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The recently developed structure model that uses the generator coordinate method to perform configuration
mixing of angular-momentum projected wave functions, generated by constrained self-consistent relativistic
mean-field calculations for triaxial shapes (3DAMP+GCM), is applied in a systematic study of ground states and
low-energy collective states in the even-even magnesium isotopes 20–40Mg. Results obtained using a relativistic
point-coupling nucleon-nucleon effective interaction in the particle-hole channel and a density-independent δ

interaction in the pairing channel are compared to data and with previous axial 1DAMP+GCM calculations, both
with a relativistic density functional and the nonrelativistic Gogny force. The effects of the inclusion of triaxial
degrees of freedom on the low-energy spectra and E2 transitions of magnesium isotopes are examined.
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I. INTRODUCTION

In the first part of this work [1] the simple mean-field
(single-reference [2]) implementation of the framework of
relativistic energy density functionals (EDF) has been ex-
tended to include long-range correlations related to restora-
tion of symmetries broken by the static mean field and
to fluctuations of collective coordinates around the mean-
field minimum. A model has been developed that uses the
generator coordinate method (GCM) to perform configuration
mixing of three-dimensional angular-momentum projected
(3DAMP) relativistic mean-field wave functions, generated
by constrained self-consistent calculations for triaxial nuclear
shapes. This calculational framework can be used to perform
detailed studies of low-energy collective excitation spectra and
corresponding electromagnetic transition rates. The particular
implementation of the relativistic 3DAMP+GCM model has
been tested in the calculation of spectroscopic properties of
low-spin states in 24Mg, in comparison with data and with
the results of the recent work of Ref. [3], where a similar
3DAMP+GCM model has been developed, but which was
based on nonrelativistic Skyrme triaxial mean-field states
that are projected both on particle number and angular
momentum and mixed by the GCM. We note that, very
recently, a new 3DAMP+GCM model with particle-number
projection has been implemented, based on the nonrelativistic
Gogny force [4].

In this work we apply the relativistic 3DAMP+GCM
model to a systematic study of ground states and low-energy
collective states in the even-even magnesium isotopes 20–40Mg.
The low-energy structure of magnesium nuclei has attracted
considerable interest in the last decade, both experimental and
theoretical. In particular, the sequence of isotopes 20–40Mg
encompasses three spherical magic shell numbers: N = 8,
20, and 28 and, therefore, presents an excellent case for

studies of the evolution of shell structure with neutron number,
weakening of spherical shell closures, disappearance of magic
numbers, and the occurrence of “islands of inversion” [5].
Following the pioneering measurement of the transition rate
B(E2; 0+

1 → 2+
1 ) in the neutron-rich nucleus 32Mg [6] that

confirmed a large deformation of this nucleus indicated by
the low excitation energy of the 2+

1 state [7], extensive
experimental studies of the low-energy structure of Mg
isotopes have been carried out at the Institute of Physical
and Chemical Research, Japan (RIKEN) [8,9], Michigan State
University (MSU) [10–13], the Grand Accélérateur National
d’Ions Lourds, France (GANIL) [14] and CERN [15,16].

In addition to numerous theoretical studies based on
large-scale shell-model calculations [17–22], the self-
consistent mean-field framework, including the nonrelativistic
Hartree-Fock-Bogolibov (HFB) model with Skyrme [23]
and Gogny forces [24] and the relativistic mean-field (RMF)
model [25,26] as well as the macroscopic-microscopic model
based on a modified Nilsson potential [27], have been used to
analyze the ground-state properties (binding energies, charge
radii, and deformations) and low-lying excitation spectra
of magnesium isotopes. Of course, to calculate excitation
spectra and electromagnetic transition rates, in particular for
transitional nuclei, it is necessary to go beyond the mean-field
approximation and include dynamic correlations related to
the restoration of broken symmetries and to fluctuations
of collective coordinates. Based on the 1DAMP+GCM
(axial symmetry) framework, studies of low-energy spectra of
specific Mg isotopes have been performed using nonrelativistic
models with Skyrme [28,29] and Gogny [24] forces, as well
as relativistic density functionals [30,31].

In Sec. II we present a brief outline of the relativistic
3DAMP+GCM model used in the present analysis. Section III
describes a study of low-lying collective states of the even-even
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magnesium isotopes 20–40Mg. A brief summary and an outlook
for future studies are included in Sec. IV.

II. THE 3DAMP+GCM MODEL

The 1DAMP+GCM calculational framework, restricted
to axially symmetric nuclei, has recently been extended to
include triaxial shapes. 3DAMP+GCM models have been de-
veloped based on the self-consistent Hartree-Fock-Bogoliubov
approach with Skyrme forces [3] and the Gogny force [4].
Starting from relativistic energy density functionals, we have
implemented a model for configuration mixing of three-
dimensional angular-momentum projected (3DAMP) rela-
tivistic mean-field wave functions, generated by constrained
self-consistent calculations for triaxial nuclear shapes. The
details of the model and the numerical tests are described in
Refs. [1,32]. Here we only outline the basic features of the
model that will be used in the study of low-lying states in
even-even magnesium isotopes 20–40Mg.

In the 3DAMP+GCM framework the trial angular-
momentum projected GCM collective wave function |�JM

α 〉,
an eigenfunction of Ĵ 2 and Ĵz with eigenvalue J (J + 1) h̄2 and
Mh̄, respectively, reads

∣∣�JM
α

〉 =
∫

d2q
∑
K�0

f JK
α (q)

1

(1 + δK0)
|JMK+, q〉, (1)

where α = 1, 2, . . . labels collective eigenstates for a given
angular momentum J , and q is the generic notation for the
deformation parameters β and γ . The basis states |JMK+, q〉
are projected from the intrinsic wave functions |�(q)〉:

|JMK+, q〉 = [
P̂ J

MK + (−1)J P̂ J
M−K

]|�(q)〉, (2)

where P̂ J
MK denotes the angular-momentum projection opera-

tor:

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�). (3)

� denotes the set of three Euler angles {φ, θ, ψ} and
d� = dφ sin θdθdψ . DJ

MK (�) is the Wigner D function,
and the rotational operator reads R̂(�) = eiφĴz eiθĴy eiψĴz . The
set of deformed intrinsic wave functions |�(q)〉 is generated
by imposing constraints on the axial q20 and triaxial q22

mass quadrupole moments in self-consistent RMF+BCS
calculations.

The weight functions f JK
α (q) in the collective wave

function Eq. (1) are obtained from the solution of the Hill-
Wheeler-Griffin (HWG) integral equation:∫

dq ′ ∑
K ′�0

[
H J

KK ′ (q, q ′) − EJ
α N J

KK ′ (q, q ′)
]
f JK ′

α (q ′) = 0,

(4)

where H and N are the angular-momentum projected
GCM kernel matrices of the Hamiltonian and the norm,
respectively [1].

The basis states |JMK+, q〉 in Eq. (1) are not eigenstates of
the proton and neutron number operators Ẑ and N̂ . In order to
approximately restore the correct mean values of the nucleon

numbers, we follow the prescription given in Refs. [33,34].
The validity of such a correction scheme is discussed in
Appendix.

The solution of Eq. (4) determines both the energies EJ
α and

the amplitudes f JK
α (q) of collective states |�JM

α 〉 with good
angular momentum. The center-of-mass correction to the total
energy of the state Jπ

α is calculated in the zeroth order of the
Kamlah approximation.

Since the weight functions f JK
α (q) are not orthogonal and

cannot be interpreted as collective wave functions for the
deformation variables, the collective wave functions gJ

α (i) are
determined from the eigenstates of the norm overlap kernel

gJ
α (i) =

∑
k

gJα
k uJ

k (i). (5)

These functions are orthonormal and∑
i

∣∣gJ
α (i)

∣∣2 = 1, (6)

where the sum is over i ≡ {K, q}. The coefficients gJα
k are

solutions of the following equation:∑
l

HJ
klg

Jα
l = EJ

α gJα
k , (7)

which is equivalent to Eq. (4). The matrix HJ
kl is determined

by the angular-momentum projected GCM kernel matrix of
the Hamiltonian

HJ
kl = 1√

nJ
k

1√
nJ

l

∑
i,j

uJ
k (i)H J (i, j )uJ

l (j ), (8)

where nJ
k and uJ

k are the nonvanishing eigenvalues and eigen-
vectors of the norm overlap kernel N J (i, j ), respectively.

The B(E2) value for a transition from an initial state (Ji, αi)
to a final state (Jf , αf ) is calculated from

B(E2; Ji, αi → Jf , αf ) = e2

2Ji + 1
|〈Jf , αf ||Q̂2||Ji, αi〉|2,

(9)

where the reduced matrix element is defined by

〈Jf , αf ||Q̂2||Ji, αi〉
=

∑
ij

(2Jf + 1)
∑
KiKf

f
∗Jf Kf

αf
(qi)f

JiKi

αi
(qj )

∑
µK ′

(−1)Jf −Kf

×
(

Jf 2 Ji

−Kf µ K ′

)
〈�(qi)|Q̂2µP̂

Ji

K ′Ki
|�(qj )〉, (10)

with f JK
α (q) = (−1)J f J−K

α (q) for K < 0. The spectroscopic
quadrupole moment for the state (Jπ

α ) is defined by the
expression

Qspec(Jπ
α

) = e

√
16π

5
〈J,M = J, α|Q̂20|J,M = J, α〉

= e

√
16π

5

(
J 2 J

J 0 −J

)
〈J, α||Q̂2||J, α〉. (11)

The matrix elements of the charge quadrupole operator
Q̂2µ = e

∑
p r2

pY2µ(�p) are calculated in the full configuration
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space. There is no need for effective charges, and e simply
corresponds to the bare value of the proton charge.

III. LOW-LYING STATES IN MAGNESIUM ISOTOPES:
RESULTS AND DISCUSSION

As in the first part of this work [1], we use the relativistic
point-coupling interaction PC-F1 [35] in the particle-hole
channel, and the corresponding density-independent δ force
in the particle-particle channel. The parameters of the PC-F1
functional and the pairing strength constants Vn and Vp have
been adjusted simultaneously to the nuclear matter equation
of state, and to ground-state observables (binding energies,
charge and diffraction radii, surface thickness, and pairing
gaps) of spherical nuclei [35], with pairing correlations treated
in the BCS approximation. In particular, the pairing strength
parameters for neutrons and protons are Vn = −308 MeV fm3

and Vp = −321 MeV fm3, respectively.
Parity, D2 symmetry, and time-reversal invariance are

imposed in the constrained mean-field calculation of the
binding energy map of a (generally) triaxial, even-even
nucleus. To solve the Dirac equation for triaxially deformed
potentials, the single-nucleon spinors are expanded in the basis
of eigenfunctions of a three-dimensional harmonic oscillator
(HO) in Cartesian coordinates, with Nsh = 8 major shells for
20–26Mg and Nsh = 10 for 28–40Mg. These numbers of oscillator
shells are sufficient to obtain a reasonably converged mean-
field potential energy surface [1,32]. The HO basis is chosen to
be isotropic; that is, the oscillator parameters bx = by = bz =
b0 = √

h̄/mω0 in order to keep the basis closed under rotations
[36,37]. The oscillator frequency is given by h̄ω0 = 41A−1/3.
The Gaussian-Legendre quadrature is used for integrals over
the Euler angles φ, θ , and ψ in the calculation of the norm
and hamiltonian kernels. As illustrated in Ref. [32] that, with
the choice of the number of mesh points for the Euler angles
(φ, θ, ψ) in the interval [0, π ] being Nφ = Nψ = 8 and Nθ =
12, the calculation could achieve an accuracy of ≈0.05% for
the energy of a projected state with angular momentum J � 6
in the ground-state band. In the 3DAMP+GCM calculations
of 24Mg it has been shown that, because of very few level
crossings as a function of deformation, redundancies appear
very quickly in the norm kernel when more states are added
to the nonorthogonal basis [1,3]. The generator coordinates
are, therefore, chosen in the intervals 0 � β � 1.2 and 0 �
γ � 60◦, with steps β = 0.2 and γ = 20◦, respectively.
Moreover, eigenstates of the norm overlap kernel with very
small eigenvalues nJ

k /nJ
max < ζ are removed from the GCM

basis. With the cutoff parameter ζ = 5 × 10−3 for 20–26Mg and
ζ = 1 × 10−4 for 28–40Mg, fully converged results are obtained
for all low-lying states with J < 6.

In Fig. 1 we plot the self-consistent RMF+BCS mean-
field, and the corresponding angular-momentum projected
(Jπ = 0+) energy curves (PEC) for the even-even magnesium
isotopes 20–40Mg, as functions of the axial deformation β

(γ = 0). One might notice an interesting evolution of the mean-
field PECs from a spherical shape at magic neutron number
N = 8, through pronounced prolate shapes, coexistence of
oblate and prolate shapes, and again to a spherical shape at
N = 20. Increasing further the neutron number from N = 20

FIG. 1. (Color online) Self-consistent RMF+BCS mean-field
(left panel), and angular-momentum projected 0+ potential energy
curves (PEC, right panel) of even-even magnesium isotopes, as
functions of the axial deformation parameter β. To plot all the curves
in the same figure, the PECs of 20–28Mg have been shifted by −75,
−55, −35, −20, and −10 MeV, respectively. The position of the
minimum of each PEC is indicated by a red dot.

to N = 28, the mean-field minima become markedly prolate.
Furthermore, the effect of angular-momentum projection
can be inferred from a comparison with the corresponding
(Jπ = 0+) PECs in the right panel of Fig. 1. In particular, in
the neighborhood of the spherical minimum, the J = 0 PECs
of 20, 32Mg are very soft with respect to β. In other isotopes
the deformed minima become deeper after projection.

Figure 2 displays the total ground-state dynamical correla-
tion energies of Mg isotopes as a function of the number of
neutrons. As shown in the figure, ECorr consists of a rotational
energy correction EJ=0 that results from the restoration of
rotational symmetry

EJ=0 = EJ=0(β0) − EMF(βm) (12)

and the correlation energy gained by GCM configuration
mixing

EGCM = E(0+
1 ) − EJ=0(β0). (13)

FIG. 2. (Color online) Total ground-state dynamical correlation
energies ECorr of Mg isotopes as a function of the number of neutrons.
ECorr is the sum of the rotational energy correction EJ=0 and the
energy gained by configuration mixing, EGCM.
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βm and β0 denote the axial deformation parameters at
the minima of the mean field and the (Jπ = 0+) angular-
momentum projected PECs, respectively (cf. Fig. 1). ECorr

shows a strong dependence on shape and shell structure. It
is large for deformed midshell nuclei, with a maximum of
∼4 MeV at N = 14, and is drastically reduced (∼1 MeV)
for the two isotopes with the neutron magic numbers N = 8
and N = 20. Projection on angular momentum J = 0; that
is, the rotational energy correction EJ=0, constitutes the
dominant part of the total dynamical correlation energy. This
is generally valid for a great majority of nuclei, as it has
been shown in the global study of quadrupole correlation
effects [39] performed with GCM configuration mixing of
axially symmetric Skyrme-Hartree-Fock+BCS states, with
the two-point topological Gaussian overlap approximation for
angular-momentum projection. As also shown in Ref. [39],
in Fig. 2 one notices that the correlation energy EGCM

gained from configuration mixing of different deformed states
is of the order of several hundreds of keV, and not very
sensitive to nuclear shape and shell structure. EGCM is, in
fact, composed of two parts: a potential term that is negative
and comparable in size to the correlation energy induced by
angular-momentum projection, and a kinetic part (energy of
the zero-point vibrational motion) that is positive and cancels
to a large extent the potential term [40].

The excitation energies of the states 2+
1 and 4+

1 in 20–40Mg,
calculated using the 1DAMP+GCM model with the relativistic
density functional PC-F1, are compared in Fig. 3 to the
available data and the prediction of the 1DAMP+GCM
calculation based on the nonrelativistic HFB framework with
the Gogny force [24]. Both models yield excitation energies
of the 2+

1 and 4+
1 states in reasonable agreement with data and,

on average, the values obtained with PC-F1 are 10%–30%
lower than those calculated with the Gogny interaction D1S

FIG. 3. (Color online) Excitation energies of the states 2+
1 and

4+
1 in 20–40Mg, calculated using the 1DAMP+GCM model with the

relativistic density functional PC-F1, are compared to available data
[12,13,38] and the results of the 1DAMP+GCM calculation based
on the nonrelativistic HFB framework with the Gogny force [24].

FIG. 4. (Color online) B(E2; 0+
1 → 2+

1 ) (e2fm4) values
in 20–40Mg, calculated using the 1DAMP+GCM model with the
relativistic density functional PC-F1, are compared to available
data [6,8,10,14,15,38] and the results of the 1DAMP+GCM
calculation based on the nonrelativistic HFB framework with the
Gogny force [24].

(except for 32Mg). This is due to relatively weak neutron
pairing correlations in the present calculation that lead to an
increase of the corresponding moment of inertia for the yrast
states. As noted in our previous study of 24Mg in Ref. [1], the
excitation energies of yrast states increase when the pairing
strength parameters Vn or Vp are adjusted to the pairing gaps
determined from empirical odd-even mass differences in this
particular mass region. Both calculations preserve the N = 8
magic number and, with PC-F1 also at N = 20, a pronounced
shell closure is obtained, whereas the model based on the
Gogny force predicts a much lower excitation energy of the 2+

1
state in 32Mg, in better agreement with data. One might notice,
however, that both models predict the 4+

1 state in this nucleus
at energies far above the experimental value. The N = 28 shell
closure disappears in both calculations, and 40Mg is predicted
to be prolate deformed.

The corresponding B(E2; 0+
1 → 2+

1 ) (e2fm4) values in
20–40Mg are shown in Fig. 4. The 1DAMP+GCM calculations,
both the present one using the functional PC-F1 and that
based on the Gogny force [24], yield results in reasonable
agreement with data except, of course, PC-F1 at and in the
neighborhood of neutron number N = 20. Since the Gogny
force D1S predicts an axially deformed ground state for 32Mg,
the corresponding B(E2) value for the transition 0+

1 → 2+
1

is much closer to the experimental value, compared to the
calculation with PC-F1, which yields a spherical ground state
at N = 20. The functional PC-F1, together with the density-
independent δ force (Vn = −308 MeV fm3 and Vp = −321
MeV fm3) predicts indeed a very small B(E2) value for
this transition in 32Mg. In Ref. [32] it has been suggested
that a better adjustment of pairing strength parameters and,
eventually, the inclusion of triaxiality (i.e., the γ degree of
freedom), could improve the results for 32Mg. Already in the
1DAMP+GCM axial calculations we have verified that, by
adjusting the pairing strengths specifically to the empirical
pairing gaps around 32Mg (five-point formula) of Vn = −465
MeV fm3 and Vp = −350 MeV fm3, the calculated transition
rate increases to B(E2; 0+

1 → 2+
1 ) = 313.5 e2fm4. To have a

consistent model, however, in the remaining calculations of
this work we will continue using the original pairing strengths
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(a)

(b)

(c)

FIG. 5. (Color online) B(E2) values calculated with the LDM
formula Eq. (14) for the transition 0+

1 → 2+
1 in Mg isotopes, are

compared to data [6,8,10,14,15,38] in panel (a), and to the results
of the 1DAMP+GCM calculations with the functional PC-F1 in (b),
and with the Gogny force D1S [24] in (c).

that were adjusted simultaneously with the parameters of the
PC-F1 effective interaction in the particle-hole channel [35].

An empirical formula based on the liquid-drop model
(LDM) provides us a useful guideline to examine the nuclear
collectivity [41],

B(E2 : 0+
1 → 2+

1 )sys = 5 × 6.47Z2A−0.69E−1
x (2+

1 ). (14)

It has been noted in Ref. [41] that, for open-shell nuclei,
the ratio B(E2 : 0+

1 → 2+
1 )expt/B(E2 : 0+

1 → 2+
1 )sys is mostly

around 1.0, being confined between 0.5 and 2.0. For the closed-
shell nuclei, the ratio is also often larger than 0.20. Therefore,
the significant deviation of the ratio from these values can be
a signature of existence of anomalous collectivity, as found in
16C [42]. In order to examine the collectivity in magnesium
isotopes, we make a comparison of the experimental and
calculated B(E2; 0+

1 → 2+
1 ) with the prediction of the LDM

expression. This comparison is shown in Fig. 5. In the upper
panel the B(E2) values calculated with the LDM formula are
compared to data, whereas in the two lower panels they are
compared to the results of the 1DAMP+GCM calculations
with the functional PC-F1 and with the Gogny force D1S. The
excitation energies E(2+

1 ) (in MeV) that appear in the LDM
expression Eq. (14), correspond to the experimental values and
those calculated with PC-F1 and Gogny D1S, respectively.
One notices a very good agreement between data and the
B(E2) values predicted by the LDM formula. Based on the
recently measured E(2+

1 ) values for 20Mg [1598 (10) keV]
and 36Mg [660 (6) keV], Eq. (14) predicts the corresponding
B(E2; 0+

1 → 2+
1 ) values of 368.9 (23) e2fm4 and 595.4 (54)

e2fm4, respectively. The 1DAMP+GCM calculation based on
the PC-F1 functional yields somewhat smaller B(E2) values
for the 0+

1 → 2+
1 transition in 20Mg (332 e2fm4) and 36Mg

(460 e2fm4).

(a)

(b)

FIG. 6. (Color online) Spectroscopic quadrupole moments of the
states 2+

1 and 4+
1 in 20–40Mg, calculated using the 1DAMP+GCM

model with the relativistic density functional PC-F1, and the
corresponding values based on the nonrelativistic HFB framework
with the Gogny force [24] (upper panel). The calculated ratios
Qspec(4+

1 )/Qspec(2+
1 ) are compared to the value that corresponds to a

rigid axial rotor with K = 0 (lower panel).

In Fig. 6 we plot the spectroscopic quadrupole moments
of the states 2+

1 and 4+
1 in 20–40Mg, calculated using the

1DAMP+GCM model with the relativistic density functional
PC-F1 and compared to the corresponding values based on
the nonrelativistic HFB framework with the Gogny force [24].
One might notice a very good agreement between the results
of the two model calculations, with the exception of 30Mg. In
the lower panel the calculated ratios Qspec(4+

1 )/Qspec(2+
1 ) are

compared to the value that corresponds to a rigid axial rotor
with K = 0 (i.e., ≈1.27). In 26Mg both models predict a very
small value of Qspec(2+

1 ), and this gives rise to an exceptionally
high value of Qspec(4+

1 )/Qspec(2+
1 ) that does not fit the scale

of the vertical axis. This result indicates that there is a large
contribution from nonzero-K components in the yrast band
of 26Mg. Large deviations from the axial rotor value are also
predicted for 20Mg and 30Mg. For the isotopes 22,24,28,32–40Mg
both models yield Qspec(4+

1 )/Qspec(2+
1 ) quite close to that of

rigid axial rotor. Note that this is also true in 32Mg, for which
the calculation based on the Gogny force yields a deformed
ground state, whereas this state is spherical in the present
axially symmetric calculation using the functional PC-F1. In
both calculations, however, the states 2+

1 and 4+
1 are prolate

deformed.
To examine the influence of triaxiality i.e., of including the

γ degree of freedom) on the spectroscopic properties of low-
lying states in magnesium isotopes, we have performed full
3DAMP+GCM calculations using the relativistic functional
PC-F1. In Figs. 7 and 8 we display the resulting self-consistent
RMF+BCS triaxial quadrupole binding energy maps of the
even-even 20–40Mg isotopes in the β-γ plane (0 � γ � 600),
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FIG. 7. (Color online) Self-consistent RMF+BCS triaxial
quadrupole binding energy maps of the even-even 20–28Mg isotopes
in the β-γ plane (0 � γ � 60◦, left panel), and the corresponding
angular-momentum J π = 0+ projected energy surfaces (right panel).
All energies are normalized with respect to the binding energy of the
absolute minimum, and the contours join points on the surface with
the same energy (in MeV).

and the corresponding angular-momentum Jπ = 0+ projected
energy surfaces. All energies are normalized with respect to
the binding energy of the absolute minimum, the contours
join points on the surface with the same energy (in MeV).
In general, the inclusion of the triaxial deformation degree of
freedom reduces considerably the barriers separating axially
prolate and oblate minima in the well-deformed isotopes
22,24,34–40Mg. We also notice that the angular-momentum
Jπ = 0+ projected energy surfaces of 26–32Mg are rather soft
both in β and γ .

The low-energy excitation spectra and collective wave
functions are calculated as solutions of the Hill-Wheeler-

FIG. 8. (Color online) Same as described in the caption to Fig. 7
but for the isotopes 30–40Mg.

Griffin integral equation for each angular momentum, and thus
take into account fluctuations of the collective coordinates
β and γ around the mean-field minima. For the sequence
of isotopes 20–40Mg, Figs. 9 and 10 display the probability
distributions |gJ

α |2 of the collective wave functions Eq. (5) in
the β-γ plane for the states 0+

1 and 2+
1 (both the K = 0 and

K = 2 components). It appears that 20,30,32Mg are spherical in
the ground state, whereas all the other isotopes are prolate
deformed and the ground-state deformation is especially
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FIG. 9. (Color online) Probability distributions |gJ
α |2 of the

collective wave functions Eq. (5) in the β-γ plane, for the states
of 0+

1 and 2+
1 (both the K = 0 and K = 2 components) of 20–28Mg.

pronounced in heavier Mg nuclei. The first excited state 2+
1

is prolate deformed in all Mg nuclei, even in 32Mg. In several
isotopes, most notably in 26Mg and 30Mg, the collective wave
function of the state 2+

1 contains sizable admixtures of the
K = 2 component. This can be seen more clearly in Fig. 11
where, after integrating the probability distributions over β

and γ , we plot in the upper panel the relative weight of the
K = 0 component in the collective wave functions of the 2+

1
states of magnesium isotopes 20–40Mg. The softness toward
triaxial shapes is especially pronounced in 20Mg, 26Mg, and
30Mg. The contribution of the K = 2 component in the wave
functions of 2+

1 will generally affect the calculated B(E2)
values for transitions to the ground state. In the lower panel of
Fig. 11 we show the differences between the B(E2; 2+

1 → 0+
1 )

values calculated in the full 3DAMP+GCM and the axial
1DAMP+GCM models, normalized to the 1D values. A
marked effect of K mixing is found not only in 26Mg, but
also in some heavier isotopes including 32Mg.

Finally, a quantitative comparison between the axial
1DAMP+GCM and the full 3DAMP+GCM calculations
for 20–40Mg, based on the relativistic functional PC-F1, is
presented in Table I. The ground-state energies Egs (in MeV),
excitation energies of the 2+

1 and 4+
1 states (in MeV), and

B(E2 ↓; J → J − 2) values (in e2fm4) for the lowest states
with J = 2+ and 4+ in magnesium isotopes are included
in the table. In general, the inclusion of the γ degree of
freedom leads to the lowering of the binding energies of
low-lying states and to an increase of the calculated B(E2)

FIG. 10. (Color online) Same as described in the caption to Fig. 9,
but for the isotopes 30–40Mg.

values. The latter is particularly prominent in 26Mg, in which
the 3DAMP+GCM yields an enhancement of ≈25% for the
B(E2; 0+

1 → 2+
1 ). Especially interesting is the case of 32Mg,

which shows a pronounced lowering of the excitation energies
of 2+

1 and 4+
1 , whereas the binding energy of the ground state,

being spherical, is not influenced by the inclusion of triaxial
shapes. These excitation energies are, however, still far above
the experimental energies and, although the B(E2; 0+

1 → 2+
1 )

value increases by ≈10%, it is about a factor three smaller than
the empirical value. However, when the pairing strength pa-
rameters are adjusted specifically to the empirical pairing gaps
around 32Mg (five-point formula) of Vn = −465 MeV fm3 and
Vp = −350 MeV fm3, the calculated transition rate increases
to B(E2; 0+

1 → 2+
1 ) = 330.1 e2fm4, in rather good agreement

with data. This results shows the importance of a more detailed
study of pairing correlations in N ≈ 20 neutron-rich nuclei.

IV. SUMMARY

The very successful framework of relativistic energy
density functionals has mostly been used on the mean-field
level to describe ground-state properties of medium-heavy
and heavy nuclei. When considering applications, however,
it is important to develop EDF-based structure models that
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(a)

(b)

FIG. 11. (Color online) Upper panel shows the relative weight
of the K = 0 component in the collective wave functions of
the 2+

1 states of magnesium isotopes 20–40Mg. Lower panel shows
the differences between the B(E2; 2+

1 → 0+
1 ) values calculated in the

3DAMP+GCM and the 1DAMP+GCM models, normalized to the
1D values.

go beyond the static mean-field approximation. Detailed
predictions of excitation spectra and transition rates necessitate
the inclusion of correlations related to the restoration of broken
symmetries and to fluctuations of collective variables. In recent
years, several new models have been developed that extend the
relativistic EDF-based approach and perform the restoration
of symmetries broken by the static mean field and take into
account fluctuations around the mean-field minimum. This is
relatively simple in the case of axial symmetry; that is, when
only one collective coordinate is considered [30,31], but such
models become much more involved, technically complicated,
and computationally demanding when possible triaxial shapes
are taken into account.

In Refs. [32] and [1] we have implemented and tested
a new model that uses the generator coordinate method
(GCM) to perform configuration mixing of three-dimensional
angular-momentum projected (3DAMP) relativistic mean-

field wave functions, generated by constrained self-consistent
calculations for triaxial nuclear shapes. In the present study this
calculational framework has been used to analyze the influence
of triaxiality on the low-energy collective excitation spectra
and the corresponding electric quadrupole transition rates of
even-even magnesium isotopes 20–40Mg. The self-consistent
solutions of the constrained RMF+BCS equations have been
obtained using the relativistic point-coupling interaction PC-
F1 [35] in the particle-hole channel, and a density-independent
δ force in the particle-particle channel. Since the low-energy
spectra of 20–40Mg were previously investigated in the axial
1DAMP+GCM model based on the nonrelativistic HFB
framework with the Gogny force [24], in the first instance
we have performed axial 1D calculations and compared
the results with data and those obtained in Ref. [24]. In
general, a good agreement has been obtained between the
results of the two model calculations, except for 30, 32Mg. The
low excitation energy of 2+

1 and the large B(E2; 0+
1 → 2+

1 )
indicate that the neutron rich nucleus 32Mg is deformed, even
though the number of neutrons equal the “spherical magic
number” N = 20. The data are reproduced reasonably well
by the 1DAMP+GCM model based on the Gogny force,
which yields a deformed ground state for 32Mg. The present
axial calculation, on the other hand, predicts a spherical
β-soft ground state for 32Mg, although the lowest excited
states 2+

1 and 4+
1 are calculated to be prolate deformed. The

corresponding B(E2; 0+
1 → 2+

1 ) is much smaller than the
experimental value. Both models predict prolate ground states
for heavier Mg isotopes, including the N = 28 nucleus 40Mg.

To analyze the effect of triaxiality and K-mixing on the
low-energy structure of Mg isotopes, we have also performed
a full 3DAMP+GCM calculation based on the relativistic
density functional PC-F1 and a density-independent δ pairing
interaction. When compared with the 1DAMP+GCM results,
it is noted that the inclusion of the γ degree of freedom
leads to the lowering of the binding energies of low-lying
states and to an increase of the calculated B(E2) values in
deformed isotopes. In several isotopes, a pronounced degree
of γ softness and K mixing is predicted for the yrast states. The

TABLE I. The ground-state energy Egs (in MeV), excitation energies of the 2+
1 and 4+

1 states (in MeV), and B(E2 ↑; J − 2 → J ) values (in
e2fm4) for the lowest states with J = 2+ and 4+ in magnesium isotopes. Results obtained in the axial 1DAMP+GCM calculation are compared
with those of the full 3DAMP+GCM model.

1DAMP+GCM 3DAMP+GCM

Isotopes Egs Ex(2+
1 ) Ex(4+

1 ) E2 ↑ (2+
1 ) E2 ↑ (4+

1 ) Egs Ex(2+
1 ) Ex(4+

1 ) E2 ↑ (2+
1 ) E2 ↑ (4+

1 )

20Mg −135.501 2.999 6.948 332 205 −135.469 2.945 6.798 333 191
22Mg −168.246 1.063 3.298 465 242 −168.277 1.048 3.313 463 238
24Mg −196.822 1.058 3.438 470 233 −197.064 0.927 3.203 477 234
26Mg −215.322 1.679 4.725 283 151 −215.737 1.569 4.541 353 197
28Mg −231.242 1.527 4.080 291 167 −231.445 1.331 3.819 313 177
30Mg −243.563 1.882 4.760 257 154 −243.637 1.721 4.416 277 174
32Mg −253.381 2.270 4.283 122 212 −253.390 1.907 3.844 136 229
34Mg −260.198 1.050 2.842 367 214 −260.375 0.920 2.612 397 233
36Mg −266.045 0.679 2.024 460 238 −266.477 0.673 2.112 465 239
38Mg −269.022 0.785 2.286 487 261 −269.974 0.628 2.010 491 253
40Mg −271.098 0.556 1.815 502 261 −271.442 0.533 1.836 509 269
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effect is strongest in 26Mg, in which the 3DAMP+GCM yields
an enhancement of ≈25% for the B(E2; 0+

1 → 2+
1 ). Even in

the triaxial case, the functional PC-F1 preserves the spherical
shell closure at N = 20 (i.e., it predicts a spherical ground
state for 32Mg). The excitation energies of the states 2+

1 and
4+

1 in this nucleus are lowered considerably with respect to the
axial case, but they are still much higher than the experimental
values. Correspondingly, the calculated B(E2; 0+

1 → 2+
1 ) is

about a factor three smaller than the empirical value. It is
noted, however, that when the pairing strength parameters
are adjusted specifically to the empirical pairing gaps around
32Mg, the calculated transition rate increases to B(E2; 0+

1 →
2+

1 ) = 330.1 e2fm4, much closer to the available data.
In future studies, the 3DAMP+GCM model based on rel-

ativistic density functionals will be applied to the description
of shape transitions and shape coexistence phenomena in
medium-heavy and heavy nuclei. We also plan to compare
the results of full 3D angular-momentum projection and GCM
configuration mixing, with those obtained in the recently
developed model for the solution of the eigenvalue problem
of a five-dimensional collective Hamiltonian for quadrupole
vibrational and rotational degrees of freedom, with parameters
determined by constrained self-consistent relativistic mean-
field calculations for triaxial shapes [43].
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APPENDIX: APPROXIMATE CORRECTION SCHEME
FOR THE PARTICLE NUMBER

To approximately restore the correct mean value of the
nucleon number in a GCM calculation, one usually subtracts
two constraining terms for the average number of protons and
neutrons [33,34]:

H′(r; q, q ′; �) = H(r; q, q ′; �) − λp[Z(r; q, q ′; �) − Z0]

− λn[N (r; q, q ′; �) − N0], (A1)

from the transition energy functional H(r; q, q ′; �) as shown
in Eq. (20) of Ref. [1]. Z0 and N0 are the desired pro-
ton and neutron numbers, respectively. Z(r; q, q ′; �) and
N (r; q, q ′; �) are the transition vector densities in r space
for protons and neutrons, respectively. In GCM calculations
without angular-momentum projection that were considered in
Ref. [34], the value of λτ=p,n was chosen to be the mean BCS
Fermi energy, determined by averaging over the collective
variable q. It was verified that the average particle numbers

in the resulting GCM states differ only slightly from the
desired values. However, it is not obvious that the quality
of this correction scheme persists also in calculations with
angular-momentum projection. In this appendix we examine
the validity of this particle-number correction scheme by
comparing results obtained in calculations without and with
number correction, as well as those of exact particle-number
projection for 24Mg.

In practical calculations the λτ values in the transition-
density energy functional correspond to the mean-field values
[i.e., λτ (q) for the diagonal terms (q ′ = q), and [λτ (q) +
λτ (q ′)]/2 for the off-diagonal terms (q ′ = q)]. To be able
to compare with exact particle-number projection, the ge-
ometry is here restricted to the axially symmetric case, and
1DAMP+GCM calculations for 24Mg are carried out with the
PC-F1 effective interaction. The set of generator coordinates
β is chosen: β = −1.0,−0.9, . . . , 1.1, 1.2. The resulting E2
transition strength B(E2; 0+

1 → 2+
1 ) = 471.5 e2fm4 is very

close to the value 469.6 e2fm4 (cf. Table I) obtained from the
same model calculation but with fewer generator coordinates.

In Fig. 12 we display the mean-field and angular-
momentum projected potential energy curves of 24Mg,
calculated without (left panel) and with (right panel) particle-
number correction. One might notice that, without particle-
number correction in certain regions of deformation, the
projected PEC of 0+ can even be found at excitation energies
above those of 2+, 4+, and 6+. Figure 13 displays the Fermi
energies λτ , the pairing energies Ep of neutrons and protons in
the intrinsic deformed states, and the corresponding average
particle numbers 〈N̂τ 〉 in the angular-momentum projected
states, as functions of the deformation parameter β. One
notices that the deviation of the average particle number (mean
value) from the desired number can be as large as 0.4 particles,
both for neutron and protons. Moreover, this deviation displays
a pronounced dependence on both the angular momentum J

and deformation β. This simply follows from vector decom-
position, as a weighed sum over all components has to yield
the unprojected particle number. Therefore, the correction is
different for each J component. The evident violation of the

FIG. 12. (Color online) Mean-field and angular-momentum
projected potential energy curves of 24Mg calculated without (left
panel) and with (right panel) particle-number correction.
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FIG. 13. (Color online) Fermi energies λτ and pairing energies
Ep of neutrons (empty squares) and protons (filled circles) in the
intrinsic deformed states, and the corresponding average particle
numbers 〈N̂τ 〉 in the angular-momentum projected states, are plotted
as functions of the deformation parameter β for 24Mg.

desired particle number occurs for oblate deformations,
for which pairing correlations are relatively large and the
contribution from particle-number correction terms to the
projected energy is significant. Having to correct for 0.4
missing or additional neutrons (protons) when the Fermi
energy is about −12 MeV (−8 MeV), one obtains a cor-
rection of the order of 5 MeV (3 MeV), which is much
larger than the spacing between energy levels that results
from angular-momentum decomposition. This means that,
when two levels J and J ′ differ by 0.4 in the average
number of particles (cf. Fig. 13 for J = 0 and J = 6),
the correction contributes about 8 MeV to the energy difference
between these two levels, and this is of the same order as the
energy difference from angular-momentum projection. The
effect of the wrong average particle number on the uncorrected
energies is so large that the usual ordering of levels might be
inverted (cf. oblate shapes in Fig. 12). With the correction
scheme described above, the ordering of angular-momentum
projected PECs become normal, as shown in the right panel of
Fig. 12.

FIG. 14. (Color online) Yrast sequence of 24Mg calculated in the
1DAMP+GCM model without (I) and with (II) the particle-number
correction. In column III, the results obtained with an exact particle-
number projection [31] are shown.

The energy spectrum of low-lying states in 24Mg obtained
from the 1DAMP+GCM calculations without and with the
particle-number correction is displayed in Fig. 14, in compari-
son with the corresponding results of an exact particle-number
projection (PNP) from Ref. [31]. We notice that the effect
of particle-number correction on the low-spin yrast states is
negligible. This is because the corresponding collective wave
functions are concentrated on the prolate side, as shown in
Fig. 9. With the Lipkin-Nogami (LN) approximate PNP before
variation, and exact PNP after variation, the yrast sequence
is more stretched as the LN avoids the collapse of pairing
correlations in the prolate well. In addition, the corresponding
BE2 values are larger by ∼10% in the PNP-LN calculation.

In summary, the correction for the particle number can
be significant for some regions of deformation and is crucial
for a proper description of angular-momentum projected
energy curves. When compared with the results of calculations
performed with an exact PNP after variation, in the case of axial
symmetry the present model predicts a yrast energy spectrum
that is more compressed because of pairing collapse, and the
corresponding B(E2) values are underestimated by ∼10%.
As an important improvement of our current 3DAMP+GCM
model, particle-number projection before and after variation
need to be implemented to avoid pairing collapse and to
yield the correct number of particles for each AMP+GCM
state. However, one can expect to be confronted with the
problems of discontinuities and divergences in the energy
kernels [2,44–47].
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