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3Instituto de Fı́sica La Plata, CONICET, Facultad de Ciencias Astronómicas y Geofı́sicas, Universidad Nacional de La Plata,
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We extend the formalism of weak interaction processes, obtaining new expressions for the transition rates, which
greatly facilitate numerical calculations, for both neutrino-nucleus reactions and muon capture. Explicit violation
of the conserved vector current hypothesis by the Coulomb field, as well as development of a sum-rule approach
for inclusive cross sections, has been worked out. We have done a thorough study of exclusive (ground-state)
properties of 12B and 12N within the projected quasiparticle random phase approximation (PQRPA). Good
agreement with experimental data achieved in this way put into evidence the limitations of the standard RPA and
QRPA models, which come from the inability of the RPA to open the p3/2 shell and from the nonconservation
of the number of particles in the QRPA. The inclusive neutrino/antineutrino (ν/ν̃) reactions 12C(ν, e−)12N and
12C(ν̃, e+)12B are calculated within both the PQRPA and the relativistic QRPA. It is found that (i) the magnitudes
of the resulting cross sections are close to the sum-rule limit at low energy, but significantly smaller than this
limit at high energies, for both ν and ν̃; (ii) they increase steadily when the size of the configuration space is
augmented, particularly for ν/ν̃ energies >200 MeV; and (iii) they converge for sufficiently large configuration
space and final-state spin. The quasi-elastic 12C(ν, µ−)12N cross section recently measured in the MiniBooNE
experiment is briefly discussed. We study the decomposition of the inclusive cross section based on the degree
of forbiddenness of different multipoles. A few words are dedicated to the ν/ν̃-12C charge-exchange reactions
related to astrophysical applications.

DOI: 10.1103/PhysRevC.83.024303 PACS number(s): 23.40.−s, 25.30.Pt, 26.50.+x

I. INTRODUCTION

The massiveness of neutrinos and related oscillations are
strongly sustained by many experimental works involving
atmospheric, solar, reactor, and accelerator neutrinos [1–7].
The subsequent experimental goal is to determine precisely the
various parameters of the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) neutrino mass matrix, absolute masses of different
flavors of neutrinos, CP violation in the neutrino sector,
etc. To address these problems several analyses of neutrino
oscillation data are presently ongoing. At the same time,
several experiments are currently collecting data, and others
are planned. Accelerator experiments and experiments with
neutrinos from ν factories, β beams, etc., are also planned and
designed, as well as some experiments with natural ν sources
like solar neutrinos, atmospheric neutrinos, and antineutrinos
from nuclear reactors.

Neutrino-nucleus scattering in 12C is important because
this nucleus is a component of many liquid scintillator
detectors. Experiments such as LSND [1,2], KARMEN [8,9],
and LAMPF [10,11] have used 12C to search for neutrino
oscillations and to measure neutrino-nucleus cross sections.
Present atmospheric and accelerator-based neutrino oscillation
experiments also involve 12C and operate at neutrino energies
Eν ∼ 1 GeV to access the relevant regions of the oscillation
parameter space. This is the case of the SciBar detector [12],

*arturo.samana@gmail.com

where the C8H8 molecule is involved, and the MiniBooNE
detector [13], which uses the light mineral oil containing the
CH2 molecule. The 12C target will be used in several planned
experiments, such as the spallation neutron source (SNS) at
Oak Ridge National Laboratory [14] and the LVD (Large
Volume Detector) experiment [15], developed by the INFN
in Gran Sasso.

For the planned experimental searches of supernova neu-
trino signals, which involve 12C as scintillator liquid detector,
the precise knowledge of neutrino cross sections of 12N and
12B ground states, that is, of σe− (Eν, 1+

1 ) and σe+ (Eν̃, 1+
1 ),

is very important. In fact, in the LVD experiment [15] the
number of events detected during the supernova explosion
are estimated by convoluting the neutrino supernova flux
with (i) the interaction cross sections, (ii) the efficiency of
the detector, and (iii) the number of target nuclei. So far
σe− (Eν, 1+

1 ) and σe+ (Eν̃, 1+
1 ), as obtained from the elementary

particle treatment (EPT), have been used for the carbon
content of the LVD [16]. Moreover, as an update of the LVD
experiment related to supernova neutrino detection (where 12C
is also employed), a design study concerning large scintillator
detectors, called LAGUNA, where a 50-kt scintillator LENA
is being considered, is ongoing [17].

On the other hand, as the 12C nucleus forms one of the
onion-like shells of a large star before collapse, it is also
important for astrophysics studies. Concomitantly, several
authors [15,18–23] have recently stressed the importance of
measuring supernova neutrino oscillations. They claim that a
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supernova explosion represents a unique scenario for further
study of the PMNS matrix. The corresponding neutrinos,
which carry all flavors, have been observed on only one
occasion (SN1987A), have an energy Eν � 100 MeV [24], and
are also studied through the interactions with carbon nuclei in
the liquid scintillator.

Thus, the main interest in the neutrino/antineutrino-12C
charge-exchange cross sections lies in the neutrino oscillations,
and precise knowledge of cross sections in neutrino energies
going from a few MeVs up to a few giga–electron volts is
required. Until quite recently the only available experimental
information on reactions was that for flux-averaged cross
sections: (i) Eνe

< 60 MeV for 12C(νe, e
−)12N in the DAR

region [25–27] and (ii) 127 MeV � Eνµ
� 300 MeV for

12C(νµ, µ−)12N in the DIF region [28–30]. In the last few
years, however, several experimental programs at MiniBooNE
[31], K2K [32], and SciBooNE [33] have yielded results on
the (νµ,12C) cross section for 0.4 GeV � Eνµ

� 1.7 GeV.
It is well known that for Eν higher than a few hundred
MeV’s, besides the quasielastic (QE) channel, many inelastic
channels are open and pion production becomes important.
In fact, there have been quite active experimental efforts to
investigate neutrino-induced coherent single-pion production
in the �-excitation region of 12C. Starting approximately at the
threshold coming from the pion and charged lepton masses (mπ

and m�), the π + � production cross section steadily increases,
with the neutrino energy becoming higher than the QE one for
Eν � 1.5 GeV [31–33].

On the theoretical side there have been great efforts to
understand the nuclear structure within the triad {12B,12C,12N}.
In the seminal work by O’Connell, Donelly, and Walecka [34],
a unified analysis of electromagnetic and semileptonic weak
interactions was presented. To describe the nuclear dynamics
they have used the particle-hole Tamm-Dancof approximation
(TDA) within a very small single-particle (s.p.) space1 (S2 ≡
{1s1/2, 1p3/2, 1p1/2, 1d5/2, 2s1/2}) [35]. To achieve agreement
with experiments for β± decays and µ capture, they were
forced to use an overall reduction factor ξ 2 of the order of 4
(2) for even (odd) parity states. They have also pointed out that
this factor would become totally unnecessary with the use of
a better nuclear model able to open the 1p3/2 shell.

Rather thorough comparisons of 2s1d and 2p1f shell-
model (SM) predictions with measured allowed β-decay
rates have yielded a simple, phenomenological effective axial
coupling g

A
= 1 that should be used rather than the bare value

[36–39]. This observation is the basis for many nuclear model
estimates of the Gamow-Teller (GT) response that governs
allowed neutrino cross sections. In Ref. [34], g

A
= 1.23 was

used, based on a study of neutron β decay, and as the analyzed
processes were dominantly of the axial-vector type, the use of
g

A
= 1 would have diminished the reduction factors ξ 2 in an

appreciable way.
In the random phase approximation (RPA), besides the

TDA forward-going amplitudes, backward-going amplitudes
are present as well. However, these additional RPA amplitudes

1Henceforth, a single-particle (s.p.) space that includes all orbitals
within the N harmonic oscillator (HO) shells is labeled space SN .

did not help to open the 1p3/2 shell in the continuum RPA
(CRPA) calculations of Kolbe, Langanke, and Krewald [40].
Thus, as in the case of the TDA used in Ref. [34], to get
agreement with data for the ground-state triplet T = 1 [β±
decays, µ capture, and the exclusive 12C(νe, e

−)12N reaction],
their calculations were rescaled by a factor of ∼=4.

The main aim of the CRPA is to describe appropriately
not only the bound states but also the virtual (quasibound),
resonant, and continuum states, which are treated as bound
states in the RPA. However, this superiority has not been
evidenced so far in numerical calculations. For instance, in
the case of µ-capture rates in 16N, the two methods agree with
each other quite well for the 0− and 1− states, while the RPA
result is preferred for the 2− state [41].

To open the 1p3/2 shell, one has to introduce pairing
correlations. This is done within the SM [42–44], which
reproduces quite well both (i) the experimental flux-averaged
exclusive cross section (ECS) and inclusive cross section (ICS)
for the 12C(νe, e

−)12N DAR [25–27] and 12C(νµ, µ−)12N
DIF [28] reactions and (ii) the µ− + 12C → νµ + 12B muon-
capture modes [45–47].

The quasiparticle RPA (QRPA) also opens the 1p3/2 shell
by means of the pairing interaction. However, it fails as well
in accounting for the exclusive processes triplet T = 1 in 12C,
because a new problem emerges, as first observed by Volpe
et al. [43]. They noted that within the QRPA the lowest state
in 12N irremediably turned out not to be the most collective
one. Later it was shown [48–50] that (1) the origin of this
difficulty arises from the degeneracy among the four lowest
proton-neutron two-quasiparticle (2qp) states |1p1/21p3/2〉,
|1p3/21p3/2〉, |1p1/21p1/2〉, and |1p3/21p1/2〉, which, in turn,
comes from the fact that for N = Z = 6 the quasiparticle
energies E1p1/2 and E1p3/2 are very close to each other; and
(2) it is imperative to use the projected QRPA (PQRPA) for a
physically sound description of the weak processes among the
ground states of the triad {12B, 12C, 12N} [48–50] (see Figs. 2
and 3 in Ref. [49]).

In summary, neither the CRPA nor the QRPA is the
appropriate nuclear model to describe the “fine structure”
of exclusive charge-exchange processes around 12C, and they
can only be used for global inclusive descriptions. Of course,
the same is valid for the relativistic RPA (RQRPA), which
has recently been applied with success in calculations of
inclusive charged-current neutrino-nucleus reactions in 12C,
16O, 56Fe, and 208Pb [51] and total muon-capture rates in a
large set of nuclei from 12C to 244Pu [52]. The continuum
QRPA (CQRPA) would have to be superior to the QRPA for
the same reasons that the CRPA would have to be better than
the RPA. Nevertheless, this superiority has not been evidenced
by numerical calculations [53,54]. Finally, it is clear that the
nuclear structure descriptions inspired by the relativistic Fermi
gas model (RFGM) [54–57], which do not involve multipole
expansions, should only be used for inclusive quantities.

When the effects owing to resonant and continuum states
are considered, as done within the CRPA and CQRPA, the
spreading in strength of the hole states in the inner shells
should also be taken into account for the sake of consistency.
In fact, an s.p. state j that is deeply bound in the parent nucleus,
after a weak interacting process, can become a highly excited
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hole-state j−1 in the continuum of the residual nucleus. There
it is suddenly mixed with more complicated configurations
(2h1p, 3h2p, . . ., excitations, collective states, and so on)
spreading its strength over a relatively wide energy interval
[58].2 This happens, for instance, with the 1s1/2 orbital in
12C, which is separated from the 1p3/2 state by approximately
23 MeV, which is enough to break the 12-particle system,
where the energy of the last excited-state amounts to 11.5 MeV
in 12N and 16.5 MeV in 12B channels. Although the detailed
structure and fragmentation of hole states are still not well
known, the exclusive knockout reactions provide a wealth of
information on the structure of single-nucleon states of nuclei.
Excitation energies and widths of proton-hole states were
systematically measured with quasifree (p, 2p) and (e, e′p)
reactions, which revealed the existence of inner orbital shells
in nuclei [59–67].

In the TDA calculation in Ref. [34] the S2 space has
been used, which extends only from 13.77 up to 30.05 MeV,
embracing, respectively, one, three, two, one, and one negative-
parity states Jπ = 0−, 1−, 2−, 3−, and 4−, and one, two, two,
and one positive-parity states Jπ = 0+, 1+, 2+, and 3+. For
such small configuration spaces, the neutrino cross sections
σe(Eν) and σµ(Eν) have been evaluated up to a neutrino energy
Eν of 0.6 GeV and extrapolated up to 20 GeV. In recent years,
however, large configuration spaces have been used in the
evaluation of QE cross sections for Eν ∼ 1 GeV. For instance,
Amaro et al. [68] have employed the s.p. SM (TDA without
the residual interaction) in a semirelativistic description of QE
neutrino reactions (νµ, µ−) on 12C going up to Eν = 1.5 GeV,
and including multipoles Jπ � 47±. Good agreement with
the RFGM was obtained for several choices of kinematics
of interest for the ongoing neutrino oscillation experiments.
Kolbe et al. [69] have also achieved an excellent agreement
between RFGM and CRPA calculations of the total cross
section and the angular distribution of the outgoing electrons
in 16O(νe, e)X for Eν � 0.5 GeV. They considered states up
to Jπ = 9± only, and did not specify the configuration space
used. Moreover, Valverde et al. [54,57] have analyzed the
theoretical uncertainties of the RFGM developed in Ref. [56]
for (νe, e

−), and (νµ, µ−) cross sections in 12C, 16O, and
40Ca for Eν � 0.5 GeV. The work of Kim et al. [70] should
also be mentioned, which studied the effects of strangeness
on (νµ, µ−) and (ν̃µ, µ+) cross sections in 12C for incident
energies between 0.5 MeV and 1.0 GeV, within the framework
of a relativistic s.p. model. Quite recently, Butkevich [71] has
also studied the scattering of muon neutrinos on carbon targets
for neutrino energies up to 2.8 GeV within a relativistic SM
approach without specifying the model space.

For relatively high neutrino energies (Eνe � mπ and Eνµ
�

mπ + mµ), the pion production cross section should be added
to the aforementioned QE cross sections, as done, for instance,
in Refs. [72] and [73]. One should also note that σe(Eνe

)
and σµ(Eνµ

) coincide with each other asymptotically. This
is clearly demonstrated in the extreme relativistic limit (ERL)

2One should keep in mind that the mean lives of 12N and 12B are,
respectively, 11.0 and 20.2 ms, while strong interaction times are of
the order of 10−21 s.

where |p�|/E� → 1, and the neutrino-nucleus cross sections
depend on m� only through the threshold energy, as shown
Appendix C here. Figure 4 in Ref. [74] is also illustrative in
this respect.

Therefore, we focus our attention only on the QE cross
section σe(Eνe

), as at the muon-neutrino energies involved in
the MiniBooNE experiment [13], it is equal to σµ(Eνµ

) for all
practical purposes.

One of the main objectives of the present study is to
analyze the effect of the size of the configuration space up
to neutrino energies of several hundred MeV. As in several
previous works [34,39–44,48–52,54,57,68–70,74] this is done
in first-order perturbation theory. The consequences of the
particle-particle force in the S = 1, T = 0 channel, within
the PQRPA, is also examined. The importance of this piece of
the residual interaction was discovered more than 20 years ago
by Vogel and Zirnbauer [75] and Cha [76], and since then the
QRPA has become the most frequently used nuclear structure
method for evaluating double β-decay rates.

A few words are devoted as well as to the nonrelativistic
formalisms for neutrino-nucleus scattering. The most popular
one was developed by the Walecka group [34,77–79], in
which the nuclear transition matrix elements are classified
as Coulomb, longitudinal, transverse electric, and transverse
magnetic multipole moments. We feel that these denomina-
tions might be convenient when simultaneously discussing
charge-conserving and charge-exchange processes, but it
seems unnatural when one considers only the latter ones.
As a matter of fact, this terminology is not often used in
nuclear β-decay, µ-capture, and charge-exchange reactions,
where one speaks only of vector and axial matrix elements with
different degrees of forbiddenness: allowed (GT and Fermi),
first forbidden, second forbidden, etc., types [80,81]. There
are exceptions, of course, as, for instance, the recent work
of Marketin et al. [52] on muon capture, where Walecka’s
classification was used.

The formalism worked out by Kuramoto et al. [74] is
also frequently used for evaluation of neutrino-nucleus cross
sections. It is simpler than that of Walecka, but it does not
contain relativistic matrix elements, nor is it applicable for
muon capture rates.

More recently, we have introduced another formalism
[48–50]. Besides being almost as simple as that of Ref. [74],
it retains relativistic terms and can be used for µ capture. This
formalism is briefly sketched here, including the consequences
of the violation of the conserved vector current (CVC) by the
Coulomb field. It is further simplified by classifying the nuclear
matrix elements in natural and unnatural parities. We also show
how, within the present formalism, both the sum-rule approach
and the formula for ERL look like.

In Sec. II we briefly describe the formalism used to
evaluate different weakly interacting processes. Some details
are delegated to the Appendixes: (A) contributions of natural
and unnatural parity states to the transition rates, (B) the
sum-rule approach for the inclusive neutrino-nucleus cross
section, (C) the formula for the inclusive neutrino-nucleus
cross section at the extreme relativistic limit, and (D) the
formula for the muon-capture rate. In Sec. III we present and
discuss the numerical results. Comparisons with experimental
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data, as well as with previous theoretical studies, are done
whenever possible. Here we first sketch the two theoretical
frameworks, namely, the PQRPA and RQRPA, used in the
numerical calculations. In Secs. II and III B we present the
results for the exclusive and inclusive processes, respectively.
Finally, in Sec. IV we give a brief summary and final
conclusions.

II. FORMALISM FOR WEAKLY INTERACTING
PROCESSES

The weak Hamiltonian is expressed in the form [77,78,82]

HW (r) = G√
2
Jαlαe−ir·k, (2.1)

where G = (3.045 45 ± 0.000 06) × 10−12 is the Fermi cou-
pling constant (in natural units), the leptonic current lα ≡
{l, il∅} is given by Eq. (2.3) in Ref. [49], and the hadronic
current operator Jα ≡ {J, iJ∅}, in its nonrelativistic form,
reads3

J∅ = gV + (gA + gP1)σ · k̂ + gA

iσ · ∇
M

,

(2.2)

J = −gAσ − igWσ × k̂ − gVk̂ + gP2(σ · k̂)k̂ − gV

i∇
M

,

where k̂ ≡ k/|k|. The quantity

k = Pi − Pf ≡ {k, ik∅} (2.3)

is the momentum transfer, M is the nucleon mass, and Pi and
Pf are momenta of the initial x and final nucleon (nucleus).
The effective vector, axial-vector, weak-magnetism, and pseu-
doscalar dimensionless coupling constants are, respectively,

gV = 1, gA = 1, gM = κp − κn = 3.70,
(2.4)

gP = gA

2Mm�

k2 + m2
π

,

where the following short notation has been introduced:

gV = gV
κ

2M
, gA = gA

κ

2M
, gW = (gV + gM)

κ

2M
,

(2.5)

gP1 = gP
κ

2M

k∅
m�

, gP2 = gP
κ

2M

κ

m�

,

where κ ≡ |k|. These estimates for gM and gP come from
the CVC hypothesis and from the partially conserved axial
vector current hypothesis, respectively. The finite nuclear size
effect is incorporated via the dipole form factor with cutoff

 = 850 MeV, that is, g → g[
2/(
2 + k2)]2.

In performing the multipole expansion of the nuclear
operators,

Oα ≡ (O, iO∅) = Jαe−ik·r, (2.6)

3As in Ref. [49] we use Walecka’s notation [78] with the Euclidean
metric for quadrivectors and α = 1, 2, 3, 4. The only difference is
that we substitute his indices (0, 3) with our indices (∅, 0), where we
use the index ∅ for the temporal component and the index 0 for the
third spherical component.

it is convenient (1) to take the momentum k along the z axis,
that is,

e−ik·r =
∑

L

i−L
√

4π (2L + 1)jL(ρ)YL0(r̂),

=
∑

J

i−J
√

4π (2J + 1)jJ(ρ)YJ0(r̂), (2.7)

where ρ = κr , and (2) to define the operators Oα as

Oα =
√

4π
∑

J

i−J
√

2J + 1OαJ. (2.8)

In this way we avoid the troublesome factor i−J. In spherical
coordinates (m = −1, 0,+1) we have

J∅ = gV + (gA + gP1)σ0 + igAM−1σ · ∇,

Jm = −gAσm + mgWσm + δm0[−gV + gP2σ0] − igV M−1∇m

(2.9)

and

O∅J = jJ(ρ)YJ0(r̂)J∅,
(2.10)

OmJ =
∑

L

iJ−LFLJmjL(ρ)[YL(r̂) ⊗ J]J,

where

FLJm ≡ (−)J+m
√

2L + 1

(
L 1 J

0 −m m

)

= (−)1+m(1,−mJm|L0) (2.11)

is a Clebsch-Gordan coefficient.4

Explicitly, from Eq. (2.9),

O∅J = gVMV

J + igAMA

J + i(gA + gP1)MA

0J, (2.12)

OmJ = i(δm0gP2 − gA + mgW)MA

mJ + gVMV

mJ − δm0gVMV

J .

(2.13)

The elementary operators are given by

MV

J = jJ(ρ)YJ(r̂),
(2.14)

MA

J = M−1jJ(ρ)YJ(r̂) (σ · ∇)

and

MA

mJ =
∑
L�0

iJ−L−1FLJmjL(ρ) [YL(r̂) ⊗ σ ]J ,

(2.15)
MV

mJ = M−1
∑
L�0

iJ−L−1FLJmjL(ρ)[YL(r̂) ⊗ ∇]J.

The CVC relates the vector-current pieces of operator (2.6) as
(see Eqs. (10.45) and (9.7) in Ref. [81])

k · OV ≡ κOV

0 = k̃∅OV

∅ , (2.16)

4Their values are

FJ+1,J,0 = −
√

J+1
2J+1 , FJ−1,J,0 =

√
J

2J+1 , FJ+1,J,±1 =
√

J
2(2J+1) ,

FJ,J−1,±1 =
√

J + 1

2(2J + 1)
, FJ,J,0 = 0, FJ,J,±1 = ∓ 1√

2
.
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with

k̃∅ ≡ k∅ − S(�ECoul − �M), (2.17)

where

�ECoul
∼= 6e2Z

5R
∼= 1.45 ZA−1/3 MeV, (2.18)

is the Coulomb energy difference between the initial and the
final nuclei, �M = Mn − Mp = 1.29 MeV is the neutron-
proton mass difference, and S = ±1 for neutrino and antineu-
trino scattering, respectively.

The consequence of the CVC relation (2.16) is the substi-
tution

gVMV

0J − gVMV

J → k̃∅
κ

gVMV

J, (2.19)

in (2.13), and OmJ now reads

OmJ = i(δm0gP2 − gA + mgW)MA

mJ

+ |m|gVMV

mJ + δm0
k̃∅
κ

gVMV

J . (2.20)

The second term in (2.17) comes from the violation of the CVC
by the electromagnetic interaction. Although it is frequently
employed in nuclear β decay, as far as we know, it has never
been considered before in neutrino-nucleus scattering. �ECoul

is equal to 3.8, 9.8, and 20.0 MeV for 12C, 56Fe, and 208Pb,
respectively, and therefore the term just mentioned could be
quite significant, especially for heavy nuclei.

The transition amplitude for the neutrino-nucleus reaction
at a fixed value of κ , from the initial state |0+〉 in the (Z,N)
nucleus to the nth final state |Jπ

n 〉 in the (Z ± 1, N ∓ 1)
nucleus, reads

TJπ
n
(κ) ≡

∑
s�,sν

∣∣〈Jπ
n

∣∣HW (κ)|0+〉∣∣2
. (2.21)

The momentum transfer here is k = p� − qν , with p� ≡
{p�, iE�}and qν ≡ {qν, iEν}, and after some algebra [49], one
gets

TJπ
n
(κ) = 4πG2

[ ∑
α=∅,0,±1

∣∣〈Jπ
n

∣∣|OαJ(κ)||0+〉∣∣2Lα

− 2�(〈
Jπ

n

∣∣|O∅J(κ)||0+〉〈Jπ
n

∣∣|O0J(κ)||0+〉∗)L∅0

]
,

(2.22)

where

L∅ = 1 + |p�| cos θ

E�

,

L0 = 1 + 2q0p0

E�Eν

− |p�| cos θ

E�

,

(2.23)

L±1 = 1 − q0p0

E�Eν

±
(

q0

Eν

− p0

E�

)
S,

L∅0 = q0

Eν

+ p0

E�

are the lepton traces, with θ ≡ q̂ν · p̂� being the angle between
the incident neutrino and the ejected lepton momenta, and

q0 = k̂ · qν = Eν(|p�| cos θ − Eν)

κ
,

(2.24)

p0 = k̂ · p� = |p�|(|p�| − Eν cos θ )

κ

are the z components of the neutrino and lepton momenta.
The exclusive cross section (ECS) for the state |Jπ

n 〉, as a
function of the incident neutrino energy Eν , is

σ�(Jπ
n , Eν) = |p�|E�

2π
F (Z + S,E�)

∫ 1

−1
d(cos θ )TJπ

n
(κ),

(2.25)

where

E� = Eν − ωJπ
n
, |p�| =

√(
Eν − ωJπ

n

)2 − m2
�,

κ = |p� − qν | (2.26)

=
√

2Eν(E� − |p�| cos θ ) − m2
� + ω2

Jπ
n
,

and ωJπ
n

= −k∅ = Eν − E� is the excitation energy of the state
|Jπ

n 〉 relative to the state |0+〉. Moreover, F (Z + S,E�) is
the Fermi function for the neutrino (S = 1) and antineutrino
(S = − 1), respectively.

It is well known that charged-current cross sections must
be corrected for the distortion of the outgoing lepton wave
function by the Coulomb field of the daughter nucleus.
For relatively low neutrino energies (∼40–50 MeV) this
correction was implemented by numerical solution of the
Dirac equation for an extended nuclear charge [81]. At higher
energies, the effect of the Coulomb field was described by
the effective momentum approximation (EMA) [83], in which
the lepton momentum p� and energy E� are modified by the
corresponding effective quantities (see Eqs. (34) and (45) in
Ref. [51]).

Here, we also deal with the inclusive cross section (ICS),

σ�(Eν) =
∑
Jπ

n

σ�

(
Jπ

n , Eν

)
, (2.27)

as well as with folded cross sections, both exclusive,

σ �

(
Jπ

n

) =
∫

dEνσ�

(
Jπ

n , Eν

)
n�(Eν), (2.28)

and inclusive,

σ � =
∫

dEνσ�(Eν)n�(Eν), (2.29)

where n�(Eν) is the neutrino (antineutrino) normalized flux.
In the evaluation of both neutrino and antineutrino ICSs the
summation in Eq. (2.27) goes over all n states with spin
and parity Jπ � 7± in the PQRPA and over Jπ � 14± in the
RQRPA.

In Appendix A we show that the real and imaginary parts of
the operators OαJ, given by Eqs. (2.12) and (2.20), contribute
to natural and unnatural parity states, respectively. This greatly
simplifies the numerical calculations, because one always
deals with real operators only. In Appendix D are also shown
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the formula for the muon-capture process within the present
formalism.

III. NUMERICAL RESULTS AND DISCUSSION

The major part of the numerical calculations was
done within the PQRPA by employing the δ interaction
(in MeV fm3),

V = −4π (vsPs + vtPt ) δ(r),

with singlet (vs) and triplet (vt ) coupling constants different for
the particle-hole (ph), particle-particle (pp), and pairing (pair)
channels [84]. This interaction leads to a good description of
single and double β decays and it has been used extensively
in the literature [85–88]. The s.p. wave functions were
approximated with those of the harmonic oscillator (HO)
with length parameter b = 1.67 fm, which corresponds to
the oscillator energy h̄ω = 45A−1/3 − 25A−2/3 MeV. The s.p.
spaces S2, S3, S4, and S6are explored.

In Refs. [48] and [49], where the S3 space was used, we
pointed out that the values of the coupling strengths v

pp
s , v

pair
s ,

and v
p
t used in N > Z nuclei (vpp

s = v
pair
s , v

pp
t � v

pp
s ) might

not be suitable for N = Z nuclei. In fact, the best agreement
with data in 12C for (i) the energy of the ground state in 12N,
E(12N), (ii) the GT B values in 12C, B(12N) and B(12B),
and (iii) the exclusive muon capture in 12B, 
exc ≡ 
(1+

1 )
is obtained when the pp channel is totally switched off, that
is, v

pp
s ≡ v

pp
t = 0. The adopted ph coupling strengths are

v
ph
s = 27 MeV fm3 and v

ph
t = 64 MeV fm3 [48]. For the pp

channel it is convenient to define the parameters

s = v
pp
s

v
pair
s

, t = v
pp
t

v
pair
s

,

where v
pair
s = [vpair

s (p) + v
pair
s (n)]/2 [88]. As in our previous

work on 12C, here we use the same singlet and triplet pp

couplings, that is, s ≡ t [48,49]. States with Jπ = 0+ and Jπ =
1+ depend only on s and t , respectively, while all remaining
states depend on both coupling strengths.

The s.p. energies and pairing strengths for S2, S3, and
S4 spaces were varied in a χ2 search to account for the
experimental spectra of odd-mass nuclei 11C, 11B, 13C, and
13N, as explained in Ref. [49]. This method, however, is
not practical for space S6, which comprises 21 s.p. levels.
Therefore in this case the energies were derived in the manner
used in Ref. [51], while the pairing strengths were adjusted to
reproduce the experimental gaps in 12C [89], considering all
quasiparticle energies up to 100 MeV.

For the purpose of the present study, we also employ the
RQRPA theoretical framework [90]. In this case the ground
state is calculated in the relativistic Hartree-Bogoliubov model
(RHB) using effective Lagrangians with density-dependent
meson-nucleon couplings and DD-ME2 parameterization
[91], and pairing correlations are described by the finite-range
Gogny force [92]. Details of the formalism can be found
in Refs. [93] and [94]. The RHB equations and respective
equations for mesons are usually solved by expanding the
Dirac spinors and the meson fields in a spherical HO basis with
the S20 s.p. space. In the present study of neutrino-nucleus cross

sections, with energies of incoming neutrinos up to 600 MeV,
we extend the number of oscillator shells up to N = 30
to accommodate s.p. states at higher energies necessary for
description of cross sections involving higher energies of
incoming (anti)neutrinos. The number of 2qp configurations in
the RQRPA is constrained by the maximal excitation energy
E2qp. Within the RHB + RQRPA framework the oscillator
basis is used only in the RHB to determine the ground-state
and s.p. spectra. The resulting wave functions are converted to
coordinate space for evaluation of RQRPA matrix elements.
However, it is the original HO basis employed in the RHB
that determines the maximal E2qp and the size of the RQRPA
configuration space.

A. Weak interaction properties of 12N and 12B ground states

Let us first compare the QRPA and PQRPA within the
smallest configuration space S2, which contains 16 Jπ =
1+ states, and with null pp coupling, t = 0. The PQRPA
ground-state energies in 12N and 12B, are, respectively,
ω+1(1+) = 18.319 MeV and ω−1(1+) = 12.528 MeV, while
the corresponding wave functions read

|12N〉 = 0.963
∣∣1pπ

3/21pν
1/2

〉 + 0.232
∣∣1pπ

3/21pν
3/2

〉
+ 0.122

∣∣1pπ
1/21pν

3/2

〉 + 0.105
∣∣1pπ

1/21pν
1/2

〉
+ . . . (3.1)

and

|12B〉 = −0.971
∣∣1pπ

1/21pν
3/2

〉 + 0.204
∣∣1pπ

3/21pν
3/2

〉
− 0.125

∣∣1pπ
3/21pν

1/2

〉 + 0.090
∣∣1pπ

1/21pν
1/2

〉
+ . . . . (3.2)

The analogous QRPA energies are quite similar: ω+1(1+) =
17.992 MeV and ω−1(1+) = 12.437 MeV. However, the wave
functions are quite different. The main difference lies in the
fact that QRPA furnishes the same wave functions for all four
nuclei 12N, 10B, 14N, and 12B, being that of the ground state:

|1+
GS〉 = −0.272

∣∣1pπ
3/21pν

1/2

〉 − 0.759
∣∣1pπ

3/21pν
3/2

〉
+ 0.356

∣∣1pπ
1/21pν

3/2

〉 − 0.472
∣∣1pπ

1/21pν
1/2

〉
+ . . . . (3.3)

The difference in the wave functions is an important issue
that clearly signals the need for number projection. In fact,
the PQRPA yields the correct limits (1pπ

3/2 → 1pν
1/2 and

1pν
3/2 → 1pπ

1/2) for one-particle-one-hole (1p1h) excitations
on the 12C ground state to reach the 12N, and 12B nuclei. All
remaining configurations in Eqs. (3.1) and (3.2) come from the
higher order 2p2h and 3p3h excitations. On the contrary, the
QRPA state, Eq. (3.3), is dominantly the two-hole excitation
[(1pπ

3/2)−1, (1pν
3/2)−1], which corresponds to the ground state

of 10B. More details on this question can be found in Fig. 3
of Ref. [49]. The 1p1h amplitudes [(1pπ

3/2)−1, 1pν
1/2] and

[(1pν
3/2)−1, (1pπ

1/2)] are dominantly present in the following
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FIG. 1. (Color online) 12B and 12N ground-state energies (in units
of MeV) and GT B values within the PQRPA for different s.p. spaces,
as a function of the pp-coupling t . Experimental values are E(12B) =
13.37 MeV and E(12N) = 17.33 MeV [95], and B(12B) = 0.466, and
B(12N) = 0.526 [96].

QRPA states:

|1+
2 〉 = 0.708

∣∣1pπ
1/21pν

3/2

〉 + 0.703
∣∣1pπ

3/21pν
1/2

〉
+ · · ·

|1+
4 〉 = −0.476

∣∣1pπ
3/21pν

1/2

〉 + 0.437
∣∣1pπ

3/21pν
3/2

〉
+ 0.441

∣∣1pπ
1/21pν

3/2

〉 − 0.096
∣∣1pπ

1/21pν
1/2

〉
+ · · · . (3.4)

The wave functions in Eq. (3.4) clearly demonstrate the
superiority of the PQRPA to the QRPA. Therefore henceforth
only the PQRPA results are discussed for the exclusive
observables.

Figure 1 shows the 12B and 12N ground-state energies,
and the corresponding GT B values within the PQRPA for
different s.p. spaces, as a function of the pp-coupling t . One
sees that the energies depend rather weakly on both and agree
fairly well with the measured energies, E(12B) = 13.37 MeV
and E(12N) = 17.33 MeV [95], although the first one is
somewhat underestimated, while the second one is somewhat
overestimated. Both GT B values increase significantly with
t and diminish when the size of the s.p. space is increased.
For spaces S2 and S3 the best overall agreement with data
(B(12B) = 0.466 and B(12N) = 0.526 [96]) is achieved with
t = 0, while for spaces S4 and S6 this happens when the
couplings are, respectively, t = 0.2 and t = 0.3.

After establishing the PQRPA parametrization, we analyze
the behavior of the ECSs of the ground states in 12N and 12B,
as a function of the size of the configuration space. Figure 2
shows the ECSs for the reaction 12C(ν, e−)12N (in units of
10−42 cm2) for several configuration spaces, and for t = 0,
within three energy intervals. The top panel represents the
DAR region, where experimental data are available [25]
and the search for neutrino oscillations was done [25,27].
The middle panel in Fig. 2 represents the region of interest
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PQRPA

FIG. 2. Exclusive 12C(ν, e−)12N cross section σe(Eν, 1+
1 ) (in units

of 10−42 cm2), plotted as a function of the incident neutrino energy
Eν . Results for several single-particle spaces SN , and t = 0, within
three energy intervals, are shown. Experimental data in the DAR
region are from Ref. [25].

for supernova neutrinos, as pointed out in Refs. [15] and
[97], while the bottom panel shows the asymptotic behavior
of the cross section, which becomes almost constant for
Eν  200 MeV. Within the spaces S2 and S3 the calculations
reproduce quite well the experimental cross sections in the
DAR region, as shown in the first panel.

Figure 3 shows the calculated ECSs for the reaction
12C(ν, e−)12N within several configuration spaces, but now
with different values of the pp coupling. From comparison
with the experimental data in the DAR region [25], one
observes that the appropriate values for the coupling t for s.p.
spaces S4, and S6, are, respectively, t = 0.2 and t = 0.3, that
is, the same as those required to reproduce the experimental
energies and the GR B values in 12B, and 12N.

This change of parametrization hints at the self-consistency
of the PQRPA and comes from the fact that, in this model,
(i) the GT strength allocated in the ground state is moved
to another 1+ states when the size of the space is increased,
and (ii) the effect of the pp residual interaction goes in the
oppositive direction, returning the GT strength to the 1+

1 state.
Only for space S2 is the cross section σe− (Eν, 1+

1 ) appreciably
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FIG. 3. (Color online) Same as Fig. 2, but here t = 0 for S2 and
S3, t = 0.2 for S4, and t = 0.3 for S6. SM and EPT calculations are,
respectively, from Refs. [98] and [16]. Experimental data in the DAR
region are from Ref. [25].

larger (at Eν � 60 MeV) than for the other spaces, which is
just because of the small number of configurations in this case.
Figure 3 also shows the results for the ECSs evaluated within
the SM [98] and the EPT [16]. Both of them agree well with
the data and with the present calculation.

The results for the reaction (ν̃, e+) to the ground state in
12B are shown in Fig. 4. The cross section σe+ (Eν̃, 1+

1 ) is
similar to that produced by neutrinos but significantly smaller
in magnitude. One notices that they are considerably different
from the EPT results [16], which are also shown in Fig. 4. To
some extent this is surprising, as in the case of neutrinos the two
models yield very similar results. One should remember that
in the EPT model the axial form factor, used for both neutrinos
and antineutrinos, is gauged to the average of the GR B values
in 12B and 12N, which, in turn, are well reproduced by the
PQRPA. Therefore it is difficult to understand why the EPT
results agree with the present calculations for neutrinos and
disagree for antineutrinos.

Figure 5 shows the dependence on the configuration space
of the exclusive muon-capture transition rate 
(1+

1 ) to the 12B
ground state, and the electron and muon flux-averaged ECSs,

10 15 20 25 30 35 40 45 50 55 60
0

10

20

30

σ e
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S3
S4
S6
EPT

~

20 40 60 80 100
0

10
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σ e

0 50 100 150 200 250

Eν [MeV]
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20

40

60

σ e

PQRPA

FIG. 4. (Color online) Calculated 12C(ν̃, e+)12B cross section
σe+ (Eν̃, 1+

1 ) (in units of 10−42 cm2), plotted as a function of the
incident antineutrino energy Eν̃ . As in Fig. 3, the value of t is 0 for
s.p. spaces S2, and S3, 0.2 for S4, and 0.3 for S6. The EPT calculation
from Ref. [16] is also shown.

given by Eq. (2.28), to the 12N ground state, that is, σ ε(1+
1 )

and σµ(1+
1 ). As in Refs. [48] and [49] the electron neutrino

distribution ne(Eν) was approximated with the Michel energy
spectrum [9,99], and for the muon neutrinos we used nµ(Eν)
from Ref. [30]. The energy integration is carried out in the DAR
interval me + ωJf

� �DAR
Jf

� 52.8 MeV for electrons and in

the DIF interval mµ + ωJf
� �DIF

Jf
� 300 MeV for muons.

From Fig. 5 and comparison with experimental data,


(12B) = 6.2 ± 0.3 [45],

σ e(12N) = 9.1 ± 0.4 ± 0.9 [25], 8.9 ± 0.3 ± 0.9 [26],

σµ(12N) = 6.6 ± 1.0 ± 1.0 [28], 5.6 ± 0.8 ± 1.0 [29],

one finds out, as for the results shown in Figs. 1 and 3,
the model self-consistency between s.p. spaces and the pp

couplings. That is, for larger s.p. spaces, larger values of t

are required. In brief, the experimental data for σ e(12N) and
σµ(12N) are well reproduced by the PQRPA. The same is true
for the SM calculations [42,43], while in the RPA and QRPA
models they are strongly overestimated, as shown in Table II
in Ref. [43] and Table I in Ref. [50].
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FIG. 5. (Color online) Muon-capture transition rate to the 12B
ground state (in units of 102 s−1, and electron and muon folded
ECSs to the 12N ground state in units of 10−42 cm2 and 10−41 cm2,
respectively. Experimental values, in these units, are 
(12B) = 6.2 ±
0.3 [45], σ e(12N) = 9.1 ± 0.4 ± 0.9 [25], and σ e(12N) = 8.9 ± 0.3 ±
0.9 [26] and σµ(12N) = 6.6 ± 1.0 ± 1.0 [28], and σµ(12N) = 5.6 ±
0.8 ± 1.0 [29], respectively.

B. Inclusive cross sections 12C(ν, e−)12N and 12C(ν̃, e+)12B
and the Sum Rule

In Fig. 6 we compare the PQRPA results for the ICS σe− (Eν)
within spaces S2, S3, and S6 with the corresponding sum rules
σSR

e− (Eν) evaluated from Eq. (B1). One immediately sees that
the PQRPA results depend very strongly on the size of the
employed s.p. space. In contrast, as mentioned in Appendix B,
the sum rule σSR

e− (Eν) depends on the average energy ωJπ
n
. Here

we use two values: ωJπ
n

= 17.34 MeV, which is the ground-
state energy 12N (GT resonance); and ωJπ

n
= 42 MeV, which

is roughly the energy of the first forbidden resonance [100].
The corresponding curves in Fig. 6 are labeled, respectively,
SRGT and SR1F.

They should be the upper limits for allowed and first
forbidden transitions, respectively. The validity of these sum
rules is questionable for neutrinos energies of several hundred
MeV, as pointed out by Kuramoto et al. [74]. In fact, we note
that the cross section SRGT (SR1F) exceeds the free particle
cross section σ6 ≡ 6(νe + n → e− + p) for Eν > 200 MeV
(Eν > 300 MeV) [101].

Several previous SM and RPA-like calculations of σe− (Eν),
employing different effective axial-vector coupling constants
and different s.p. spaces, are exhibited in Fig. 6 as well, namely:

(i) the TDA [34], with gA = 1.23, and S2;
(ii) the SM and RPA [43], with gA = 0.88, and S3;

(iii) the CRPA [102], with gA = 1.26, and S4; and
(iv) RQRPA [51], with gA = 1.23, S20, and E2qp =

100 MeV.

It is important to specify the gA values because the partial
cross sections are predominantly of the axial-vector type
(especially the allowed ones), which are proportional to
g2

A
. Despite the very significant differences in gA and the

SR
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RPA
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TDA

50 100 150 200 250 300

Eν(MeV)

0

5

10

15

20

25

σ e
-

PQRPA

FIG. 6. (Color online) Inclusive 12C(ν, e−)12N cross section
σe− (Eν) (in units of 10−39 cm2) plotted as a function of the incident
neutrino energy Eν . PQRPA results within s.p. spaces S2, S3, and
S6, and with the same values of s = t as in Fig. 3, are compared
with two sum-rule limits (as explained in the text), SRGT and SR1F,
obtained with an average excitation energy ωJπ

n
of 17.34 and 42 MeV,

respectively. Several previous RPA-like calculations, namely, the RPA
[43], CRPA [102], and RQRPA within S20 for E2qp = 100 MeV [51],
as well as the SM [43] and the TDA [34], are also shown.

s.p. spaces, the different calculations of σe− (Eν) yield quite
similar results for energies Eν � 130 MeV, lying basically
in the vicinity of the sum-rule result SR1F. But for higher
energies they could become quite different, and they are clearly
separated in two groups at Eν = 300 MeV. In the first group,
with σe− (Eν) � 5 × 10−39 cm2, are the SM, TDA, and PQRPA
within spaces S2 and S3, while in the second group, with
σe− (Eν) � 10 × 10−39 cm2, are the RPA, RQRPA, CRPA,
and PQRPA within space S6. Volpe et al. [43] found that the
difference between their SM and their RPA calculations was
caused by differences in the correlations taken into account and
to the too small SM space. We also note that only the CRPA
result approaches the sum-rule limits for Eν > 200 MeV.

Similar results for the 12C(ν̃, e+)12B ICS σe+ (Eν̃) are
displayed in Fig. 7, and analogous comments can be made here.
For comparison, we show the antineutrino-12C cross-sections
evaluated with the CRPA [102].

C. Large configuration spaces

As there are no experimental data on flux unfolded ICSs
for Eν � 400 MeV, we cannot conclude which of the results
displayed in Figs. 6 and 7 are good and which are not. We can
only conclude that the ICSs strongly depend on the size of the
s.p. space. In PQRPA calculations we are not able to use spaces
lager than S6 because of numerical difficulties. Thus instead of
using the PQRPA, henceforth we employ the RQRPA, where
such calculations are feasible. It is important to note that within
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FIG. 7. (Color online) Inclusive 12C(ν̃, e+)12B cross section
σe+ (Eν) (in units of 10−39 cm2) plotted as a function of the incident
neutrino energy Eν̃ . All results were obtained in the same way as in
the neutrino case in Fig. 6.

the RHB + RQRPA model the oscillator basis is used only
in the RHB calculation in order to determine the ground state
and the s.p. spectra. The wave functions employed in RPA
equations are obtained by converting the original HO basis
to the coordinate representation. Therefore, the size of the
RQRPA configuration space and 2qp energy cutoffs are deter-
mined by the number of oscillator shells in the RHB model.

First, we analyze the effect of the cutoff energy within
the S20 space on σe− (Eν) for Eν up to 600 MeV. The left
panel in Fig. 8 shows that at high energies this cross section
increases roughly by a factor of 2 when E2qp is augmented
from 100 to 200 MeV. The increase in the cross section
is also quite important when E2qp is moved from 200 to
300 MeV. For the limiting value of E2qp = 300 MeV, all
possible configurations are included in RQRPA calculations.
Next, we do the same within the S30 space, and the resulting
σe− (Eν) values are displayed in the right panel in Fig. 8.
By comparing the two panels it is easy to see that up to
E2qp = 300 MeV the cross sections obtained with the S30 space
are basically the same as those calculated with the S20 space.
Small differences in the cross sections obtained using the S20

versus the S30 space for E2qp up to 300 MeV are caused by
modifications of positive-energy s.p. states contributing to the
RQRPA configuration space within the restricted 2qp energy
window. But for Eν � 400 MeV additional transition strength

appears in the S30 space when E2qp is moved up to 400 MeV,
after which further increase in E2qp has a very small effect. We
conclude therefore that the configuration space engendered by
N = 20 HO shells with E2qp = 300 MeV is large enough to
describe σe− (Eν) with Eν up to 400 MeV. Similarly, the space
brought about by N = 30 HO shells with E2qp = 400 MeV is
appropriate to account for σe− (Eν) up to Eν = 600 MeV. For
higher neutrino energies very likely we would have to continue
increasing the number of shells.

Analogous results for antineutrino ICSs σe+ (Eν̃) are dis-
played in Fig. 9. One notes important differences in compari-
son with σe− (Eν) results shown in Fig. 8. First, here the spaces
S20 and S30 yield almost-identical results in the entire interval
of antineutrino energies up to Eν̃ = 600 MeV. Second, the
successive increase in the cross sections when the cutoff E2qp

is augmented in steps of 100 MeV is smaller and decreases
more rapidly than in the neutrino case. This suggests that the
configuration space is now sufficiently large to appropriately
account for σe+ (Eν̃) even at antineutrino energies higher than
600 MeV.

At present, owing to numerical difficulties, we cannot
perform RQRPA calculations for the full range of neutrino
energies where the QE cross section was measured at
MiniBooNE [13], but only up to 0.6 GeV. However, we
feel that this is still illustrative for comparison with data.
This is done in Fig. 10, which is basically the portion of
Fig. 21 in Ref. [73] for the QE σµ−(Eν) (see also Ref. [103]),
with our result for σe− (Eν) from Fig. 8 for S30 and E2qp =
500 MeV incorporated. As pointed out in the Introduction,
at relatively high energies (Eν > 300 MeV) the electron and
muon neutrino cross sections converge to each other, and
therefore, in the present analysis, the electron neutrino cross
section provides a reasonable upper limit estimate. One sees
that we underestimate the data by almost a factor of 2. But one
should keep in mind that, while we use gA = 1 [see Eq. (2.4)],
in the RFGM calculation done by Martini et al. [73,103],
gA = 1.255 was used. The axial-vector contribution being
dominant for the latter value of the coupling constant, one
would have to renormalize our σe− (Eν) by a factor of ∼1.5.
Such a result is also shown in Fig. 10, and although the
resulting cross section still underestimates somewhat the data
for σµ−(Eν), it is notably superior to the pure 1p-1h result from
Ref. [73], where good agreement with the data is achieved only
after considering additional two-body (2p-2h) and three-body
(3p3h) decay channels. One should keep in mind, however, that
as the weak decay Hamiltonian is a one-body operator, these
excitations are only feasible via the ground-state correlations
(GSCs), which basically redistribute the 1p-1h transition
strength without increasing its total magnitude when the initial
wave function is properly normalized. In the present work, as
well as in all SM-like calculations, the GSC and a normalized
initial-state wave function are certainly considered to all orders
in perturbation theory, through the full diagonalization of the
Hamiltonian matrix. In contrast, in Refs. [73] and [103] the
GSCs are taken into account in second-order perturbation
theory, but there are no references to the normalization
of the 12C ground-state wave function. How to carry out
the normalization in the framework of the infinite nuclear
matter model is discussed in a recent paper related to the
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FIG. 8. (Color online) Inclusive 12C(ν, e−)12N cross-section σe− (Eν)(in units of 10−39 cm2) plotted as a function of the incident neutrino
energy Eν , evaluated in RQRPA with different configuration spaces. These cross sections are plotted as functions of the incident neutrino
energy with different cut-off of the E2qp quasiparticle energy as it is explained in the text. The left and right panels show the cross section
evaluated with S20, and S30 s.p. spaces. The last cross section shows that the convergence of the calculation is achieved up to 600 MeV of
incident neutrino energy.
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FIG. 9. (Color online) Same as Fig. 8 but for the 12C(ν̃, e+)12B cross section σe+ (Eν̃).
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SAMANA, KRMPOTIĆ, PAAR, AND BERTULANI PHYSICAL REVIEW C 83, 024303 (2011)

RQRPA

RQRPA * 1.5

RFGM

RFGM+npnh

MiniBooNE

100 200 300 400 500 600

Eν(MeV)

0

2

4

6

8

10

σ/
6 

 [1
0-3

9 cm
2 ]

FIG. 10. (Color online) The calculated RQRPA (within S30 and
E2qp = 500 MeV) quasielastic (νe,

12C) cross section per neutron
(solid line) is compared with that for the (νµ,12C) scattering data
measured at MiniBooNE [13]; the dotted line shows the same
calculation but renormalized by a factor of 1.5. Also displayed are
the calculations done by Martini et al. [73,103] within the RFGM for
pure (1p-1h) excitations (dashed line) and with the inclusion of the
np-nh channels (dot-dashed line).

nonmesonic weak decay of the hypernucleus 12

 C [104]; see

also Refs. [105–107].

D. Multipole decomposition of cross sections

We have not yet mentioned the contributions of different
multipoles to the ICSs. Normally, the RHB model within S20,
and with Jπ � 7±, provides converged results for RQRPA
excitation spectra at incident neutrino energies Eν � 300 MeV,
as shown in Fig. 2 of Ref. [51]. But this is not the case for
neutrino-nucleus cross sections at energies Eν � 300 MeV,
where one has to consider high cutoff energies E2qp. In fact,
it is necessary to consider more and more multipoles as the
configuration space is enlarged by increasing E2qp. This is
illustrated in Fig. 11 for the case of E2qp = 500 MeV. One
sees that all multipoles are significant up to Jπ = 14± for
neutrinos and up to Jπ = 11± for antineutrinos.

Next we discuss partial multipole contributions to the ICS,
with a focus on the degree of forbiddenness of the transition
matrix elements, for the following cross sections.

(i) Allowed: σA
e+ (Eν̃), with Jπ = 0+, 1+.

(ii) First forbidden: σ 1F
e+ (Eν̃), with Jπ = 0−, 1−, 2−.

(iii) Second forbidden: σ 2F
e+ (Eν̃), with Jπ = 2+, 3+.

(iv) Third forbidden σ 3F
e+ (Eν̃) with Jπ = 3−, 4−.

Thus, in the left panel in Fig. 12 we show these individual
contributions for the inclusive 12C(ν̃, e+)12B cross section
σe+ (Eν̃), evaluated within both the PQRPA (spaces S2 and
S6) the RQRPA (space S30 with E2qp = 500 MeV).

The same is done for the corresponding derivatives, that
is, the spectral functions dσe+ (Eν̃)/dEν̃ , in the right panel in
Fig. 12. Several conclusions can be drawn. First, as in the case
of total σe+ (Eν̃), they depend very strongly on the size of the
configuration space. This dependence, in turn, increases with
the degree of forbiddenness; that is, it is more pronounced
for first-forbidden than for allowed transitions, and so on.
Second, within the PQRPA the allowed cross section σA

e+ (Eν̃)
exhibits a resonant pattern at low energy, and is dominant
for Eν̃ � 50 MeV. For large s.p. spaces its contribution is

FIG. 11. (Color online) Left and right panels show, respectively, the cross sections σe− (Eν), and σe+ (Eν̃) (in units of 10−39 cm2) evaluated
in RQRPA for S20, and S30 s.p. spaces with the cutoff E2qp = 500 MeV, and different maximal values of J±, with J going from 1 up to 14 for
neutrinos, and from 1 up to 11 for antineutrinos.
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FIG. 12. (Color online) Left: Allowed (J π = 0+, 1+), first-forbidden (J π = 0−, 1−, 2−), second-forbidden (J π = 2+, 3+), and third-
forbidden (J π = 3−, 4−) inclusive 12C(ν̃, e+)12B cross section σe+ (Eν̃) (in units of 10−42 cm2), plotted as a function of the incident neutrino
energy Eν̃ . Right: Same as left, but for dσe+ (Eν̃)/dEν̃ (in units of 10−42 cm2 MeV−1).

quite significant even at Eν̃ = 500 MeV.5 In the case of
RQRPA, the spectral function dσA

e+ (Eν̃)/dEν̃ also displays a
low-energy resonant structure, and σA

e+ (Eν̃) is always smaller
in magnitude than in the PQRPA case. Third, σ 1F

e+ (Eν̃) peaks
at Eν̃ ∼ 75 MeV, and its contribution is always larger than that
of σA

e+ (Eν̃) for Eν̃ � 150 MeV. Fourth, σ 2F
e+ (Eν̃) and σ 3F

e+ (Eν̃)
mainly contribute in the interval 150 � Eν̃ � 400 MeV, and
their overall contributions are of the same order of magnitude,
and comparable to that of σ 1F

e+ (Eν̃). Fifth, the contributions
of the remaining multipoles with Jπ = 4+, 5±, 6±, 7± are
always very small for space S2 but are quite sizable for
S6 at high energies. For instance, at Eν̃ = 100, 300, and
600 MeV they contribute 0.02%, 0.86%, and 1.18% within
space S2 and 0.04%, 14%, and 20% in S6. With a further
increase in the s.p. basis, configurations from higher multi-

5The denominations here do not have exactly the same meaning as
in low-energy β decay, where allowed transitions are those within the
same HO shell (�N = 0), while here all values of �N are permitted.
The situation is similar for forbidden transitions. The degrees of
hindrance basically comes from the value of the orbital angular
momenta.

poles become more pronounced at higher neutrino energies.
In particular, the sum of contributions coming from Jπ =
4+, . . . , 11± multipoles, when evaluated within the RQRPA
using space S30 and a maximal value of E2qp = 500 MeV are
1.1%, 14.4%, and 33.2% at Eν = 100, 300, and 600 MeV,
respectively.

Recently Lazauskas and Volpe [108,109] have suggested
the convenience of performing nuclear structure studies using
low-energy neutrino and antineutrino beams. For feasibility
reasons the flux covers only 80 MeV. Nevertheless, from the
analysis of 16O, 56Fe, 100Mo, and 208Pb nuclei within the QRPA
using the Skyrme force, they were able to disentangle the mul-
tipole distributions of forbidden cross sections, showing that
the forbidden multipole contribution is different for different
nuclei. In this work we extend this kind of study to 12C.

Table I reports results for flux-averaged cross sections σ e+

for the reaction 12C(ν̃, e+)12B. In Eq. (2.29) we have used
the same antineutrino fluxes ne+ (Eν̃) as in Ref. [108], that is,
the DAR flux, and those produced by boosted 6He ions with
different values of time dilation factor γ = 1/

√
1 − v2/c2.

Results of two calculations are presented: the PQRPA within
S6 and (ii) the RQRPA within N = 20, with cutoff E2qp =
300 MeV. One sees that in both models, principally in
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TABLE I. Fraction (in %) of flux-averaged cross sections σ e+ for
12C(ν̃, e+)12B for allowed (A), first forbidden (1F), second forbidden
(2F), and third forbidden (3F) processes. Antineutrino fluxes ne+ (Eν̃)
are the same as in Ref. [108], that is, the DAR flux, and those produced
by boosted 6He ions with different values of γ = 1/

√
1 − v2/c2.

Results of two calculations are presented: (i) PQRPA within S5 and
(ii) RQRPA within N = 30, with a cutoff E2qp = 300 MeV.

DAR γ

6 10 14

A
PQRPA 79.43 92.09 77.00 63.01
RQRPA 84.40 94.88 82.25 67.15

1F
PQRPA 20.03 7.83 22.16 33.76
RQRPA 15.10 4.13 16.86 29.61

2F
PQRPA 0.51 0.07 0.78 2.89
RQRPA 0.55 0.08 0.81 2.91

3F
PQRPA 0.018 0.002 0.04 0.33
RQRPA 0.025 0.011 0.05 0.33

the PQRPA, the allowed transitions dominate the forbidden
one, especially for a low-energy beam with γ = 6. The
contributions of the second-forbidden processes are very small
in all the cases, while those coming from third-forbidden ones
are always negligible. All this is totally consistent with the
results shown in Fig. 12, from which it is clear that, to study
second and third forbidden reactions in 12C, one would need
fluxes ne+ (Eν̃) with Eν̃ least up to at �150 MeV. It should
also be stressed that our results for both allowed and forbidden
transitions fully agree with those obtained in Ref. [108]; the
difference in 16O comes from the double-shell closure in this
nucleus.

E. Supernova neutrinos

We also address briefly the ν/ν̃-12C nucleus cross sections
related to astrophysical applications, the knowledge of which
could have important implications. For this purpose, we
evaluate the σ e± folded with supernova ν/ν̃ spectra represented
by a normalized Fermi-Dirac distribution with temperatures
in the interval Tνe

= 2–12 MeV, which includes the most
commonly used values, Tνe

= 3.2 MeV and Tν̄e
= 5.0 MeV.

For mean energies 〈Eν〉 ≈ 3.15 × Tν and zero chemical
potential [110,111], the neutrino flux is

ne(Eν) = 0.5546

T 3
ν

E2
ν

eEν/Tν + 1
, (3.5)

and similarly for antineutrinos. For the sake of simplicity we do
not analyze the same relevant aspects of ne(Eν) in supernova
simulation, such as the MSW effect (see, e.g., Ref. [112]) and
the spectral swapping of the neutrino flux [113]. In Fig. 13
we compare the ν-12C cross sections averaged over supernova
ν fluxes for the range of Tν = 2–12 MeV, obtained in the
following calculations:

2 4 6 8 10 12
Neutrino temperature [MeV]

0.001

0.01

0.1

1

10

σ e

PQRPA

RQRPA

SM

PQRPA

RQRPA

SM

|

ν~

ν

FIG. 13. (Color online) Flux-averaged neutrino and antineutrino
cross sections σ e± in 12C with typical supernova fluxes.

(i) the PQRPA within S6,
(ii) the RQRPA within S30 and E2qp = 500 MeV, and

(iii) the SM as used by Suzuki et al. [44] with the SFO
Hamiltonian (the PSDMK2 interaction yields a quite
similar result).

As shown in Fig. 13, in the vicinity of the temperatures
mentioned at the beginning (Tν = 3–5 MeV), these three
calculations yield, respectively, that (i) σ e+ is significantly
larger than σ e− , (ii) σ e− is only slightly larger than σ e+ , and
(iii) σ e+ ∼= σ e− . Both SM cross sections are always smaller
than those obtained in the the other two calculations, e specially
in comparison with the RQRPA one.

IV. SUMMARY AND CONCLUDING REMARKS

The present work is a continuation of our previous work
[48,49]. In fact, the formalism for weak interaction processes
introduced there is now elaborated more thoroughly, yielding
very simple expressions for the transition rates, which greatly
facilitate the numerical calculation. This is done through
separation of the nuclear matrix elements into their real
and imaginary parts, which, in turn, permits splitting of the
transition rates for neutrino-nucleus reactions [Eq. (2.22)], into
natural [Eq. (A6)] and unnatural parity [Eq. (A7)] operators. A
similar separation is done for the muon-capture transition rate
[Eq. (D3)] in Eqs. (D4) and (D5). Moreover, consequences of
explicit violation of the CVC hypothesis by the Coulomb field
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[Eq. (2.18)] are addressed for the first time, and the sum-rule
approach for the ICS, proper to the present formalism, is
worked out in Appendix B. For the sake of completeness,
the extreme relativistic limit of the neutrino-nucleus cross
section is also presented in Appendix C, where the formulas
for transition rates turn out to be still simpler. We note that,
except at very low neutrino energies, they can be used without
any restriction in practical applications.

We have discussed in detail the inclusive properties that
comprise the following.

(i) Ground-state energies in 12B and 12N and the corre-
sponding GT B values (Fig. 1).

(ii) Exclusive 12C(ν, e−)12N cross section σe(Eν, 1+
1 ), as a

function of the incident neutrino energy Eν (Figs. 2
and 3).

(iii) Exclusive 12C(ν̃, e+)12B cross section σe+ (Eν̃, 1+
1 ), as a

function of the incident antineutrino energy Eν̃ (Fig. 4).
(iv) Muon-capture transition rate to the 12B ground state

and electron and muon folded cross sections to the 12N
ground states σ ε(1+

1 ) and σµ(1+
1 ) (Fig. 5).

Special attention was paid to the interplay between the size
of the configuration space and the magnitude of the residual
interaction within the pp channel. It was found that as the first
becomes larger, the second has to increase to obtain agreement
with the experimental data for exclusive observables.

The main purpose of our discussion of exclusive properties
was to report the limitations of the RPA and the QRPA models.
The basic problem in the implementation of the RPA is the lack
of pairing correlations, that is, the inability to open the 1p3/2

shell, while the deficiency of the standard QRPA is in the
nonconservation of the number of particles, as evidenced by
the wave functions (3.1), (3.2), and (3.3) presented in Sec. III.
In this way we have definitively established that the SM and
the PQRPA are proper theoretical frameworks in which to
describe the ground-state properties of 12B and 12N.6

The ICSs 12C(ν, e−)12N and 12C(ν̃, e+)12B have been
studied within the PQRPA in the same manner as the exclusive
ones for Eνe

up to 300 MeV. As there are no experimental
results available in this case the comparison is done with the
previous calculations only,7 and results are displayed in Figs. 6
and 7. Here, unlike in Figs. 2–4, we also show results obtained
with the other RPA-like models [34,43,51,102], which could
be a suitable framework for description of global nuclear
properties as are ICSs.

When the size of the configuration space is enlarged,
the calculated PQRPA cross sections, differently from the
exclusive ones, steadily increase, particulary for neutrino
energies higher than 200 MeV, despite the inclusion of the
particle-particle interaction. At low energy they approach the

6After our work was finished, Cheoun et al. [115] presented a
new evaluation of the ECS in 12C within the QRPA. They get a
good agreement with data for σ e(12N), which is at variance with the
previous QRPA calculation [43].

7As mentioned in Sec. I, the only available experimental data on the
12C electron-neutrino ICS is the low-energy (Eνe

< 60 MeV) folded
one, which has been discussed in our previous work [49–51].

cross section of the first forbidden sum-rule limit but are
significantly smaller at high energies for both neutrinos and
antineutrinos.

The largest space that we can deal with in the number
projection procedure is the one that includes all the orbitals
until the N = 6 HO shell. This is the reason why we have
returned to the RQRPA, wherein it is possible to employ larger
configuration spaces. It seems that when the number of shells
is increased to N = 30, and the cutoff energy E2qp is high
enough, the cross sections very likely converge as shown in
Figs. 8–11.

Figure 10 also indicates that the RQRPA is a promising
nuclear model to reproduce the QE (νµ,12C) cross section in
the region Eνµ

∼ 1 GeV, which has been measured recently at
MiniBooNE [13]. We do not know whether the discrepancy
between experiment and theory comes from the noncomplete-
ness of the configuration space or from the smallness of the
effective axial-vector coupling constant that we are using,
gA = 1. It could also be that we need gA = 1 for the low-energy
ECS and gA = 1.255 for the high-energy ICS. We do not
understand the reason for this energy dependence of gA, but
it is consistent with Eq. (23) in Ref. [114], where it is shown
that for low-energy β decay, gA could be much more quenched
than the total GT strength. We hope to be able to say more on
this matter in the near-future.

We have also addressed the issue of the multipole com-
position of ICSs, by separating them into allowed (Jπ =
0+, 1+), first forbidden (Jπ = 0−, 1−, 2−), second forbidden
(Jπ = 2+, 3+), and third forbidden (Jπ = 3−, 4−) processes.
The results for the antineutrino reaction 12C(ν̃, e+)12B are
displayed in Fig. 12 for both the PQRPA and the RQRPA.
Of course, similar results are also obtained for neutrinos.
We remark that the spectral functions dσA

e+ (Eν̃)/dEν̃ , when
evaluated within the PQRPA, clearly demonstrate the resonant
structure of the allowed cross section, which is mainly of the
GT type.

The study of partial ICSs has been related to the proposal
made in Refs. [108] and [109] of performing nuclear structure
studies of forbidden processes using low-energy neutrino and
antineutrino beams. From the results reported in Table I for the
flux-averaged cross sections σ e+ in the reaction 12C(ν̃, e+)12B,
we show that the contribution of allowed transitions decreases
gradually in favor of first forbidden transitions according with
the increase in γ boost. We conclude that to study high
forbidden reactions, one would need ν̃ fluxes with Eν̃ up to
�150 MeV in 12C.

At the end we considered possible astrophysical appli-
cations of the ν/ν̃-12C nucleus folded cross sections σ e± ,
using supernova ν/ν̃ spectra represented by a normalized
Fermi-Dirac distribution with mean energy 〈Eν〉 ≈ 3.15 × Tν

and zero chemical potential. It is found that for temperature
Tν = 3–5 MeV, both the PQRPA and the RQRPA models yield
significantly larger cross sections than the previously used SM.
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APPENDIX A: CONTRIBUTIONS TO TJπ
n
(κ) OF NATURAL

AND UNNATURAL PARITY STATES

The real and imaginary parts of the operators OαJ given
by Eqs. (2.12) and (2.20) do not contribute simultaneously.
In fact, �OαJ (�OαJ) contributes to natural (unnatural) parity
states, which means that we can always work only with real
operators, which greatly simplifies the calculations. To see this
we note that, while the operators MV

J , MA

J, and

MA

0J =
∑

L=J±1

(−)(J−L−1)/2 FLJ0jL(ρ)[YL(r̂) ⊗ σ ]J (A1)

are real, MA

±1J and MV

±1J are not. Explicitly,

MA

±1J = MA,R

±1J + iMA,I

±1J, (A2)
MV

±1J = MV,R

±1J + iMV,I

±1J,

where

MA,R

1J ≡ MA,R

−1J

=
∑

L=J±1

(−)(J−L−1)/2 FLJ1jL(ρ)[YL(r̂) ⊗ σ ]J,

MA,I

1J ≡ −MA,I

−1J = −F1JJjJ(ρ)[YJ(r̂) ⊗ σ ]J, (A3)

MV,R

1J ≡ MV,R

−1J

=
∑

L=J±1

(−)(J−L−1)/2 FLJ1jL(ρ)[YL(r̂) ⊗ ∇]J,

MV,I

1J ≡ −MV,I

−1J = −F1JJjJ(ρ)[YJ(r̂) ⊗ ∇]J,

with L � 0, and J �= 0. Thus

O±1J = i(−gA ± gW)
(
MA,R

1J ± iMA,I

1J

)
+ gV

(
MV,R

1J ± iMV,I

1J

)
, (A4)

and writing

O∅J = OR

∅J + iOI

∅J,
(A5)

OmJ = OR

mJ + iOI

mJ,

it is not difficult to discover the following.

(i) For natural parity states, with π = (−)J , that is, Jπ =
0+, 1−, 2+, 3−, . . .:

OR

∅J = gVMV

J,

OR

0J = k̃∅
κ

gVMV

J, (A6)

OR

±1J = (±gA − gW)MA,I

1J + gVMV,R

1J .

(ii) For unnatural parity states, with π = (−)J+1, that is,
Jπ = 0−, 1+, 2−, 3+, . . .:

OI

∅J = −gAMA

J − (gA + gP1)MA

0J,

OI

0J = (gA − gP2)MA

0J, (A7)

OI

±1J = (gA ∓ gW)MA,R

1J ∓ gVMV,I

1J .

These operators have to be used in Eq. (2.22), instead of those
defined in Eqs. (2.12) and (2.20).

The correspondence between the individual matrix ele-
ments, defined by Donnelly, and Peccei in Eq (3.31) of
Ref. [77], and the ones used here is

MJ → MV

J, �J →
√

2MV,I

1J , �′
J → −

√
2MV,R

1J ,

�J →
√

2MA,I

1J , �′
J → −

√
2MA,R

1J , (A8)

�′′
J → MA

0J, �J → MA

J.

Moreover, the correspondence between the linear combina-
tions of these matrix elements defined in Eqs. (3.32) of
Ref. [77] (for L̂J see Eq. (14) of Ref. [79]) and the ones
introduced here is as follows.

(i) For natural parity states,

M̂J = O∅J, L̂J = O0J,
(A9)

T̂ el
J ± T̂

mag5
J = −

√
2O±1J.

(ii) For unnatural parity states,

M̂5
J = O∅J, −iL̂5

J = O0J,
(A10)

i(T̂ el5
J ± T̂

mag
J ) =

√
2O±1J.

The following relation can also be useful:

O∅J = M̂J,
(A11)

OmJ =
{

L̂J, for m = 0,

− 1√
2

[
mT̂ mag

J + T̂ el
J

]
for m = ±1,

where M̂J = M̂J + M̂5
J , L̂J = L̂J + L̂5

J, T̂ el
J = T̂ el

J + T̂ el5
J ,

and T̂ mag
J = T̂

mag
J + T̂

mag5
J .

The matrix elements of Kuramoto et al. [74] are related to
our nonrelativistic operators, Eq. (2.14), as

|〈f |1̂|i〉|2 = 4π
∑
Jπ

n

∣∣〈Jπ
n

∣∣∣∣MV

J

∣∣|0+〉∣∣2
,

|〈f |σ̂ |i〉|2 = 4π
∑
Jπ

n

∑
m=0,±1

∣∣〈Jπ
n

∣∣∣∣MA

mJ

∣∣|0+〉∣∣2
,

(A12)

 = 4π

3

∑
Jπ

n

[∣∣〈Jπ
n

∣∣∣∣MA

0J

∣∣|0+〉∣∣2

− ∣∣〈Jπ
n

∣∣∣∣MA

1J

∣∣|0+〉∣∣2]
.

In Ref. [74] the relativistic operators MA

J, and MV

mJ defined
in Eq. (2.15) are neglected.

APPENDIX B: SUM-RULE APPROACH

We follow here the sum-rule approach developed by
Kuramoto et al. [74] and adapt it to our formalism. We start
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from Eqs. (2.25) and (2.27), and as in this work, we assume that
the ωJπ

n
dependence of the integrand can be ignored, fixing it at

a representative value ωJπ
n
. The summation over final nuclear

states Jπ
n then can be carried out by closure, and the ICS is

σ SR
� (Eν) = G2 |p�|E�

2π
F (Z + S,E�)

∫ 1

−1
d(cos θ )T SR,

(B1)

where the lepton energy is E� = Eν − ωJπ
n
, while the sum-rule

matrix element reads

T SR =
∑

α=∅,0,±1

〈0+|O†
αOα|0+〉Lα

− 2�(〈0+|O†
∅O0|0+〉L∅0). (B2)

The operators Oα are given by Eq. (2.6), and the lepton traces
by Eq. (2.24) of Ref. [49]. The matrix elements in Eq. (B2)
are proportional to N (1 − D), where NN is the number of
neutrons (protons), contained in the target nucleus for the
neutrino (antineutrino) reaction. The correlation functions D

come from the Pauli exclusion effect and depend on the type
of the operator. One gets

T SR = NN

(
T∅L∅ +

∑
M

TMLM − 2T∅0L∅0

)
, (B3)

with

T∅ ≡ g2
V(1 − DS) + (gA + gP1)2(1 − DL),

T0 ≡ g2
V(1 − DS) + (gA − gP2)2(1 − DL),

T1 ≡ (gA − gW)2(1 − DT ), (B4)

T−1 ≡ (gA + gW)2(1 − DT ),

T∅0 ≡ −gVgV(1 − DS) + (gA + gP1) (gA − gP2) (1 − DL).

The correlation functions DS , DL, and DS were taken from the
SM calculation done by Bell and Llewellyn Smith [116] with
HO wave functions and representing the nuclear ground state
by a single determinant wave function. The results for 12C are
(see Table I in Ref. [116]:

DS = e−η[1 + 0.148η2],

DT = e−η[0.704 + 0.148η + 0.148η2], (B5)

DL = e−η[0.704 + 0.296η + 0.148η2],

where η = 1
2b2κ2 ∼= 0.0558.

As seen from Eq. (2.26), the factor |p�|E� in Eq. (B1)
behaves as (Eν − ωJπ

n
)2, and therefore σ SR

� (Eν) depends very
critically on the average value for the excitation energy ωJπ

n
.

E� = Eν − ωJπ
n
, |p�| =

√(
Eν − ωJπ

n

)2 − m2
�,

κ = |p� − qν | (B6)

=
√

2Eν(E� − |p�| cos θ ) − m2
� + ω2

Jπ
n
,

APPENDIX C: EXTREME RELATIVISTIC LIMIT

Using the present formalism the ERL, defined by the limit
of the lepton velocity |p�|/E� → 1, yields

σ ERL
� (Eν) =

∑
Jπ

n

E2
�

2π
F (Z + S,E�)

∫ 1

−1
d(cos θ )T ERL

Jπ
n

(κ),

(C1)

with

κ =
√

2EνE�(1 − cos θ ) + ω2
Jπ

n
, (C2)

and

T ERL
Jπ

n
(κ) = 4πG2

[
2 cos2 θ

2

∣∣∣∣〈Jπ
n

∣∣∣∣∣∣O∅J(κ) − k∅
κ

O0J(κ)

∣∣∣∣|0+〉
∣∣∣∣
2

+
∑

m=±1

∣∣〈Jπ
n

∣∣|OmJ(κ)||0+〉∣∣2
(

k2

κ2
cos2 θ

2

+ 2 sin2 θ

2
+ 2mS sin

θ

2

√
k2

κ2
cos2

θ

2
+ sin2

θ

2

)]
.

(C3)

APPENDIX D: MUON-CAPTURE RATE

For the sake of completeness we also show the formula for
the muon-capture process within the present formalism. Here
κ = Eν = mµ − ωJπ

n
− �M − EB , where E

µ

B is the binding
energy of the muon in the 1S orbit, and instead of Eq. (2.5),
one has

gV = gV
Eν

2M
, gA = gA

Eν

2M
,

(D1)

gW = (gV + gM)
Eν

2M
, gP = gP

Eν

2M
,

where gP = gP2 − gP1. The muon-capture transition rate reads


(ωJπ
n
) = E2

ν

2π
|φ1S |2T


(
ωJπ

n

)
, (D2)

where φ1S is the muonic bound-state wave function evaluated
at the origin, and

T


(
ωJπ

n

) = 4πG2
[∣∣〈Jπ

n

∣∣|O∅J(Eν) − O0J(Eν)||0+〉∣∣2

+ 2
∣∣〈Jπ

n

∣∣|O−1J(Eν)||0+〉∣∣2]
, (D3)

with:

(i) For natural parity states, with π = (−)J , that is, Jπ =
0+, 1−, 2+, 3−, . . .:

O∅J − O0,J = gV
mµ − �ECoul − EB

Eν

MV

J,

(D4)
O−1J = −(gA + gW)MA,I

−1J + gVMV,R

−1J.

(ii) For unnatural parity states, with π = (−)J+1, that is,
Jπ = 0−, 1+, 2−, 3+, . . .:

O∅J − O0,J = gAMA

J + (
gA + gA − gP

)
MA

0J,
(D5)

O−1J = −(gA + gW)MA,R

−1J − gVMV,I

−1J.
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Piza, Phys. Lett. B 268, 332 (1991).
[106] D. Van Neck, M. Waroquier, V. Van der Sluys, and

J. Ryckebusch, Phys. Lett. B 274, 143 (1992).
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