
experiences significant broadening, and since the total power
is conserved, the amplitude of the wave packet decreases
with z. Hence, the nonlinear contribution to Hcl becomes
negligible compared to the linear contribution at large z; that
is, HNL(z) � HL(z). Therefore Eq. (14) simplifies to

HL(z) 
 HNL(0) =
∫

k

2n0
n2(|ψ |2)2d2x, (15)

thus the sign of HL(z) is identical to the sign of n2. By
substituting Eq. (13) and using the symmetry of the bands,
β2(q) ≈ −β1(q), we obtain

HNL(0) 

∫

BZ

d2qβ1(q)[|g1(q,z)|2 − |g2(q,z)|2]. (16)

Since β1(q) is positive (first band), the sign of HNL(0) is the
same as the final population imbalance; hence the nonlinearity
determines the direction of population transfer between the
bands. From Eqs. (15) and (16) it is clear that positive n2

(focusing nonlinearity) yields a positive population imbalance;
that is, after a fairly large propagation distance, the first
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FIG. 5. (Color online) (a) Calculation of Hcl(z) and HL(z) in
the presence focusing nonlinearity. (b) The nonlinear contribution to
Hcl(z), which decreases rapidly during the propagation.

band has a greater population. For both signs of nonlinearity
the resulting Bloch distributions are very similar. However,
since the group velocity of the bands differs in sign, the
orientations of the resulting triangles are rotated by π with
respect to each other. We emphasize that, other than creating a
population imbalance and broadening the Bloch distribution,
the different signs of nonlinearity have the same physical
effect, as opposed to other systems. The arguments given
previously are supported by numerical calculation of HL and
HNL during the propagation, as presented in Fig. 5. Notice that
most of the population transfer occurs during the early stages
of propagation—just like the population imbalance shown in
Fig. 4(a), and with the same characteristic length.

Now that we understand that the distribution of Bloch
modes varies during propagation, we turn to understanding
the resulting threefold symmetry. We reexamine the bands
around the Dirac point by plotting a contour of β(q) as
shown in Fig. 6 and find that, very close to the Dirac point,
β(q) has circular symmetry, but further away it has threefold
symmetry. Since the new distribution of the Bloch modes
follows β(q), the resulting distribution also has threefold
symmetry. This argument explains the Bloch distribution of
the output beam, implying that the intensity in real space
also has a threefold symmetry. Due to z-reversal symmetry,
β(q) = β(−q), implying that the contours of equal β(q)
around the point K+ are mirror images of the contour lines
around the point K−. Therefore, the Bloch distribution and
hence the real-space intensity resulting from the different Dirac
cones are exact mirror images of each other.

Next, we try to give a more intuitive explanation for
the spatial intensity pattern, based on the transverse group

k
x

k
y

1st band

−1 1
x 10

5

0.5

1.5

x 10
5

k
x

k
y

2nd band

−1 1
x 10

5

0.5

1.5

x 10
5

(a) (b)
K
+ K

−
K
+

K
−

FIG. 6. (Color online) Contour plot of the first two bands. The
Dirac points are denoted by K±. The black arrows point in the
directions where the group velocity is maximal.

velocity defined as vg ≡ ∇qβ(q), which is in fact the angle
of propagation. The input beam populates a region in k

space in which β(q) has circular symmetry, and all waves
propagate with a transverse group velocity of the same
magnitude in the radial direction. Since the nonlinearity (say,
focusing, where we have shown that the nonlinear dynamics is
determined by the structure of the first band) causes the Bloch
distribution to expand in k space and leave the Dirac cone,
some of the modes propagate with a greater group velocity
than others. After some propagation distance, these modes
are mapped in real space to the most distant points which
are the vertices of the triangle in real space. From Fig. 6 it
is clear that around the different Dirac points the directions
of maximal group velocity are opposite. Therefore, a beam
centered around K+ with focusing nonlinearity evolves into a
triangle pointing to the right, whereas the similar input beam
centered around K− with focusing nonlinearity evolves into
a triangle pointing to the left [Fig. 6(a)]. This explains why
similar input beams around the different Dirac points subjected
to the same nonlinearity evolve into triangles pointing in
opposite directions.

When the same input beam is subjected to nonlinearity of
the opposite sign, the wave packet expands in k space as well.
However, for the opposite sign of nonlinearity, the energy is
transferred to the opposite band (as explained earlier). The
contour lines of both bands are almost identical, but the group
velocity has an opposite sign (Fig. 6), and therefore the corners
of the intensity triangle (in real space) are again opposite to
each other. Therefore, an input beam centered around K+
(K−) with focusing nonlinearity evolves into a triangular ring
beam pointing to the left (right), whereas when the same input
beam is subjected to a defocusing nonlinearity it evolves into
a triangle pointing to the right (left).

Up to this point the breakdown of Dirac dynamics was
considered in the context of optics. However, we predict the
existence of identical phenomena in the context of ultracold
atomic BECs, based on the fact that Eq. (1) describes
dynamics of an interacting BEC in a honeycomb potential.
Such potentials can be constructed optically; however, they
were considered mainly in the context of fermionic gases (e.g.,
see Refs. [5–8]), probably because electrons in real graphene
are fermions, for which the ground state is a filled Fermi sea
up to the Fermi level (which can be shifted from the Dirac
point depending on doping), and because the ground state
of a Bose gas in a potential with graphene band structure
is not a condensate occupying Bloch modes in the vicinity
of the Dirac point. Thus, in order to obtain such a state
one should do it dynamically. Here we propose a scheme
which is not trivial, but still realistic experimentally: Suppose
that one prepares a finite-size condensate in a harmonic,
pancake-shaped, effectively two-dimensional trap [29]. At
some point in time, the in-plane confinement is turned off
(the confinement keeping the 2D structure is still present), the
pancake BEC is subsequently given a momentum kick with
three plane waves with angles 2π/3 with respect to each other,
which are directed into the three equivalent corners of the BZ
(say K+), and then the honeycomb potential is ramped up (the
lattice spacing of the honeycomb potential should be much
smaller than the size of the cloud). The initial BEC can be
noninteracting, and the nonlinearity can be turned on via the
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Feshbach mechanism (say when the honeycomb potential is
ramped up). Such an experimental sequence of events is not an
easy task but it is within today’s experimental capabilities. The
sign of the nonlinearity and the strength of the interactions can
be tuned for some BECs by a Feshbach resonance mechanism.

In conclusion, honeycomb lattices possess intersection
points between the first two bands, and Bloch modes that reside
close to these points give rise to extremely unique dynamics:
dynamics of massless spin-half particles described by the Dirac
equation. We have shown that, in the presence of nonlinearity,
this unique dynamics is significantly altered and the Dirac
equation is no longer suitable for describing the (propagation)
evolution. In addition, we have studied the nonlinear evolution
of wave packets composed of such Bloch modes, which under
linear conditions yield conical diffraction. We have found that
both signs of nonlinearity transform the circular rings into
triangular rings, resulting in a triangular diffraction pattern.
This new type of diffraction cannot be obtained simply by
adding the nonlinear term into the effective Dirac equation,

since the Bloch modes’ distribution quickly expands beyond
the range of the Dirac cone, where the effective evolution
equation governing the dynamics cannot be approximated by
the Dirac equation nor by its nonlinear extension. Hence we
expect that the intriguing phenomena obtained in honeycomb
lattices, such as Klein tunneling, Zitterbewegung [30,31],
antilocalization, zero mode edge-states [32,33], and more,
would be significantly altered by the presence of nonlinearity.
Likewise, the intriguing features related to Dirac points in
photonic crystals [9–12] would be affected by nonlinearities
of the same type studied here.
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