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We analyze the size dependence and temporal stability of firm
bankruptcy risk in the US economy by applying Zipf scaling tech-
niques. We focus on a single risk factor—the debt-to-asset ratio
R—in order to study the stability of the Zipf distribution of R over
time. We find that the Zipf exponent increases during market
crashes, implying that firms go bankrupt with larger values of R.
Based on the Zipf analysis, we employ Bayes’s theorem and relate
the conditional probability that a bankrupt firm has a ratio R with
the conditional probability of bankruptcy for a firm with a given R
value. For 2,737 bankrupt firms, we demonstrate size dependence
in assets change during the bankruptcy proceedings. Prepetition
firm assets and petition firm assets follow Zipf distributions but
with different exponents, meaning that firms with smaller assets
adjust their assets more than firms with larger assets during the
bankruptcy process. We compare bankrupt firms with nonbank-
rupt firms by analyzing the assets and liabilities of two large
subsets of the US economy: 2,545 Nasdaq members and 1,680
New York Stock Exchange (NYSE) members. We find that both
assets and liabilities follow a Pareto distribution. The finding is
not a trivial consequence of the Zipf scaling relationship of firm size
quantified by employees—although the market capitalization of
Nasdaq stocks follows a Pareto distribution, the same distribution
does not describe NYSE stocks. We propose a coupled Simonmodel
that simultaneously evolves both assets and debt with the possi-
bility of bankruptcy, and we also consider the possibility of firm
mergers.

economic sciences ∣ econophysics ∣ finance

Complex systems are commonly coupled together and there-
fore should be considered and modeled as interdependent.

It is important to study the conditions of interaction which may
lead to mutual failure, the indicators of such failure, and the be-
havior of the indicators in times of crisis. As an indicator of eco-
nomic failure, default risk is defined as the probability that a
borrower cannot meet his or her financial obligations, i.e., cannot
make principal and/or interest payments (1, 2). Accordingly, it is
important to better understand default risk (1–12) and its relation
to firm growth (13–17), and how they behave in times of crisis.

We find that book values of assets and debt of the US compa-
nies that filed for bankruptcy in the past 20 y follow a Zipf scaling
(power-law) distribution. The same is true for the values of assets
and debt of nonbankrupt firms comprising the Nasdaq. We focus
our attention on a single risk indicator, the debt-to-asset ratio R,
in order to analyze stability of the scaling exponent or establish
cross-over regions. In order to capture Pareto and Zipf laws, the
literature has typically focused on a single Simon model (13, 14,
16, 17) describing a single dynamic system which does not interact
with others. We model the growth of debt and asset values using
two dependent (coupled) Simon models with two parameters
only, bankruptcy rate and another parameter controlling debt-
to-asset ratio. The Zipf law scaling predictions of the coupled
Simon model are consistent with our empirical findings.

Data Analyzed
Our dataset consists of medium-size and large US companies
that filed for bankruptcy protection in the period 1990–2009. We
obtain our data from New Generation Research, Inc., which pro-

vides one of the most comprehensive bankruptcy datasets cur-
rently available on the web. There is also a bankruptcy dataset
available at http://bdp.law.harvard.edu/fellows.cfm, but with smal-
ler firms and no debt data. Our dataset includes data on 2,737 pub-
lic and private firms. The book value of firm assets in the database
ranges from 50 million to almost 700 billion US dollars.
i. For each firm in our sample, we know the prepetition book va-

lue of firm assetsAa and the effective date of bankruptcy. From
the court petition documents we find the petition book value of
firm assets Ab, as well as book value of total debt, Db. As an
example, Lehman Brothers filed a petition on September 15,
2008, listing the debt Db and assets Ab on May 31, 2008. Thus,
Ab,Aa, andDb quantify the debtor’s condition before declaring
bankruptcy.We are able to obtainAb and debtDb for 462 firms.
Note that refs. 5, 6, and 12 studied 53, 105, and 585 bankrupt
firms, respectively. There is often a substantial change in the
debt and assets of a company in the time period preceding
bankruptcy. Hence, for each firm, we calculate the debt-to-
assets (leverage ratio)

R≡Db∕Ab [1]

from the total debtDb and assets Ab estimated simultaneously.
Note that economics has a parallel treatment, known as Tobin’s
Q theory of investment which also focuses on a single factor,
Q (18).
In the literature on ratio analysis (4, 6, 8), multiple financial
ratios are used for predicting probability of default, such as
the ratio of total liabilities to total assets. Adding more factors
would likely improve the predictive power of the model, so we
consider only one risk factor, namely the debt-to-assets ratio R
which captures the level of company indebtedness. We use a
single ratio for two reasons: (i) to make a model as simple
as possible, and (ii) to simplify our study regarding whether
market crashes and global recessions affect the scaling existing
in bankruptcy data. In order to relate the probability of bank-
ruptcy to R, we analyze the scaling relations that quantify the
probability distribution of firms that entered into bankruptcy
proceedings with particular values of Ab and R. Our analysis
includes a very few number of young startup firms, for which
the age of the firm also factors into the probability of bank-
ruptcy in addition to R. In 2009, we find that the average life-
time of the 215 bankrupt firms analyzed was 35.8� 33.9 y and
the minimum lifetime was 3 y.

ii. We analyze market capitalization, assets, and liabilities of
2,545 firms traded on the Nasdaq over the 3 y period from
2006 to 2008. We also analyze assets and liabilities of 1,680
firms traded on the New York Stock Exchange (NYSE) in
the period from 2007 to 2009. Also, we analyze market capi-
talization of NYSE members over the period 2002–2007.

Quantitative Methods
Our analysis is closely related to the literature on firm size (19,
20). Analyzing data from the US Census Bureau, ref. 20 reported
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that firm sizes of the US firms follow a Zipf law: The number of
firms larger than size s is s−ζ, where ζ ≃ 1. The Zipf distribution is
found for the distribution of city sizes (21) and the distribution of
firm sizes (20, 22).

The cumulative distribution is a simple transformation of
the Zipf rank–frequency relation, where the observations xi
are ordered according to rank r from largest (r ≡ 1) to smallest.
For Pareto-distributed variables s with cumulative distribution
Pðs > xÞ ∼ x−ζ

0 , the Zipf plot of size s versus rank r exhibits a
power-law scaling regime with the scaling exponent ζ, where

ζ ¼ 1∕ζ0: [2]

Results of Analysis
Fig. 1A shows the Zipf plot for prepetition book value of assets
Aa. The data are approximately linear in a log–log plot with the
exponent

ζa ¼ 1.11� 0.01; [3]

obtained using the ordinary least-squares regression method. For
the US data on firm size (measured by the number of employees),
ref. 20 reported the value ζ ≈ 1. Hence, prior to filing for bank-
ruptcy protection, the book value of firm assets for companies
that later underwent bankruptcy satisfies a scaling relation similar
to that in ref. 20. The firms with a rank larger than ≈500 start to
deviate from the Zipf law, a result of finite size effects as found in
data on firm size (20).

It is known that the market equity of firms that are close to
bankruptcy is typically discounted by traders (10, 12). In order
to study if those changes are size dependent during the time
of bankruptcy, we test whether there is a difference in scaling
behavior between prepetition and petition firm assets. Fig. 1B
ranks the firm book value of assets Ab and firm debt Db. We find

ζb ¼ ζD ¼ 1.44� 0.01: [4]

Note that Fig. 1 includes only firms with the largest values of Aa
and Ab. Thus, the firms with the largest bankruptcy adjustments,
with potentially small Ab values, are not necessarily included in
Fig. 1. Also, a Zipf law is found for the distribution of total liabil-
ities of bankrupted firms in Japan (23, 24).

We obtain that ζb > ζa, a discrepancy that could be of potential
practical interest. To clarify this point, if Ab is related to Aa by a
constant Ab∕Aa ≡ c, we would observe ζa ¼ ζb. However, we ob-
serve an increasing relation Aa∕Ab ∝ rζb−ζa with rank r, meaning
that bankrupt firms with smaller Aa have larger relative adjust-
ments than do bankrupt firms with larger Ab.

Our analysis of bankruptcy probability is, due to data limitation,
based on book values.Onemay argue that amore relevant analysis
would be based on market values of assets and liabilities. We now
demonstrate that using market instead of book values may in fact
lead to similar results. For this purpose, let us consider companies
for which we have bothmarket and book value data, namely stocks
that comprise the Nasdaq. We begin by finding market capitaliza-
tion ofNasdaqmembers for each year from2002 to 2007. The data
are available at Bloomberg L.P. Fig. 2A shows the Zipf plot for
market capitalization deflated to 2002 dollar values. We find that
the market capitalization versus rank for the largest ≈1;000 com-
panies is well described by a Zipf law with exponent
ζM ¼ 1.1� 0.02, in agreement with ref. 25.

In Fig. 2B we repeat the Zipf analysis using, this time, book
values of both assets and debt for the same Nasdaq stocks.
The scaling exponents we observe in Fig. 2B are larger than
the exponent observed in Fig. 2A. However, market capitalization
is best compared with book value of equity E≡ A −D, rather
than assets A. In Fig. 2C, we find that E also exhibits Zipf scaling
with exponent ζE ¼ 1.02� 0.01, which is more similar to ζM .
Therefore, we find qualitatively similar scaling for the existing
Nasdaq companies and for companies before they entered into
bankruptcy proceedings.

The probability of bankruptcy PðRÞ is a natural proxy for firm
distress (10). Previous studies analyzed defaults of firms traded at
NYSE, American Stock Exchange (AMEX), and Nasdaq (10). In
contrast, the majority of firms in our dataset are privately held
companies. For bankrupt firms in Fig. 3A we show PðRjBÞ for
values of the debt-to-assets ratio 0 < R < 4. We truncate data
to avoid outliers as in ref. 11. We find PðRjBÞ is right-skewed with
a maximum at R ≈ 1, and hRi ¼ 1.4� 1.5.

Previous studies find that bankruptcy risk of NYSE and
AMEX stocks is negatively related to firm size (10). In order
to test for firm-size dependence of bankruptcy risk with R as
bankruptcy measure, we divide the R values into two subsamples
based on their value of Ab. In Fig. 3A we demonstrate qualita-
tively that R is size dependent. The probability density functions
(pdfs) for small Ab and large Ab are similar in that they both show
peaks at R ≈ 1. However, firms with smaller assets, as measured
by Ab, have a larger probability of high debt-to-assets ratios R
than firms with large assets Ab.

In addition, we test for the size dependence by performing
the Mann–Whitney U test, which quantifies the difference
between the two populations based on the difference between
the asset ranks of the two samples. (The null hypothesis is that
the distributions are the same.) Because the test statistics
U value ¼ −5.60, we reject the null hypothesis thus confirming
that R depends on Ab at the p ¼ 0.05 confidence level.
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Fig. 1. Zipf plot of US bankrupted firm assets. (A) Zipf plot calculated
for firms over the last 20 y between prepetition total assets, Aa versus rank.
Deviation from the Zipf law is due to the fact that the dataset includes mainly
the firms with assets larger than 50 million dollars (dotted line). (B) Zipf plot
of US bankrupted firms of debt versus rank—462 firms in total—along with
Zipf plot of book value asset and rank. The two plots practically overlap.
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In Fig. 3B we analyze the Zipf scaling for large R. We find that
the Zipf plot can be approximated by two power-law regimes. For
≈300 firms with 0.8 < R < 3 (regime I), we find a power-law
regime with ζR ¼ 0.57� 0.02. Hence, according to Eq. 2 we
conclude that the cumulative distribution of dangerously high
R values of bankrupt firms decreases faster with ζ0 ≈ 1.72 for large
R than the distribution of firm size (20) and firm assets with ζ0 ≈ 1
(see Fig. 1). For R > 3 (7% of all data including predominantly
financial firms), we find that the Zipf plot exhibits a significant
cross-over behavior to a power-law regime with ζ ≈ 1.58.

The conditional probability PðBjRÞ that an existing firm with
debt-to-assets ratio R will file for bankruptcy protection may be of
significance to rating agencies, creditors, and investors. Accord-
ing to Bayes’s theorem, PðBjRÞ depends on PðRjBÞ (see Fig. 3),
PðBÞ, the probability of bankruptcy for existing firms, and PðRÞ,
the probability of an existing company with leverage ratio R. In
order to estimate PðRÞ, we use the companies constituting the
Nasdaq in the 3-y period between 2007 and 2009 as a proxy
for existing companies. For this time period, we obtain book value
of each firm’s assets and liabilities (the latter serving as a proxy
for total debt). As a result, we obtain 7,635 R values with median
value 0.48. For existing Nasdaq members, Fig. 4 shows that the
Zipf plot can be approximated by two power-law regimes, where
regime I with 3.5 > R > 0.9 yields ζe ¼ 0.37� 0.01. Note that
regime I is similar to the one we find in Fig. 3B for bankruptcy
data. PðBÞ may substantially change during economic crises.
Interestingly, ref. 26 analyzes the debt-to-GDP (gross domestic
product) ratio for countries, in analogy to the debt-to-assets ratio
for existing firms, and calculates a Zipf scaling exponent that is
approximately the same as the scaling exponent calculated here
for existing Nasdaq firms.
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Fig. 2. (A) Zipf plot of market capitalization M versus rank r for the Nasdaq
members for each year of 6 y. We find practically the same Zipf law for the
largest 1,000 companies as we find for the assets Aa of bankrupted firms in
Fig. 1B. (B) For the Nasdaq firms, both assets and liabilities follow a Zipf plot.
(C) Book value of equity of stock traded at Nasdaq, defined as assets less
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Fig. 3. Bankruptcy risk based on petition book value asset Ab and debt Db.
(A) We find the distribution of R ¼ Db∕Ab for the bankrupted firms. One may
calculate the probability that a firm with a given ratio R will go bankrupt
when its ratio is ≤R. (B) For the ratio values 3 > R > 0.8 (67% of all data),
we show the Zipf plot that can be approximated by a Pareto distribution with
ζR ¼ 0.57. The same regime we fit with the power-law tail of pdf and obtain
0.79R−2.72 where the exponent ζ0 þ 1 ¼ 2.73 is in agreement (see Eq. 2) with
the Zipf exponent ζ ¼ 0.57. For the largest ratio values R > 3 (7% of all data),
we find a cross-over to a power-law regime with ζR ¼ 1.58.
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We estimate the scaling of PðBjRÞ using Bayes’s theorem,

PðBjRÞ ¼ PðRjBÞPðBÞ
PðRÞ ≈ 0.51PðBÞR1∕ζe−1∕ζR ≈ 0.51PðBÞR0.95;

[5]

where we approximate PðRjBÞ and PðRÞ with power laws
—PðRjBÞ ∼ R−ð1∕ζRþ1ÞΔR and PðRÞ ∼ R−ð1∕ζeþ1ÞΔR. The value
of the relevant exponents calculated for regime I are as follows:
ζe ≈ 0.37 (see Fig. 4) and ζR ¼ 0.57 (see Fig. 3B), where ζR > ζe
implies that PðBjRÞ increases with firm indebtedness quantified
by R. The prefactor 0.51 calculated for the regime I we estimate
from the corresponding intercepts in pdfs [see Figs. 3B and 4]. In
Fig. 4, we find a pronounced cross-over in the Zipf plot for very
large values of the R ratio.

In order to test whether market crash and global recession
have significant effects on the scaling we find in the bankruptcy
data, in Fig. 5 we analyze the Zipf scaling of the large R values for
three different 3-y periods. For the period 2004–2006, we find a
stable Zipf plot characterized by an exponent ζR ¼ 0.50� 0.01
close to the value we found in Fig. 3B for all years analyzed.
For the period 2001–2003 characterized by the dot-com bubble
burst, we find a less pronounced cross-over in the Zipf plot
between regime I with exponent ζR ¼ 0.58� 0.01 and regime
II. For the period 2007–2009, we find that the Zipf plot exhibits
a significant cross-over behavior between regime I and regime II.

Fig. 5 demonstrates the existence of a relatively stable scaling
exponent (between 0.5 and 0.6) in regime I over the 9-y period
2001–2009. However, in times of economic crisis, e.g., the period
2007–2009, the exponent in regime I increases, implying that
firms go bankrupt with larger values of R. According to Eq. 5,
in times of crisis (ζR ≈ 0.6) PðBjRÞ ∝ R1∕ζe−1∕ζR ∝ R1 shifts up-
ward compared to times of relative stability (ζR ≈ 0.5) when
PðBjRÞ ∝ R0.7. A cross-over in scaling exponents may be useful
for understanding asset bubbles.

Model
Our results complement both the literature on default risk as well
as the literature on firm growth. According to a study of US firm
dynamics, over 65% of the 500 largest US firms in 1982 no longer
existed as independent entities by 1996 (27). To explain how firms
develop, expand, and then cease to exist, Jovanovic proposed a
theory of selection where the key is firm efficiency; efficient firms
grow and survive and the inefficient decline and, eventually, fail
(15). Many models have been proposed to model default risk

(1, 2, 28–31). One strain of that literature (28) develops structural
models of credit risk. In these models, risky debt is modeled
within an option-pricing framework where an underlying asset
is the value of company assets. Bankruptcy occurs endogenously
when the value of company assets is insufficient to cover obliga-
tions. In contrast, in reduced form models (2) default is modeled
exogenously.

In order to reproduce the Zipf law that holds for bankrupt
firms, we propose a coupled Simon model, an extension of the
Simon model used in the theory of firm growth (13, 14, 16,
17). Here we couple the evolution of both asset growth and debt
growth through debt acquisition which depends on a firms assets,
and further impose a bankruptcy condition on a firm’s assets and
debt values at any given time.

Simon Rule for Assets. The economy begins with one firm at the
initial time t≡ 1. At each step, a new firm with initial assets
A≡ 1 is added to the economy. With a probability p, a new firm
i is added to the economy as an individual entity at time ti. With
probability 1 − p, the new firm i is taken over by an already ex-
isting firm. The probability that firm i is taken over by an existing
firm j is proportional toAjðtÞ, the number of units in firm j is equal
to ð1 − pÞAjðtÞ∕ΣkAkðtÞ. Hence, a larger firm is more likely to ac-
quire a firm than a smaller firm. In this expression, the index k
runs over all of the existing firms at time t. We use the value AjðtÞ
to be the proxy for the size of the firm j. Simon found a stationary
solution exhibiting power-law scaling, Pðs > xÞ ∝ s−ζ

0 , with expo-
nent ζ0 ¼ 1∕ð1 − pÞ. For an estimate of p, one can investigate
venture data to see how venture capitalists dispose of their com-
panies. Even though data suggest p ¼ 0.5 (see ref. 32), we use a
much smaller value p ¼ 0.01 in order to reproduce Zipf plot
in Eq. 4.

Simon Rule for Debt. When a new firm i is created at time ti, it is
assigned debt DiðtiÞ ¼ m, where 0 < m < 1. For simplicity, we
use a single m value for all firms. If an existing firm j acquires
the new asset Ai ≡ 1, then AjðtÞ − Ajðt − 1Þ ¼ 1, and debt
DjðtÞ − Djðt − 1Þ ¼ m. Hence, a firm with assets AjðtÞ ¼ N has
debt DjðtÞ ¼ mN, implying that the debt-to-assets ratio R ¼ m
is the same for all firms.

In order to introduce variation in R ratios across firms, we as-
sume that at each time ti, a new debt is created in the economy for
some company j, so that DjðtiÞ − Djðti − 1Þ ¼ 1. Hence, for each
time step, there is a new firm receiving debtDi ¼ m in addition to
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firm j receiving one unit of debt, where generally i ≠ j. The newly
created units of debt are acquired with probability proportional
to AjðtÞ. Hence, the Simon laws controlling the growth of debt
DjðtÞ and the growth of assets AjðtÞ are coupled. In our model,
richer firms become more indebted, but also acquire new firms
with larger probability.

In Fig. 6A, we perform the numerical simulation of the model
by generating 500,000 Monte Carlo time steps. We calculate the

Zipf distribution of the debt-to-assets ratio R for different choices
of m. Even though debt and hence R increases with m, the slope
of the Zipf plot for R versus rank practically does not depend on
the value of m. Unless stated otherwise, in other simulations we
set m ¼ 0.5.

Following ref. 33, we consider the continuous-time version of
our discrete-time model. In this case, DjðtÞ and AjðtÞ are contin-
uous real-valued functions of time. Further, we assume that the
rate at which DjðtÞ changes in time is proportional to the assets
size AjðtÞ. Hence, following this assumption, DjðtÞ ¼ ð1þmÞAjðtÞ
because of the acquisition of additional debt. Therefore, because
AjðtÞ ¼ t∕tj (33), then DjðtÞ ¼ ð1þmÞt∕tj. The cumulative prob-
ability that a firm has debt size DjðtÞ smaller than D is, therefore,
P½DjðtÞ < D� ¼ P½tj > ð1þmÞt∕D�. In the Simon model we add
new firms at equal time intervals. Thus, each value ti is realized
with a constant probability PðtjÞ ¼ 1∕t. It follows that

P½tj > ð1þmÞt∕D� ¼ 1 − ð1þmÞt∕Dt ¼ 1 − ð1þmÞ∕D: [6]

Hence, Eq. 6 should be considered as the Zipf law for debt in the
case when there is no possibility of bankruptcy (see Eq. 3).

Firm Bankruptcy.Up to now, debt has been modeled as riskless. We
now introduce bankruptcy into the coupled Simon model. We as-
sume that for each firm there is a likelihood of bankruptcy, which
depends on the volatile firm asset value (28). In order to be con-
sistent with our empirical findings, we assume that the firm j that
was created at time tj files for bankruptcy with probability qR0.95

(see Eq. 6), where q is the bankruptcy rate parameter, related to
PðBÞ in Eq. 6. In the hazard model, the hazard rate is the prob-
ability of bankruptcy as of time t, conditional upon having sur-
vived until time t (11). In our model, once firm j files for
bankruptcy, part of its debt is lost (restructured) and the firm
starts anew with debt equal to Dj ¼ mAj. We do not assume a
merger or a liquidation and a firm’s probability of failure does
not depend on its age (11). Besides bankruptcy, a firm may leave
an industry through merger and voluntary liquidation (9).

Next we perform 500,000 Monte Carlo time steps for the mod-
el with the possibility of bankruptcy. Fig. 6B presents Zipf distri-
bution for firm asset and debt values for all of the existing firms.
Each of these distributions is in agreement with the Zipf law and
Eq. 6. In Fig. 6C, for the subset of bankrupt companies, we show
the Zipf distribution for R using three different values of the
bankruptcy rate q. Note that q is supposed to be small. Namely,
with q ¼ 10−7 and with 500,000 time steps representing 1 y,
500;000q represents a probability per year that a company files
for bankruptcy during a period of 1 yr, ≈0.05 in our case. Our
result for the annual probability of bankruptcy should be com-
pared with the average default rate ≈0.04, calculated in the per-
iod 1985–2007 (34). We see that model predictions approximately
correspond to the empirical findings.

Our model can be extended in different ways, including mer-
gers between firms. First, although the Simon model assumes
that, at each time increment a new unit is added, we can assume
that the number of new units grows as a power law tθ (35). By
using a continuous-time version of a discrete-time model, we ob-
tain P½DjðtÞ < D� ¼ P½tj > ð1þmÞt∕D� ¼ 1 − ð1þm

D Þ1þθ, where we
use Pðti > t0Þ ¼ ∫ t

t0
dttθ∕∫ t

0dtt
θ. Second, Jovanovic and Rousseau

(32) found that mergers contribute more to firm growth than
when a firm takes over a small new entrant. In order to incorpo-
rate mergers into the Simon model, we assume that at each time t,
a single merger between a pair of firms occurs with probability p0,
where two firms are randomly chosen. Ref. 36 reported that, in
more than two-thirds of all mergers since 1973, the Tobin Q value
of the acquisition firm exceeded the Tobin Q value of the target
firm, whereQ is Tobin’s ratio similarly defined asD ratio in Eq. 1.
To this end, we assume that if Aj > Ai when a merger occurs, Aj ¼
Aj þ Ai and Ai ¼ 0. Thus, the more-rich firm j buys the less-rich
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Fig. 6. Model results. (A) Zipf plot of debt-to-assets ratio R versus rank r for
the firms generated by the model (compare with Fig. 4) when bankruptcy is
not included. In order to understand plateaus in the figure, note that both
assets and debt in the model exhibit integer values. (B) For each asset and
debt, the Zipf plot displays a power law R ∼ r−ζ. (C) Zipf plot of R versus rank
as a function of bankruptcy rate parameter q. With decreasing q, the slope
increases slightly.
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firm i resulting in the elimination of firm i as an individual entity.
In Fig. 7, we show that the inclusion of mergers does not change
the scale-free nature of the Simon model. In these simulations,
we use a varying merger probability p0, and p ¼ 0.01 with 1 million
time steps. With increasing p0, the Zipf exponent ζ slowly de-
creases. Note that, with 1 million time steps, if p0 ¼ 0.5p, and with
p ¼ 0.01, then approximately 5,000 mergers occur.

Before concluding, we note that market capitalization as well
as book value of assets, liabilities, and equity for the stocks traded
at Nasdaq exhibit Pareto scaling properties. Pareto scaling prop-
erties are not trivial consequences of the scaling (20) because, for
companies traded at NYSE, we do not find similar power-law
scaling for market capitalization (see Fig. 8A) and book value
of equity. However, the book value of assets and liabilities for
NYSE stocks follows a Pareto law with exponents that are slightly
larger than those we find for Nasdaq stocks (see Fig. 8B). Our
results reveal a discrepancy in scaling of market capitalization
and book value of equity obtained from different exchange mar-
kets (e.g., Nasdaq and NYSE).
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