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We propose a modified time lag random matrix theory in order to study time-lag cross correlations in multiple
time series. We apply the method to 48 world indices, one for each of 48 different countries. We find long-range
power-law cross correlations in the absolute values of returns that quantify risk, and find that they decay much
more slowly than cross correlations between the returns. The magnitude of the cross correlations constitutes
“bad news” for international investment managers who may believe that risk is reduced by diversifying across
countries. We find that when a market shock is transmitted around the world, the risk decays very slowly.
We explain these time-lag cross correlations by introducing a global factor model (GFM) in which all index
returns fluctuate in response to a single global factor. For each pair of individual time series of returns, the
cross correlations between returns (or magnitudes) can be modeled with the autocorrelations of the global factor
returns (or magnitudes). We estimate the global factor using principal component analysis, which minimizes the
variance of the residuals after removing the global trend. Using random matrix theory, a significant fraction of the
world index cross correlations can be explained by the global factor, which supports the utility of the GFM. We
demonstrate applications of the GFM in forecasting risks at the world level, and in finding uncorrelated individual
indices. We find ten indices that are practically uncorrelated with the global factor and with the remainder of
the world indices, which is relevant information for world managers in reducing their portfolio risk. Finally, we
argue that this general method can be applied to a wide range of phenomena in which time series are measured,
ranging from seismology and physiology to atmospheric geophysics.

DOI: 10.1103/PhysRevE.83.046121 PACS number(s): 89.65.Gh, 89.20.−a, 02.50.Ey

I. INTRODUCTION

When complex systems join to form even more complex
systems, the interaction of the constituent subsystems is highly
random [1–4]. The complex stochastic interactions among
these subsystems are commonly quantified by calculating the
cross correlations. This method has been applied in systems
ranging from nanodevices [5–7], atmospheric geophysics [8],
and seismology [9–11], to finance [12–23]. Here we propose
a method of estimating the most significant component in
explaining long-range cross correlations.

Studying cross correlations in these diverse physical sys-
tems provides insight into the dynamics of natural systems
and enables us to base our prediction of future outcomes on
current information. In finance, we base our risk estimate on
cross correlation matrices derived from asset and investment
portfolios [15,24]. In seismology, cross correlation levels are
used to predict earthquake probability and intensity [10].
In nanodevices used in quantum information processing,
electronic entanglement necessitates the computation of noise
cross correlations in order to determine whether the sign of the
signal will be reversed when compared to standard devices [5].
In Ref. [25], cross correlations reported for �t = 0 calculated
between pairs of electroencephalogram (EEG) time series
are inversely related to dissociative symptoms (psychometric
measures) in 58 patients with paranoid schizophrenia. In
genomics data, spatial cross correlations are reported [26]
corresponding to a chromosomal distance of ≈10 × 106 base
pairs. In physiology, a statistically significant difference is
reported [26] between alcoholic and control subjects.

Many methods have been used to investigate cross corre-
lations between pairs of simultaneously recorded time series
[21,22] or among a large number of simultaneously recorded
time series [15,27,28]. In Ref. [28], a power mapping of the
elements is used in the correlation matrix that suppresses noise.
In Ref. [21], the authors propose detrended cross correlation
analysis, which is an extension of detrended fluctuation
analysis [29] and is based on detrended covariance. In Ref. [22]
a method is proposed for estimating the cross correlation
function Cxy of long-range correlated series xt and yt . For
fractional Brownian motions with Hurst exponents H1 and
H2, the asymptotic expression for Cxy scales as a power of n

with exponents H1 and H2.
Univariate (single) financial time series modeling has long

been a popular technique in science. To model the autocorre-
lation of univariate time series, traditional time series models
such as autoregressive moving average (ARMA) models
have been proposed [30]. The ARMA model assumes that
variances are constant with time. However, empirical studies
accomplished on financial time series commonly show that
variances change with time. To model time-varying variance,
the autoregressive conditional heteroskedasticity (ARCH)
model was proposed [31]. Since then, many extensions of
ARCH have been proposed, including the generalized au-
toregressive conditional heteroskedasticity (GARCH) model
[32] and the fractionally integrated autoregressive conditional
heteroskedasticity model [33]. In these models, long-range
autocorrelations in magnitudes exist, so a large price change
at one observation is expected to be followed by a large price
change at the next observation. Long-range autocorrelations
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in magnitude of signals have been reported in finance [33],
physiology [34,35], river flow data [36], and weather data [37].

Besides univariate time series models, modeling correla-
tions in multiple time series has been an important objective
because of its practical importance in finance, especially in
portfolio selection and risk management [38,39]. In order
to capture potential cross correlations among different time
series, models for coupled heteroskedastic time series have
been introduced [40–42]. However, in practice, when those
models are employed the number of parameters to be estimated
can be quite large.

A number of researchers have applied multiple time series
analysis to world indices, mainly in order to analyze zero-
time-lag cross correlations. In Ref. [12], it was reported
that for international stock returns of nine highly developed
economies, the cross correlations between each pair of stock
returns fluctuate strongly with time, and increase in periods of
high market volatility. By volatility we mean time-dependent
standard deviation of return. The finding that there is a link
between zero-time-lag cross correlations and market volatility
is “bad news” for global money managers who typically reduce
their risk by diversifying stocks throughout the world. In order
to determine whether financial crises are short lived or long
lived, the authors of Ref. [43] recently reported that, for six
Latin American markets, the effects of a financial crisis are
short range. Between two and four months after each crisis,
each Latin American market returns to a low-volatility regime.

In order to determine whether financial crisis are short
term or long term at the world level, we study 48 world
indices, one for each of 48 different countries. We analyze
cross correlations among returns and magnitudes, for zero and
nonzero time lags. We find that cross correlations between
magnitudes last substantially longer than between the returns,
similar to the properties of autocorrelations in stock market
returns [44]. We propose a general method in order to extract
the most important factors controlling cross correlations in
time series. Based on random matrix theory (RMT) [15]
and principal component analysis [27] we propose how to
estimate the global factor and the most significant principal
components in explaining the cross correlations. This method
has the potential to be broadly applied in diverse phenomena
where time series are measured, ranging from seismology to
atmospheric geophysics.

This paper is organized as follows. In Sec. II we introduce
the data analyzed and the definition of return and magnitude
of return. In Sec. III we introduce a modified time-lag
random matrix theory (TLRMT) to show the time-lag cross
correlations between the returns and magnitudes of world
indices. Empirical results show that the cross correlations
between magnitudes decay more slowly than those between
returns. In Sec. IV we introduce a single global factor
model to explain the short- or long-range correlations among
returns or magnitudes. The model relates the time-lag cross
correlations among individual indices with the autocorrelation
function of the global factor. In Sec. V we estimate the global
factor by minimizing the variance of residuals using principal
component analysis (PCA), and we show that the global factor
does in fact account for a large percentage of the total variance
using RMT. In Sec. VI we show the applications of the
global factor model, including risk forecasting of the world

economy, and finding countries that have the most independent
economies.

II. DATA ANALYZED

In order to estimate the level of relationship between
individual stock markets—both long-range and short-range
cross correlations exist at the world level—we analyze N = 48
worldwide financial indices Si,t where i = 1,2, . . . ,48 denotes
the financial index and t denotes the time. We analyze
one index for each of 48 different countries: 25 European
indices [45], 15 Asian indices (including Australia and New
Zealand) [46], two American indices [47], and four African
indices [48]. In studying 48 economies that include both
developed and developing markets we significantly extend
previous studies in which only developed economies were
included (e.g., the seven economies analyzed in Refs. [13,49],
and the 17 countries studied in Ref. [50]). We use daily stock
index data taken from Bloomberg, as opposed to weekly [50]
or monthly data [12]. The data cover the period 4 January 1999
through 10 July 2009, 2745 trading days. For each index Si,t ,
we define the relative index change (return) as

Ri,t ≡ ln Si,t − ln Si,t−1, (1)

where t denotes the time, in units of one day. By “magnitude of
return” we denote the absolute value of return after removing
the mean,

|ri,t | ≡ |Ri,t − 〈Ri,t 〉|. (2)

III. MODIFIED TIME-LAG RANDOM MATRIX THEORY

A. Basic ideas of time-lag random matrix theory

In order to quantify the cross correlations, random matrix
theory (Refs. [51,52]) was proposed in order to analyze
collective phenomena in nuclear physics. In Ref. [15], the
RMT was extended to cross correlation matrices in order to
find cross correlations in collective behavior of financial time
series. The largest eigenvalue λ+ and smallest eigenvalue λ−
of the Wishart matrix W (a correlation matrix of uncorrelated
time series with finite length) are

λ± = 1 + 1

Q
± 2

√
1

Q
, (3)

where Q ≡ T/N (> 1), and N is the matrix dimension and
T the length of each time series. The larger the discrepancy
between (a) the correlation matrix C between empirical
time series and (b) the Wishart matrix W obtained between
uncorrelated time series, the stronger are the cross correlations
in empirical data [15]. Many RMT studies reported equal-time
(zero �t) cross correlations between different empirical time
series [15,53–56].

Recently time-lag generalizations of RMT have been
proposed [57–59]. In one of the generalizations of RMT
based on the eigenvalue spectrum called time-lag RMT,
long-range cross correlations were found [26] in time series
of price fluctuations in absolute values of 1340 members of
the New York Stock Exchange Composite, in both healthy
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and pathological physiological time series, and in the mouse
genome.

We compute for varying time lags �t the largest singular
values λL(�t) of the cross correlation matrix of the N -variable
time series Xi,t ,

Cij (�t) ≡ 〈Xi,tXj,t+�t 〉 − 〈Xi,t 〉〈Xj,t+�t 〉
σiσj

. (4)

We also compute λ̃L(�t) of a similar matrix C̃(�t), where Xi,t

are replaced by the magnitudes |Xi,t − 〈Xi,t 〉|. The squares of
the nonzero singular values of C are equal to the nonzero
eigenvalues of CC+ or C+C, where C+ denotes the transpose
of C. In a singular value decomposition (SVD) [26,59,60],
C = UDV+, the diagonal elements of D are equal to singular
values of C, where the U and V correspond to the left and
right singular vectors of the corresponding singular values.
We apply SVD to the correlation matrix for each time lag and
calculate the singular values. The dependence of the largest
singular value λL(�t) on �t serves to estimate the functional
dependence of the collective behavior of Cij on �t [26].

B. Modifications of cross correlation matrices

We make two modifications of correlation matrices in order
to better describe correlations for both zero and nonzero time
lags.

(i) The first modification is a correction for correlation
between indices that are not frequently traded. Since different
countries have different holidays, all indices contain a large
number of zeros in their returns. These zeros lead us to
underestimate the magnitude of the correlations. To correct for
this problem, we define a modified cross correlation between
those time series with extraneous zeros,

C ′
ij (�t) ≡ 1

T ′

∑T
i=1 Xi,tXj,t+�t − ∑T

i=1 Xi,t

∑T
i=1 Xj,t+�t

σiσj

.

(5)

Here T ′ is the time period during which both Xi,t and Xj,t+�t

are nonzero. With this definition, the time periods during which
Xi,t or Xj,t+�t exhibit zero values have been removed from
the calculation of cross correlations. The relationship between
C ′

ij (�t) and Cij (�t) is

C ′
ij (�t) = T

T ′ Cij (�t). (6)

(ii) The second modification corrects for autocorrelations.
The main diagonal elements in the correlation matrix are
1’s for zero-lag correlation matrices and autocorrelations for
nonzero-lag correlation matrices. Thus, time-lag correlation
matrices allow us to study both autocorrelations and time-lag
cross correlations. If we study the decay of the largest singular
value, we see a long-range decay pattern if there are long-range
autocorrelations for some indices but no cross correlation
between indices. To remove the influence of autocorrelations
and isolate time-lag cross correlations, we replace the main
diagonals by unity,

C ′′
ij (�t) =

{
1 when i = j,

C ′
ij (�t) when i �= j.

(7)

With this definition the influence of autocorrelations is
removed and the trace is kept the same as in the zero-time-lag
correlation matrix.

C. Empirical results

In Fig. 1(a) we show the distribution of cross correlations
between zero and nonzero lags. For �t = 0 the empirical
probability distribution function (PDF)P (Cij ) of the cross
correlation coefficients Cij substantially deviates from the
corresponding PDF P (Wij ) of a Wishart matrix, implying the
existence of equal-time cross correlations.

In order to determine whether short-range or long-range
cross correlations accurately characterize world financial
markets, we next analyze cross correlations for (�t �= 0).
We find that with increasing �t the form of P (Cij ) quickly

-0.2 0 0.2 0.4 0.6 0.8 1

 C
~

0

5
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P
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~ )
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(b)
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(a)

FIG. 1. Cross correlations among the N = 48 world financial
index returns each of size T = 2744. (a) The empirical PDF of the
coefficients of the cross correlation matrix C calculated between
index returns with increasing �t quickly converges to the Gaussian
form. The normal distribution is the distribution of the pairwise
cross correlations for finite length uncorrelated time series, which
is a normal distribution with mean zero and standard deviation 1√

T
.

(b) The empirical PDF of the coefficients of the matrix C̃ calculated
between index volatilities approaches the PDF of the random matrix
more slowly than in (a).
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FIG. 2. Long-range magnitude cross correlations. The largest
singular value λL obtained from the spectrum of the matrices C and
C̃ versus time lag �t . With increasing �t , the largest singular values
obtained for C of returns decays more quickly than C̃ calculated for
absolute values of returns. The magnitude cross correlations decay as
a power-law function with the scaling exponent of ≈0.25.

approaches the PDF P (Wij ), which is normally distributed
with zero mean and standard deviation 1/

√
N [61].

In Fig. 1(b) we also show the distribution of cross
correlations between magnitudes. In financial data, returns
Ri,t are generally uncorrelated or short-range autocorrelated,
whereas the magnitudes are generally long-range autocorre-
lated [33,62]. We thus examine the cross correlations C̃ij (�t)
between |ri,t | for different �t . In Fig. 1(b) we find that
with increasing �t , P (C̃ij ) approaches the PDF of random
matrix P (Wij ) more slowly than P (Cij ), implying that cross
correlations between index magnitudes persist longer than
cross correlations between index returns.

In order to demonstrate the decay of cross correlations
with time lags, we apply modified TLRMT. Figure 2 shows
that with increasing �t the largest singular value calculated
for C̃ decays more slowly than the largest singular value
calculated for C. This result implies that among world indices,
the cross correlations between magnitudes last longer than
cross correlations between returns. In Fig. 2 we find that λL vs
�t decays as a power-law function with the scaling exponent
equal to 0.25. The faster decay of λL vs �t for C implies very
weak (or zero) cross correlations among world index returns
for larger �t , which agrees with the empirical finding that
world indices are often uncorrelated in returns. Our findings of
long-range cross correlations in magnitudes among the world
indices is, besides a finding in Ref. [12], another piece of bad
news for international investment managers. World market risk
decays very slowly. Once the volatility (risk) is transmitted
across the world, the risk lasts a long time.

IV. GLOBAL FACTOR MODEL

The arbitrage pricing theory states that asset returns follow
a linear combination of various factors [63]. We find that
the factor structure can also model time-lag pairwise cross
correlations between the returns and between magnitudes. To
simplify the structure, we model the time-lag cross correlations

with the assumption that each individual index fluctuates in
response to one common process, the global factor Mt ,

Ri,t = μi + biMt + εi,t . (8)

Here, in the global factor model (GFM), μi is the average
return for index i, Mt is the global factor, and εi,t is the linear
regression residual, which is independent of Mt , with mean
zero and standard deviation σi . Here bi indicates the covariance
between Ri,t and Mt , Cov(Ri,t ,Mt ) = biVar(Mt ). This single
factor model is similar to the Sharpe market model [64], but
instead of using a known financial index as the global factor
Mt , we use factor analysis to find Mt , which we introduce in
the next section. We also choose Mt as a zero-mean process, so
the expected return E(Ri,t ) = μi , and the global factor Mt is
only related with market risk. We define a zero-mean process
ri,t as

ri,t ≡ Ri,t − E(Ri,t ) = biMt + εi,t . (9)

A second assumption is that the global factor can account
for most of the correlations. Therefore we can assume that
there are no correlations between the residuals of each index,
Cov(εi,t ,εj,t ) = 0. Then the covariance between Ri,t and Rj,t

is

Cov(Ri,t ,Rj,t ) = Cov(ri,t ,rj,t ) = bibj Var(Mt ). (10)

The covariance between magnitudes of returns depends
on the return distribution of Mt and Ri,t , but the covariance
between squared magnitudes r2

i,t indicates the properties of the
magnitude cross correlations. The covariance between r2

i,t and
r2
j,t is

Cov
(
r2
i,t ,r

2
j,t

) = b2
i b

2
j Var

(
M2

t

)
. (11)

The above results in Eqs. (10) and (11) show that the
variance of the global factor and square of the global factor
account for all the zero-time-lag covariance between returns
and squared magnitudes. For time-lag covariance between ri,t ,
we find

Cov(ri,t ,rj,t ,�t) = E(ri,t ,rj,t−�t ) − E(ri,t )E(rj,t−�t ) (12)

= bibjAM (�t). (13)

Here

AM (�t) ≡ E(MtMt−�t ) − E(Mt )E(Mt−�t ) (14)

is the autocovariance of Mt . Similarly, we find

Cov
(
r2
i,t ,r

2
j,t ,�t

) = b2
i b

2
jAM2 (�t). (15)

Here

AM2 (�t) = E
(
M2

t M2
t−�t

) − E
(
M2

t

)
E

(
M2

t−�t

)
(16)

is the autocovariance of M2
t .

In the GFM, the time-lag covariance between each pair
of indices is proportional to the autocovariance of the global
factor. For example, if there is short-range autocovariance for
Mt and long-range autocovariance for M2

t , then for individual
indices the cross covariance between returns will be short range
and the cross covariance between magnitudes will be long
range. Therefore, the properties of time-lag cross correlations
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in multiple time series can be modeled with a single time
series—the global factor Mt .

The relationship between time-lag covariance among two
index returns and autocovariance of the global factor also holds
for the relationship between time-lag cross correlations among
two index returns and autocorrelation function of the global
factor, because it only needs to normalize the original time
series to mean zero and standard deviation 1.

V. ESTIMATION AND ANALYSIS OF
THE GLOBAL FACTOR

A. Estimation of the global factor

In contrast to domestic markets where, for a given country,
we can choose the stock index as an estimator of the
global factor, when we study world markets the global factor
is unobservable. At the world level when we study cross
correlations among world markets, we estimate the global
factor using principal component analysis [27].

In this section we use bold font for N -dimensional
vectors or N × N matrices, and subscript t for time series.
Suppose Rt ≡ (R1,t ,R2,t , . . . ,RN,t )T is the multiple time
series, each row of which is an individual time series Ri,t =
(Ri,1,Ri,2, . . . ,Ri,T ). We standardize each time series to zero
mean and standard deviation 1 as

zi,t ≡ Ri,t − 〈Ri,t 〉
σ (Ri,t )

. (17)

The correlation matrix can be calculated as C ≡ 1
T

ztzT
t

where zT
t is the transpose of zt , and the T in the denominator

is the length of each time series. Then we diagonalize the
N × N correlation matrix C,

C = U�UT . (18)

Here � ≡ diag(λ1,λ2, . . . ,λN ) and λ1 � λ2 � · · · � λN are
the eigenvalues in nonincreasing order, U is an orthonormal
matrix, whose ith column is the basis eigenvector ui of C, and
UT is the transpose of U, which is equal to U−1 because of
orthonormality.

For each eigenvalue and the corresponding eigenvector, it
holds that

λi = uT
i Cui = uT

i Cov(zt )ui = Var
(
uT

i zt

) = Var(αi,t ). (19)

According to PCA, αi,t = uT
i zt is defined as the ith principal

component (αi,t ), and the eigenvalue λi = Var(zi,t ) indicates
the portion of total variance of zt contributed to αi,t , as shown
in Eq. (19). Since the total variance of zt is

N∑
i=1

Var(zi,t ) = tr(C) =
N∑

i=1

λi, (20)

the expression λi/tr(C) indicates the percentage of the total
variance of zt that can be explained by the αi,t . According
to PCA (a) the principal components αi,t are uncorrelated
with each other and (b) αi,t maximizes the variance of the
linear combination of UT zt with the orthonormal restriction
UT U = 1 given the previous principal components [27].

From the orthonormal property of U we obtain

I = UUT = u1uT
1 + u2uT

2 + · · · + uNuT
N , (21)

where I is the identity matrix. Then the multiple time series zt

can be represented as a linear combination of all the αt

zt = (
u1uT

1 + u2uT
2 + · · · + uN uT

N

)
zt

= u1α1,t + u2α2,t + · · · + uNαN,t . (22)

The total variance of all time series can be proved to be equal
to the total variance of all principal components

N∑
i=1

Var(zi,t ) = Var(u1)α1,t + · · · + Var(uN )αN,t (23)

=
N∑

i=1

uT
i uiVar(αi,t ) =

N∑
i=1

Var(αi,t ). (24)

Next we assume that Var(α1,t ) = λ1 is much larger than
each of the rest of the eigenvalues, which means that the first
αt , α1,t , accounts for most of the total variances of all the time
series. We express zt as the sum of the first part of Eq. (22)
corresponding to α1,t and the error term combined from all
other terms in Eq. (22). Thus,

zt = u1α1,t + ηt ,
(25)

ηt ≡
N∑

i=2

uiαi,t .

Then α1,t is a good approximation of the global factor Mt

because it is a linear combination of Ri,t that accounts for
the largest amount of the variance. α1 is a zero-mean process
because it is a linear combination of zi,t which are also zero-
mean processes [see Eq. (17)].

Comparing Eqs. (17) and (25) with

Ri,t = μi + biMt + εi,t , (26)

we find the following estimates:

Mt = α1,t ,

bi = σ (Ri)u1i , (27)

εi,t = σ (Ri)ηi,t .

Using Eq. (19) we find that the cross correlation between |Mt |
and |Ri,t |

Corr(Mt,Ri,t ) =
√

λiui1. (28)

In the rest of this work, we apply the method of Eq. (27) to
empirical data.

B. Analysis of the global factor

Next we apply the method of Eq. (27) to estimate the
global factor of 48 world index returns. We calculate the
autocorrelations of Mt and |Mt |, which are shown in Figs. 3
and 4. Precisely, for the world indices, Fig. 3(a) shows the time
series of the global factor Mt , and Fig. 3(b) shows the auto-
correlations in Mt . We find only short-range autocorrelations
because, after an interval �t = 2, most autocorrelations in Mt

fall in the range of (−1.96
√

1/T ,1.96
√

1/T ) [61], which is
the 95% confidence interval for zero autocorrelations, Here
T = 2744.

For the 48 world index returns, Fig. 4(a) shows the
time series of magnitudes |Mt |, with few clusters related
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FIG. 3. Short-range autocorrelations of the global factor.
(a) Time series of the global factor. (b) The autocorrelation function
(ACF) of the global factor. The region between dashed lines is
the 95% confidence interval for the no autocorrelation hypothesis.
Autocorrelations are smaller than 0.132 except �t = 0, and become
insignificant after time lag �t = 2, with no more than one significant
autocorrelation for every 20 time lags. Therefore, only short-range
autocorrelations can be found in the global factor.

to market shocks during which the market fluctuates more.
Figure 4(b) shows that, in contrast to Mt , the magnitudes
|Mt | exhibit long-range autocorrelations since the values
|Mt | are significant even after �t = 100. The autocorrelation
properties of the global factor are the same as the autocor-
relation properties of the individual indices (i.e., there are
short-range autocorrelations in Mt and long-range power-law
autocorrelations in |Mt | [33,62]). These results are also in
agreement with Fig. 1(b) where the largest singular value λL

vs �t calculated for C̃ decays more slowly than the largest
singular value calculated for C. As found in Ref. [26] for
�t 	 1, λL(�t) approximately follows the same decay pattern
as cross correlation functions. Although a Ljung-Box test
shows that the return autocorrelation is significant for a 95%
confidence level [65], the return autocorrelation is only 0.132
for �t = 1 and becomes insignificant after �t = 2. Therefore,
for simplicity, we only consider magnitude cross correlations
in modeling the global factor.
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FIG. 4. Long-range autocorrelations of the magnitude global
factor. (a) Time series of magnitudes of the global factor.
(b) Autocorrelations of magnitudes of the global factor. The region
between dashed lines is the 95% confidence interval for the no
autocorrelation hypothesis. Autocorrelations are much larger than
the autocorrelations of the global factor itself, as large as 0.359 at
�t = 2, and is still larger than 0.2 until �t = 33. For every time
lag, the autocorrelation is significant even after �t = 100. Therefore
long-range autocorrelations exist in the magnitudes of the global
factor.

We model the long-range global factor M with a particular
version of the GARCH process, the Glosten-Jagannathan-
Runkle (GJR)GARCH process [66], because this GARCH
version explains well the asymmetry in volatilities found in
many world indices [66–68]. The GJR GARCH model can be
written as

εt = σtηt , (29)

σ 2
t = α0 +

q∑
i=1

(αi + γ Tt−i)ε
2
t−i +

p∑
i=1

βiσ
2
t−i , (30)

where σt is the volatility and ηt is a random process with
a Gaussian distribution with standard deviation 1 and mean
0. The coefficients α and β are determined by a maximum
likelihood estimation (MLE) and Tt = 1 if εt−1 < 0, Tt = 0 if
εt−1 � 0. We expect the parameter γ to be positive, implying
that bad news (negative increments) increases volatility more
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TABLE I. GJR GARCH(1,1) coefficients of the global factor.
The P values and t values confirm that all these parameters are
significant at 95% confidence level. The positive value of γ means
bad news has larger impact on the global market than good news.
We find α1 + β1 + γ /2 = 0.9756, which is very close to one, and so
indicates long-range volatility autocorrelations.

Value Standard Error t value P value

α0 0.2486 0.0283 8.789 0.0000
α1 0.0170 0.0080 2.128 0.0334
β1 0.8790 0.0101 86.939 0.0000
γ 0.1591 0.0148 10.805 0.0000

than good news. For the sake of simplicity, we follow the usual
procedure of setting p = q = 1 in all numerical simulations.
In this case, the GJR GARCH(1,1) model for the global factor
can be written as

Mt = σtηt , (31)

σ 2
t = α0 + (α1 + γ Tt−1)ε2

t−1 + β1σ
2
t−1. (32)

We estimate the coefficients in the above equations using MLE,
where the estimated coefficients are shown in Table I.

Next we test the hypothesis that a significant percentage
of the world cross correlations can be explained by the global
factor. By using PCA we find that the global factor can account
for 30.75% of the total variance. Note that, according to RMT,
only the eigenvalues larger than the largest eigenvalue of a
Wishart matrix calculated by Eq. (3) (and the corresponding
α’s) are significant. To calculate the percentage of variance
accounted for by the significant α’s, we employ the RMT
approach proposed in Ref. [15]. The largest eigenvalue for
a Wishart matrix is λ+ = 1.282 for N = 48 and T = 2744
as found in the empirical data. From all the 48 eigenvalues,
only the first three are significant: λ1 = 14.762, λ2 = 3.453,
and λ3 = 1.380. This result implies that among the significant
factors, the global factor accounts for λ1/

∑3
i=1 λi = 75.34%

of the variance, confirming our hypothesis that the global
factor accounts for most of the variance of all individual index
returns.

PCA is defined to estimate the percentage of variance
the global factor can account for in zero-time-lag corre-
lations.Next we study the time-lag cross correlations after
removing the global trend, and apply the SVD to the correlation
matrix of regression residuals ηi of each index [see Eq. (8)].
Our results show that for both returns and magnitudes, the
remaining cross correlations are very small for all time lags
compared to cross correlations obtained for the original time
series. This result additionally confirms that a large fraction of
the world cross correlations for both returns and magnitudes
can be explained by the global factor.

VI. APPLICATIONS OF GLOBAL FACTOR MODEL

A. Locating and forecasting global risks

The asymptotic (unconditional) variance for the GJR
GARCH model is α0/(1 − α1 − β1 − γ /2) = 10.190 [69].
For the global factor, the conditional volatility σt can be esti-
mated by recursion using the historical conditional volatilities
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FIG. 5. (a) Conditional volatility of the global factor, showing that
the clusters in the conditional volatilities may serve to predict market
crashes. In each cluster, the height indicates the size of the market
crash, and the width indicates its duration. (b) The 100-day forecasted
volatility of the global factor, using the past data ranging from 4 Jan
1999 through 10 July 2009. It will converge to the unconditional
volatility asymptotically.

and fitted coefficients in Eq. (32). For example, the largest
cluster at the end of the graph shows the 2008 financial crisis.
In Fig. 5(a) we show the time series of the conditional volatility
of Eq. (32) of the global factor. The clusters in the conditional
volatilities may serve to predict market crashes. In each cluster,
the height is a measure of the size of the market crash, and
the width indicates its duration. In Fig. 5(b) we show the
forecasting of the conditional volatility of the global factor,
which asymptotically converges to the unconditional volatility.

B. Finding uncorrelated individual indices

Next, in Fig. 6 we show the cross correlations between
the global factor and each individual index using Eq. (28).
There are indices for which cross correlations with the global
factor are very small compared to the other indices; 10 of
48 indices have cross correlation coefficients with the global
factor smaller than 0.1. These indices correspond to Iceland,
Malta, Nigeria, Kenya, Israel, Oman, Qatar, Pakistan, Sri
Lanka, and Mongolia. The financial market of each of these
countries is weakly bound with financial markets of other
countries. This is useful information for investment managers
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FIG. 6. Cross correlation between the global factor Mt and each
individual index Ri,t , i = 1,2, . . . ,48. The global factor has large
correlation with most of the indices. However, there are indices that
are not much correlated with the global factor. Of the 48 indices,
ten have a correlation smaller than 0.1 between the global factor,
corresponding to the indices for Iceland, Malta, Nigeria, Kenya,
Israel, Oman, Qatar, Pakistan, Sri Lanka, and Mongolia. Hence,
unlike most countries, the economies of these ten countries are more
independent of the world economy.

because one can reduce risk by investing in these countries
during world market crashes which seemingly do not influence
these countries severely.

VII. DISCUSSION

We have developed a modified time-lag random matrix
theory in order to quantify the time-lag cross correlations
among multiple time series. Applying the modified TLRMT
to the daily data for 48 worldwide financial indices, we
find short-range cross correlations between the returns and
long-range cross correlations between their magnitudes. The
magnitude cross correlations show a power-law decay with
time lag, and the scaling exponent is 0.25. The result we
obtain, that at the world level the cross correlations between
the magnitudes are long range, is potentially significant
because it implies that strong market crashes introduced at
one place have an extended duration elsewhere, which is bad
news for international investment managers who imagine that
diversification across countries reduces risk.

We model long-range world index cross correlations by
introducing a global factor model in which the time-lag cross

correlations between returns (magnitudes) can be explained by
the autocorrelations of the returns (magnitudes) of the global
factor. We estimate the global factor as the first component
by using principal component analysis. Using random matrix
theory, we find that only three principal components are
significant in explaining the cross correlations. The global
factor accounts for 30.75% of the total variance of all index
returns, and 75.34% of the variance of the three significant
principal components. Therefore, in most cases, a single global
factor is sufficient.

We also show the applications of the GFM, including
locating and forecasting world risk, and finding individual
indices that are weakly correlated to the world economy.
Locating and forecasting world risk can be realized by fitting
the global factor using a GJR GARCH(1,1) model, which
explains both the volatility correlations and the asymmetry
in the volatility response to both good news and bad news.
The conditional volatilities calculated after fitting the GJR
GARCH(1,1) model indicate the global risk, and the risk
can be forecast by recursion using the historical conditional
volatilities and the fitted coefficients. To find the indices that
are weakly correlated to the world economy, we calculate
the correlation between the global factor and each individual
index. We find ten indices which have a correlation smaller
than 0.1, while most indices are strongly correlated to the
global factor with correlations larger than 0.3. To reduce risk,
investment managers can increase the proportion of investment
in these countries during world market crashes, which do not
severely influence these countries.

Based on principal component analysis, we propose a
general method which helps extract the most significant
components in explaining long-range cross correlations. This
makes the method suitable for a broad range of phenomena
where time series are measured, ranging from seismology
and physiology to atmospheric geophysics. We expect that the
cross correlations in EEG signals are dominated by the small
number of most significant components controlling the cross
correlations. We speculate that cross correlations in earthquake
data are also controlled by some major components. Thus the
method may have significant predictive and diagnostic power
that could prove useful in a wide range of scientific fields.
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