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We report the first measurement of the parity-violating single-spin asymmetries for midrapidity

decay positrons and electrons from Wþ and W� boson production in longitudinally polarized proton-

proton collisions at
ffiffiffi
s

p ¼ 500 GeV by the STAR experiment at RHIC. The measured asymmetries,

PRL 106, 062002 (2011) P HY S I CA L R EV I EW LE T T E R S
week ending

11 FEBRUARY 2011

062002-2



AWþ
L ¼ �0:27� 0:10ðstat:Þ � 0:02ðsyst:Þ � 0:03ðnorm:Þ and AW�

L ¼ 0:14� 0:19ðstat:Þ � 0:02ðsyst:Þ �
0:01ðnorm:Þ, are consistent with theory predictions, which are large and of opposite sign. These

predictions are based on polarized quark and antiquark distribution functions constrained by polarized

deep-inelastic scattering measurements.

DOI: 10.1103/PhysRevLett.106.062002 PACS numbers: 13.88.+e, 13.38.Be, 13.85.Qk, 14.20.Dh

Understanding the spin structure of the nucleon remains
a fundamental challenge in quantum chromodynamics
(QCD). Experimentally, polarized deep-inelastic scattering
(pDIS) measurements have shown that the quark spins
account for only � 33% of the proton spin [1]. Semi-
inclusive pDIS measurements [2–5] are sensitive to the
quark and antiquark spin contributions separated by flavor
[6,7]. They rely on a quantitative understanding of the
fragmentation of quarks and antiquarks into observable
final-state hadrons. While the sum of the contributions
from quark and antiquark parton distribution functions
(PDFs) of the same flavor is well constrained, the uncer-
tainties in the polarized antiquark PDFs separated by flavor
remain relatively large [6,7].

High-energy polarized proton collisions at
ffiffiffi
s

p ¼
200 GeV and

ffiffiffi
s

p ¼ 500 GeV at RHIC provide a unique
way to probe the proton spin structure and dynamics using
hard scattering processes [8]. The production of W� bo-
sons at

ffiffiffi
s

p ¼ 500 GeV provides an ideal tool to study the

spin-flavor structure of sea quarks inside the proton.Wþð�Þ
bosons are dominantly produced through uþ �d (dþ �u)
interactions and can be detected through their leptonic
decays [9]. Quark and antiquark polarized PDFs are probed
directly in calculable leptonic W decays at large scales set
by the mass of theW boson. The production ofW bosons in
polarized proton collisions allows for the observation of
purely weak interactions, giving rise to large parity-
violating longitudinal single-spin asymmetries. A theoreti-
cal framework has been developed to describe inclusive
lepton production, ~pþ p ! W� þ X ! l� þ X, that can
be directly compared with experimental measurements
using constraints on the transverse energy, El

T , and pseu-
dorapidity, �l, of the final-state leptons (l) [10,11].

In this Letter, we report the first measurement of the
parity-violating single-spin asymmetries for midrapidity
decay positrons and electrons from Wþ and W� boson
production in longitudinally polarized ~pþ p collisions atffiffiffi
s

p ¼ 500 GeV by the STAR experiment at RHIC. The
asymmetry is defined as AL � ð�þ � ��Þ=ð�þ þ ��Þ,
where �þð�Þ is the cross section when the helicity of the
polarized proton beam is positive (negative).

The STAR detector systems [12] used in this measure-
ment are the Time Projection Chamber [13] (TPC) and the
Barrel [14] and Endcap [15] Electromagnetic Calorimeters
(BEMC, EEMC). The TPC provides tracking for charged
particles in a 0.5 T solenoidal magnetic field for pseudor-
apidities j�j< 1:3 with full coverage in the azimuthal
angle �. The BEMC and EEMC are lead-scintillator

sampling calorimeters providing full azimuthal coverage
for j�j< 1 and 1:09<�< 2, respectively.
The data analyzed in this Letter were collected in 2009

with colliding polarized proton beams at
ffiffiffi
s

p ¼ 500 GeV
and an average luminosity of 55� 1030 cm�2 s�1. The
polarization of each beam was measured using Coulomb-
nuclear interference proton-carbon polarimeters [16],
which were calibrated using a polarized hydrogen gas-jet
target [17]. Longitudinal polarization of proton beams in
the STAR interaction region was achieved by spin rotator
magnets upstream and downstream of the interaction re-
gion that changed the proton spin orientation from its
stable vertical direction to longitudinal. Nonlongitudinal
beam polarization components were continuously moni-
tored with a local polarimeter system at STAR based on the
zero-degree calorimeters with an upper limit on the relative
contribution of 15% for both polarized proton beams. The
longitudinal beam polarizations averaged over all runs
were P1 ¼ 0:38 and P2 ¼ 0:40 with correlated relative
uncertainties of 8.3% and 12.1%, respectively. Their sum
P1 þ P2 ¼ 0:78 is used in the analysis and has a relative
uncertainty of 9.2%.
Positrons (eþ) and electrons (e�) from Wþ and W�

boson production with j�ej< 1 are selected for this analy-
sis. High-pT e

� are charge separated using the STARTPC.
The BEMC is used to measure the transverse energy Ee

T of
eþ and e�. The suppression of the QCD background is
achieved with the TPC, BEMC, and EEMC.
The selection of W candidate events is based on kine-

matic and topological differences between leptonic W�
decays and QCD background events. Events from W�
decays contain a nearly isolated e� with a neutrino in the
opposite direction in azimuth. The neutrino escapes detec-
tion leading to a large missing energy. Such events exhibit
a large imbalance in the vector pT sum of all reconstructed
final-state objects. In contrast, QCD events, e.g., dijet
events, are characterized by a small magnitude of this
vector sum imbalance.
Candidate W events were selected online by a two-step

energy requirement in the BEMC. Electrons or positrons
from W production at midrapidity are characterized by
large ET peaked at � MW=2 (Jacobian peak). At the hard-
ware trigger level, a high tower calorimetric trigger condi-
tion required ET > 7:3 GeV in a single BEMC tower. At
the software trigger level, a dedicated trigger algorithm
searched for a seed tower of ET > 5 GeV and computed all
four possible combinations of the 2� 2 tower cluster ET

sums and required at least one to be above 13 GeV. A total
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of 1:4� 106 events were recorded for a data sample of
12 pb�1. AVernier scan was used to determine the absolute
luminosity [18].

An electron or positron candidate is defined to be any
TPC track with pT > 10 GeV=c that is associated with a
primary vertex with jzj< 100 cm, where z is measured
along the beam direction. A 2� 2 BEMC tower cluster ET

sum Ee
T , whose centroid is within 7 cm of the projected

TPC track, is required to be larger than 15 GeV. The excess
BEMC ET sum in a 4� 4 tower cluster centered around
the 2� 2 tower cluster is required to be below 5%, as
indicated by the vertical dashed line in Fig. 1(a). A cone,
referred to as the nearside cone, is formed around the e�
candidate with a radius R ¼ 0:7 in ��� space. The
excess BEMC, EEMC, and TPC ET sum in this cone is
required to be less than 12% of the 2� 2 cluster ET , as
shown in Fig. 1(b) by the vertical dashed line. PYTHIA 6.205
[19] Monte Carlo (MC) shape distributions (arbitrary nor-
malization) for W� ! e� þ � passed through the GEANT

[20] model of the STAR detector are shown in Figs. 1(a)
and 1(b) as filled histograms motivating both ratio cuts.
The missing energy requirement is enforced by a cut on the
pT balance vector, defined as the vector sum of the e�
candidate pT and the pT vectors of all reconstructed jets,
where the jet thrust axis is required to be outside the
nearside cone. Jets are reconstructed using a standard
midpoint cone algorithm used in STAR jet measurements
[21] based on the TPC, BEMC, and EEMC. A scalar
signed pT balance variable is formed, given by the magni-
tude of the pT balance vector and the sign of the dot
product of the pT balance vector and the electron pT vector.
This quantity is required to be larger than 15 GeV=c. The
correlation of the signed pT balance variable and Ee

T is
shown in Fig. 1(c). The range for accepted W candidate
events is marked by red dashed lines. The lower cut in Ee

T is
chosen to suppress the contribution of background events
whereas the upper cut in Ee

T is mainly applied to ensure

proper charge sign reconstruction. Background events
from Z0 ! eþe� decays are suppressed by rejecting
events with an additional electronlike or positronlike

2� 2 cluster in the reconstructed jet where the E2�2
T >

p
jet
T =2 and the invariant mass of the two electronlike or

positronlike clusters is within 70 to 140 GeV=c2. This
avoids Z0 contamination in the data-driven QCD back-
ground described below.
Figure 2 shows Ee

T as a function of the ratio of the TPC
reconstructed charge sign to the transverse momentum pT

for electron and positron candidates that pass all the cuts
described above. Two well-separated regions for positive

(negative) charges are visible, identifying the Wþð�Þ can-
didate events up to Ee

T � 50 GeV. The range of Ee
T for

accepted W candidate events, 25<Ee
T < 50 GeV, is

marked by red dashed lines. Entries outside the black
solid lines in Fig. 2 were rejected due to false track
reconstruction.
Figure 3 presents the charge-separated lepton Ee

T distri-
butions based on the selection criteria given above. W
candidate events are shown as the solid line histograms,
where the characteristic Jacobian peak can be seen at
� MW=2. The total number of candidate events for

Wþð�Þ is 462(139) for 25<Ee
T < 50 GeV indicated by

vertical dashed lines in Fig. 3. The number of background
events was estimated through a combination of PYTHIA

6.205 [19] MC simulations and a data-driven procedure.

The eþð�Þ background from Wþð�Þ boson induced �þð�Þ
decays and Z0 ! eþ þ e� decays was estimated using
MC simulations to be 10:4� 2:8 (0:7� 0:7) events and

8:5� 2:0 events [identical for both eþð�Þ], respectively.
The remaining background is mostly due to QCD dijet
events where one of the jets missed the STAR acceptance.
We have developed a data-driven procedure to evaluate
this type of background. We excluded the EEMC (1:09<
�< 2) as an active detector in our analysis to estimate
the background due to missing calorimeter coverage for
�2<�<�1:09. The background contribution due to
missing calorimeter coverage along with � and Z0 back-
ground contributions have been subtracted from both

FIG. 1 (color). (a) Ratios of Ee
T with respect to the 4� 4

BEMC ET sum, Ee
T=E

X¼4�4
T , (b) the near-cone BEMC, EEMC,

and TPC ET sum, Ee
T=E

X¼R<0:7
T , and (c) correlation of the signed

pT balance variable and Ee
T . MC shape distributions (arbitrary

normalization) are shown in (a) and (b) for W� ! e� þ X as
filled histograms in comparison to both data distributions.

FIG. 2 (color). Ee
T as a function of the ratio of the TPC

reconstructed charge sign to the transverse momentum pT . The
black solid and red dashed lines indicate the selected kinematic
region used for the asymmetry analysis.
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Wþð�Þ Ee
T distributions. The remaining background, pre-

sumably due to missing jets outside the STAR j�j< 2
window, is evaluated based on an extrapolation from the

region of Ee
T < 19 GeV in both Wþð�Þ Ee

T distributions.
The shape is determined from the Ee

T distribution in events
previously rejected as background with systematic varia-
tions of the signed pT balance cut below 15 GeV=c.

This shape Ee
T distribution is normalized to both Wþð�Þ

Ee
T distributions for Ee

T < 19 GeV. The total number of

background events for eþð�Þ is 39� 9 (23� 6) for
25<Ee

T < 50 GeV shown in Fig. 3 as the dashed line
histogram. The errors on the total background are mostly
from the data-driven background events.

The leptonic asymmetry from W� decay, AW�
L , was

obtained from

AW�
L ¼ 1

��
2

P1 þ P2

RþþNW�
þþ � R��NW�

��
�iRiN

W�
i

� ��

�� (1)

where P1;2 are the mean polarizations, NW�
i are W� can-

didate yields for all four beam helicity configurations i ¼
fþþ;þ�;�þ;��g, and Ri are the respective relative
luminosities. The contribution of the longitudinal double-

spin asymmetry AW�
LL vanishes in the above equation for

AW�
L . The longitudinal single-spin asymmetry AL for Z0

bosons has been estimated using a full next-to-leading
(NLO) order framework [11]. With the W� selection cri-
teria we estimated the Z0 asymmetry to be AZ

L ¼ �0:06.
This value has been used to determine the polarized back-

ground contribution �þð�Þ ¼ �0:002� 0:001ð�0:005�
0:002Þ. The unpolarized background correction for W�

candidate events is �þð�Þ ¼ 0:938� 0:017ð0:838�
0:032Þ. This dilution factor is due to background events
passing all W selection cuts and is determined by � ¼
S=ðSþ BÞ, where S (B) is the number of signal (back-
ground) events for 25< Ee

T < 50 GeV.
The relative luminosities Ri ¼ P

kMk=ð4MiÞ are deter-
mined from the ratios of yields Mi of QCD events, for
which parity conservation is expected. The Mi are statisti-

cally independent from NW�
i because the isolation cut on

the 2� 2=4� 4 tower ET sum, shown in Fig. 1, was
reversed for those events. Additionally, an upper limit of
20 GeV was set on Ee

T .
Figure 4 shows the measured leptonic asymmetries

AWþ
L ¼ �0:27� 0:10ðstat:Þ � 0:02ðsyst:Þ and AW�

L ¼
0:14� 0:19ðstat:Þ � 0:02ðsyst:Þ for j�ej< 1 and 25<
Ee
T < 50 GeV. The vertical black error bars include only

the statistical uncertainties. The systematic uncertainties
are indicated as grey bands. The statistical uncertainties
dominate over the systematic uncertainties. The asymme-
try AL observed in statistically independent samples of
QCD dominated events was found to be 0:04� 0:03
(0:00� 0:04) for positive (negative) charged tracks and
is consistent with zero. We assumed the experimental limit
on the polarized background AL to be 0.02 as a systematic

uncertainty of AW�
L . This limit on polarized background

and the uncertainty in unpolarized background dilution
have been added in quadrature to account for the total

systematic uncertainty of AW�
L . The normalization uncer-

tainty of the measured asymmetries due to the uncertainty

for the polarization sum P1 þ P2 is 0.03 (0.01) for AWþð�Þ
L .

The normalization uncertainty is of similar size as the
systematic uncertainty of the asymmetry measurement.

FIG. 3 (color online). Ee
T for Wþ (bottom panel) and W� (top

panel) events showing the candidate events as solid line histo-
grams, the full background estimates as dashed line histograms,
and the signal distributions as shaded histograms.

FIG. 4 (color). Longitudinal single-spin asymmetry, AL, for
W� events as a function of the leptonic pseudorapidity, �e, for
25<Ee

T < 50 GeV in comparison to theory predictions (see text
for details).
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In Fig. 4, the measured asymmetries are compared to
predictions based on full resummed (RHICBOS) [10] and
NLO (CHE) [11] calculations. The CHE calculations use the
DSSV08 polarized PDFs [5], whereas the RHICBOS calcu-
lations are shown in addition for the older DNS-K and
DNS-KKP [22] PDFs. The CHE and RHICBOS results are in
good agreement. The range spanned by the DNS-K and
DNS-KKP distributions for� �d and��u coincides, approxi-
mately, with the corresponding DSSV08 uncertainty esti-

mates [6,7]. The spread of predictions for AWþð�Þ
L is largest

at forward (backward) �e and is strongly correlated to the
one found for the �d ( �u) polarized PDFs in the RHIC kine-
matic region in contrast to the backward (forward) �e

region dominated by the behavior of the well-known va-

lence u (d) polarized PDFs [11]. At midrapidity, Wþð�Þ
production probes a combination of the polarization of the

u and �d (d and �u) quarks, and AWþð�Þ
L is expected to be

negative (positive) [6,7]. The measured AWþ
L is indeed

negative at the 2:7� level, which is a direct consequence
of the positive u quark polarization. The central value of
AW�
L is positive as expected with a larger statistical uncer-

tainty at the 0:7� level. Our AL results are consistent with
predictions using polarized quark and antiquark PDFs con-
strained by inclusive and semi-inclusive pDIS measure-
ments, as expected from the universality of polarized
PDFs. An independent measurement of W boson produc-
tion from RHIC is being reported by the PHENIX collabo-
ration [23].

In summary, we report the first measurement of the
parity-violating single-spin asymmetries for midrapidity,
j�ej< 1, decay positrons and electrons from Wþ and W�
boson production in longitudinally polarized ~pþ p colli-
sions at

ffiffiffi
s

p ¼ 500 GeV by the STAR experiment at RHIC.
This measurement establishes a new and direct way to
explore the spin structure of the proton using parity-
violating weak interactions in polarized ~pþ p collisions.
The measured asymmetries probe the polarized PDFs at
much larger scales than in previous and ongoing pDIS
experiments and agree well with NLO and resummed
calculations using the polarized PDFs of DSSV08. Future
high-statistics measurements at midrapidity together with
measurements at forward and backward pseudorapidities
will focus on constraining the polarization of �d and �u
quarks.
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