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We consider the pseudocritical temperatures for the chiral and deconfinement transitions within a

Polyakov-loop Dyson-Schwinger equation approach which employs a nonlocal rank-2 separable model

for the effective gluon propagator. These pseudocritical temperatures differ by a factor of 2 when the

quark and gluon sectors are considered separately, but get synchronized and become coincident when their

coupling is switched on. The coupling of the Polyakov loop to the chiral quark dynamics narrows the

temperature region of the QCD transition in which chiral symmetry and deconfinement is established. We

investigate the effect of rescaling the parameter T0 in the Polyakov-loop potential on the QCD transition

for both the logarithmic and polynomial forms of the potential. While the critical temperatures vary in a

similar way, the width of the transition is more strongly affected for the logarithmic potential. For this

potential, the character of the transition changes from crossover to a first-order one when T0 < 210 MeV,

but it remains crossover in the whole range of relevant T0 values for the polynomial form.

DOI: 10.1103/PhysRevD.84.016005 PACS numbers: 11.10.Wx, 12.38.Aw, 12.38.Mh, 12.39.Fe

I. INTRODUCTION

The QCD phase transition between highly excited had-
ronic matter and the quark-gluon plasma is presently under
experimental investigation at ultrarelativistic heavy-ion
collider facilities like the Relativistic Heavy-Ion Collider
(RHIC) at the Brookhaven National Laboratory and the
Large Hadron Collider (LHC) at CERN Geneva. Its theo-
retical description requires methods to solve QCD at finite
temperature in the highly nonperturbative low-energy do-
main. At present, the only method to obtain ab initio
solutions of QCD in this domain is lattice QCD (LQCD).

LQCD calculations are becoming available in the region
of physical quark masses [1–8] and allow for a quantitative
description of the equation of state and a determination of
the pseudocritical temperature. Although still afflicted
with some uncertainty, those results can be used in phe-
nomenological studies of the QCD transition relevant for
current and future heavy-ion experiments at RHIC and
LHC. Hadron gas model calculations give a good descrip-
tion of the equation of state in the confined phase.
Furthermore, statistical models of hadron production
[9,10] can be used to extract the chemical freeze-out
temperature which serves as a lower limit for the decon-
finement temperature.

Even so, there are limitations to exploring the full QCD
phase diagram with LQCD. Hence dynamical models for
the phase structure of QCD, which can be calibrated with
hadron phenomenology and with finite-T LQCD, remain
an important tool. Particularly useful are chiral quark
models of the Nambu–Jona-Lasinio (NJL)- type [11–16],
but they suffer from nonphysical quark excitations at low
temperatures, below Tc. Also the contribution from the

gluon sector to the thermodynamics is missing. A rather
successful generalization has recently been suggested
which fixes both these problems by coupling the chiral
dynamics of the quark sector as modeled within the NJL
model to a mean-field description of the gluon sector with
an effective potential as a function of the Polyakov-loop
(PL) variable, fitted to the pure gauge lattice simulations
for the Yang-Mills pressure [17]. Within such a Polyakov–
Nambu–Jona-Lasinio (PNJL) model [18–20], a remarkable
agreement with other LQCD results as, e.g., for the chiral
susceptibilities, could be achieved once the temperature in
the fit of the gluon mean-field is appropriately scaled to the
critical temperature obtained in the lattice simulations
[17,21,22]. The success of this type of chiral quark model
in reproducing features of lattice QCD simulations has led
to a number of applications as well as to extensions of the
model. For example, we would like to mention here the
extensions to include eight-quark interactions [23] and to
consider a coupling (entanglement) between the scalar
coupling constant and the Polyakov loop [24].
The deficiency of such a PNJL model is in the poor

quark dynamics with, e.g., a constant, momentum-
independent quark-mass function. Although the excitation
of quark degrees of freedom is strongly suppressed at low
temperatures by the destructive interference due to the PL
phase factors, a dynamical confinement mechanism is
absent. In order to improve the quark dynamics of a
PNJL model, the local current-current form of the quark
interaction has been generalized to a nonlocal one [25–27].
In this way, a dynamical quark-mass function can be
modeled using appropriate covariant ansätze for the form
factor of the nonlocality. However, before a quantitative
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comparison with quark-mass functions measured in LQCD
(see, e.g., Ref. [28]) can be made, one has also to introduce
a nonlocal dynamical modification of the Dirac vector part
of the quark propagator for describing the quark wave-
function renormalization as was recently accomplished
within the nonlocal PNJL model in Refs. [29,30].

Alternatively, one can start from QCD Dyson-Schwinger
equations (DSEs), apply a symmetry-preserving truncation
scheme, and solve the resulting equations for the Schwinger
functions. In the recent years, this approach has reached a
new level of maturity (see, e.g., Refs. [31–33] for reviews).
This ongoing progress in DSEs also includes ab initio type
of calculations [34,35] pertaining to PL and related to other
functional approaches.

There are attempts to derive nonlocal PNJL or PDSE
models as a low-energy limit of QCD [36], which used
insights that have been obtained in the functional renor-
malization group method [37,38]. Functional methods also
suggest close relation between the chiral and the confine-
ment transition [38,39], and even the relation of both of
them with the UAð1Þ symmetry restoration [40]. These
studies are worth a systematic further development.

Since QCD applications at T > 0 are in general consid-
erably more difficult than at T ¼ 0, it is often useful to take
a more phenomenological approach: one chooses a suitable
(e.g., phenomenologically successful) effective dressed-
gluon propagator model and solves the resulting T > 0
DSEs for the Schwinger functions in the quark sector
[32]. Such an approach has many advantages over NJL-
type models as, e.g., a dynamical confinement mechanism.
However, as has been analyzed in [41] the critical tem-
peratures obtained within such nonperturbative low-energy
QCD models turn out to be too low when compared with
LQCD results.

In the present work we suggest that this shortcoming
might have its origin in residual color correlations and we
investigate a generalization where the PL is coupled to the
quark sector DSE (PDSE). For the purpose of this explor-
atory approach, we will restrict ourselves in this PDSE
model to a rank-2 separable form of the effective gluon
propagator [42], which at the rainbow-ladder level of
truncation is equivalent to a full DSE model with
translation-invariant gluon propagator once the model
form factors of the interaction are chosen appropriately
[43]. For the time being one may take the pragmatic
approach of modeling form factors of the rank-2 separable
interaction such that both, the dynamical quark-mass func-
tion and the wave-function renormalization as measured in
LQCD at zero temperature can be reproduced to high
accuracy. With an interaction model fixed in this way, the
approach developed here can be used to predict thermody-
namics and hadron properties of low-energy QCD at finite
temperature, calibrate the results with LQCD and extend
the approach subsequently to the whole QCD phase dia-
gram, i.e., into regions presently inaccessible to LQCD.

In the present work, by analyzing the temperature be-
havior of the order parameters in the model, the dynami-
cally generated light and strange quark masses as well as
the PL variable, we find that the critical temperatures for
the chiral and the deconfinement transitions measured by
the peaks in the corresponding susceptibilities (defined
here as the temperature derivatives of the order parameters)
coincide at the per mille level of accuracy. We will discuss
the effect of rescaling the critical temperature parameter T0

of the PL potential [44–47] once applications with a finite
number of quark flavors and a possible chemical potential
are considered and how this affects the width of the QCD
transition region.
As a possible application of this class of models we

discuss the temperature dependence of scalar and pseudo-
scalar meson properties at finite temperatures towards the
chiral symmetry restoration. We devote special attention to
the investigation of a Gell-Mann–Oakes–Renner (GMOR)-
like relationship for the mass of pseudoscalar mesons at
finite temperatures. We find that the GMOR-like relation
proves to be robust up to the critical temperature, as a
manifestation of the implemented confinement mechanism
at the rainbow-ladder level of the description, where the
coupling to the PL provides a very effective suppression of
the quark degrees of freedom in the medium which other-
wise induce a medium dependence which is unphysical
below Tc. In this regime, medium effects have to be absent
as long as hadronic excitations in the medium are
disregarded.

II. SEPARABLE PDSE MODEL

A. Thermodynamical potential and order parameters

The central quantity for the analysis of the thermody-
namical behavior is the thermodynamical potential which
in the PDSE approach is a straightforward generalization
of the standard CJT functional [48,49]

�ðTÞ ¼ �T lnZðTÞ
¼ Uð�; ��Þ � T Tr ~p;n;�;f;D½lnfS�1

f ðp�
n ; TÞg

� �fðp�
n ; TÞ � Sfðp�

n ; TÞ�; (1)

where the full quark propagator for the flavor f ¼ u, d, s,

S�1
f ðp�

n ; TÞ ¼ S�1
f;0ðp�

n ; TÞ þ �fðp�
n ; TÞ

¼ i ~� � ~pAfððp�
n Þ2; TÞ þ i�4!nCfððp�

n Þ2; TÞ
þ Bfððp�

n Þ2; TÞ (2)

is defined by the DSE for the quark self-energy �, see
below. The Polyakov-loop potential is first taken in the
form [50]

Ulogð�; ��Þ
T4

¼ � 1

2
aðTÞ ���þ bðTÞ ln½1� 6 ���

þ 4ð ��3 þ�3Þ � 3ð ���Þ2� (3)
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with aðTÞ¼a0þa1ðT0=TÞþa2ðT0=TÞ2, bðTÞ¼b3ðT0=TÞ3.
The corresponding parameters are taken from Ref. [50],
a0 ¼ 3:51, a1 ¼ �2:47, a2 ¼ 15:22 and b3 ¼ �1:75,
where they have been adjusted to fit the pressure obtained
in lattice gauge theory simulations of SU(3) Yang-Mills
theory. In most of the literature on the PNJL model, the
parameter T0 ¼ 270 MeV has been taken over for appli-
cations in QCD with Nf quark flavors while following

Ref. [45] its dependence on quark flavors and chemical
potential should be invoked. Accordingly, for the case
Nf ¼ 2þ 1 discussed in the present work, in [45] the value

T0 ¼ 187 MeV is suggested with an error margin of about
30 MeV. Applying the Matsubara formalism of finite tem-
perature field theory, the squared quark 4-momenta are to
be replaced by ðp�

n Þ2 ¼ ð!�
n Þ2 þ ~p2, !�

n ¼ !n þ ��3,
where !n ¼ ð2nþ 1Þ�T are the fermionic Matsubara fre-
quencies and the indices � ¼ �1, 0, þ1 specify the three
quark colors and their coupling to the parameter �3 of the
temporal gauge field. At vanishing chemical potential, the
Polyakov loop is given by

� ¼ �� ¼ 1

Nc

�
1þ eið�3=TÞ þ e�ið�3=TÞ

�

¼ 1

Nc

�
1þ 2 cos

�
�3

T

��
: (4)

In order to check the sensitivity to various parameter-
izations of the Polyakov-loop potential, we will also try the
polynomial form [17]

Upolyð�; ��Þ
T4

¼ � b2ðTÞ
4

ðj�j2 þ j ��j2Þ � b3
6
ð�3 þ ��3Þ

þ b4
16

ðj�j2 þ j ��j2Þ2 (5)

with the temperature-dependent coefficient

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2 þ a3

�
T0

T

�
3

(6)

and the set of parameters from Ref. [17], a0 ¼ 6:75,
a1 ¼ �1:95, a2 ¼ 2:625, a3 ¼ �7:44, b3 ¼ 0:75, and
b4 ¼ 7:5.

For the effective gluon propagator in a Feynman-like
gauge, g2Deff

��ðp� qÞ ¼ ���Dðp2; q2; p � qÞ, we employ a

rank-2 separable ansatz [42]

Dðp2; q2; p � qÞ ¼ D0F 0ðp2ÞF 0ðq2Þ
þD1F 1ðp2Þðp � qÞF 1ðq2Þ; (7)

so that the quark propagator amplitudes are given by

Bfððp�
n Þ2; TÞ ¼ m0

f þ bfðTÞF 0ððp�
n Þ2Þ; (8)

Afððp�
n Þ2; TÞ ¼ 1þ afðTÞF 1ððp�

n Þ2Þ; (9)

Cfððp�
n Þ2; TÞ ¼ 1þ cfðTÞF 1ððp�

n Þ2Þ; (10)

and their analytic properties are defined by the choice of
the form factors. In the present work we will use the
functions [51,52]

F 0ðp2Þ ¼ expð�p2=�2
0Þ; (11)

F 1ðp2Þ ¼ 1þ expð�p2
0=�

2
1Þ

1þ expððp2 � p2
0Þ=�2

1Þ
; (12)

which satisfy the constraints F 0ð0Þ ¼ F 1ð0Þ ¼ 1 and
F 0ð1Þ ¼ F 1ð1Þ ¼ 0. Their functional form can be
chosen such that the 4-momentum dependence of the
dynamical mass function MðpÞ ¼ BðpÞ=AðpÞ and the
wave-function renormalization ZðpÞ ¼ 1=AðpÞ is in good
agreement [29] with LQCD simulations of the quark
propagator [28]. Models which employ a rank-1 separable
ansatz (see, e.g., [25,27]) result in AðpÞ ¼ ZðpÞ ¼ 1 and
miss an important aspect of quark dynamics in QCD.
The temperature-dependent gap functions afðTÞ, bfðTÞ

and cfðTÞ are obtained as solutions of the DSE for the

quark self-energy in rainbow-ladder truncation as [42]

afðTÞ ¼ 8D1

27
T
X
n;�

Z d3p

ð2�Þ3 F 1ððp�
n Þ2Þ ~p2Af

� ððp�
n Þ2; TÞd�1

f ððp�
n Þ2; TÞ; (13)

cfðTÞ ¼ 8D1

9
T
X
n;�

Z d3p

ð2�Þ3 F 1ððp�
n Þ2Þ

� ð!�
n Þ2Cfððp�

n Þ2; TÞd�1
f ððp�

n Þ2; TÞ; (14)

bfðTÞ ¼ 16D0

9
T
X
n;�

Z d3p

ð2�Þ3 F 0ððp�
n Þ2ÞBf

� ððp�
n Þ2; TÞd�1

f ððp�
n Þ2; TÞ; (15)

where the denominator function is dfððp�
n Þ2; TÞ ¼

~p2A2
fððp�

n Þ2; TÞ þ ð!�
n Þ2C2

qððp�
n Þ2; TÞ þ B2

qððp�
n Þ2; TÞ.

Equations (13)–(15) correspond to minima of the thermo-
dynamical potential (1) with respect to a variation of the
temperature-dependent gap functions afðTÞ; bfðTÞ; cfðTÞ
and have to be supplemented by a corresponding gap
equation for the , which follows from the extremum con-
dition @�=@�jmin ¼ 0. Once the gap equations are solved
for different temperatures, one can extract the pseudocriti-
cal temperatures for chiral and deconfinement transitions
from the peak positions of the temperature derivatives of
the corresponding order parameters, the quark-mass
functions mfðTÞ ¼ ½m0

f þ bðTÞ�=½1þ afðTÞ�, and the

Polyakov loop �ðTÞ, respectively. For a discussion of the
quark-mass function as an order parameter of the chiral
transition see, e.g., Refs. [53–55].
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B. Pion, kaon and sigma meson at finite temperature

At T ¼ 0 the mass-shell condition for a meson as a q �q0
bound state of the Bethe-Salpeter equation (BSE) is equiva-
lent to the appearance of a pole in the q �q0 scattering ampli-
tude as a function of P2. The q �q0 meson Bethe-Salpeter
bound-state vertex �ff0 ðp; PÞ is the solution of the BSE

��ðP2Þ�ff0 ðp; PÞ ¼ 4

3

Z d4‘

ð2�Þ4 g
2Deff

��ðp� ‘Þ��Sfð‘þÞ
� �ff0 ð‘; PÞSf0 ð‘�Þ��; (16)

where the index f (or f0) stands for the quark (or antiquark)
flavor (u, d or s), P is the total 4-momentum, and
‘� ¼ ‘� P=2. The meson mass is identified from
�ðP2 ¼ �M2Þ ¼ 1.

For example, with the separable interaction, the allowed
form of the solution of Eq. (16) for the pseudoscalar Bethe-
Salpeter amplitude is

�Pð‘;PÞ ¼ �5ðiEPðP2Þ þ PFPðP2ÞÞF 0ð‘2Þ: (17)

For scalar mesons we will use a truncated form of the
Bethe-Salpeter amplitude (i.e. we take only the dominant
contribution)

�Sð‘;PÞ ¼ ESðP2ÞF 0ð‘2Þ: (18)

At T � 0 in the Matsubara formalism, the Oð4Þ symme-

try is broken by the heat bath and we have P ! Pm ¼
ð�m; ~PÞ where �m ¼ 2m�T. Bound states and the poles
they generate in propagators may be investigated through
polarization tensors, correlators, or Bethe-Salpeter eigen-
values. This pole structure is characterized by information
at discrete points �m on the imaginary energy axis and at a
continuum of 3-momenta. One may search for poles as a

function of ~P2 thus identifying the so-called spatial or
screening masses for each Matsubara mode. These serve
as one particular characterization of the propagator and the
T > 0 bound states. In the present context, the eigenvalues

of the BSE become �ðP2Þ ! ~�ð�2
m; ~P

2;TÞ. The spatial

screening masses are identified by zeros of 1� ~�ð0; ~P2;TÞ.
The general form of the finite-T pseudoscalar and scalar

Bethe-Salpeter amplitude allowed by the separable model
for the lowest Matsubara mode �0 ¼ 0 (as required for the
spatial meson modes of interest here) is

�Pð‘�n ; ~PÞ ¼ �5ðiEPð ~P2Þ þ ~� � ~PFPð ~P2ÞÞF 0ðð‘�n Þ2Þ
�Sð‘�n ; ~PÞ ¼ ESð ~P2ÞF 0ðð‘�n Þ2Þ:

(19)

One can then write the BSE for the spatial masses as

~�ð0; ~P2;TÞ�ff0 ðp�
m; ~PÞ

¼ 4

9
T
X
n;�

Z d3‘

ð2�Þ3 g
2Deff

��ð!�
m �!�

n ; ~p� ~‘Þ��

� Sfðð‘�n ÞþÞ�ff0 ð‘�n ; ~PÞSf0 ðð‘�n Þ�Þ��: (20)

For example, BSE for the scalar 	 meson is

~�Sð0; ~P2;TÞ

¼ 16D0

9
T
X
n;�

Z d3‘

ð2�Þ3 F
2
0ðð‘�n Þ2Þ

�
ð!�

n Þ2	C;uðð‘�n ÞþÞ

� 	C;uðð‘�n Þ�Þ þ
�
~‘
2 � ~P2

4

�
	A;uðð‘�n ÞþÞ	A;uðð‘�n Þ�Þ

� 	B;uðð‘�n ÞþÞ	B;uðð‘�n Þ�Þ
�
; (21)

where 	A;f ¼ Af=df, 	C;f ¼ Cf=df and 	B;f ¼ Bf=df.

Further details on the analysis of mesonic spatial screening
masses in other channels and for specific model interaction
kernels can be found, e.g., in Ref. [42,51,52]. Here, we
have generalized this approach by accounting for the PL
phase factors entering the quark propagators and the inter-
action kernels.

III. RESULTS AND DISCUSSION

For the numerical calculations we fix the free parameters
of the model at T ¼ 0 as in Refs. [51,52,56], to reproduce,
in particular, the vacuum masses of the pseudoscalar and
vector mesons, M� ¼ 140 MeV, MK ¼ 495 MeV, M
 ¼
770 MeV, the pion decay constant f� ¼ 92 MeV, and
decay widths, �
0!eþe� ¼6:77 keV, �
!��¼151MeV as

basic requirements from low-energy QCD phenomenology.
For clarity we point out that at T ¼ 0, the model without

PL coincides with the otherwise same model including PL
(just as they do in the NJL vs PNJL case). We thus obtain
the same parameter set as in Refs. [51,52,56], namely
m0

u ¼ m0
d ¼ m0

q ¼ 5:49 MeV, m0
s ¼ 115 MeV, D0�

2
0 ¼

219, D1�
4
0 ¼ 69, �0 ¼ 0:758 GeV, �1 ¼ 0:961 GeV

and p0 ¼ 0:6 GeV.

A. Order parameters for chiral and
deconfinement transition

In Fig. 1 we show the resulting temperature dependence
of the derivatives of the quark mass being an order pa-
rameter of the chiral phase transition and of the Polyakov-
loop expectation value as an order parameter of the decon-
finement transition. The peak values are attained at the
corresponding pseudocritical temperatures for the chiral
(T�) and deconfinement (Td) transitions, respectively. In

the right panel of Fig. 1 we show the results when the quark
and gluon sectors are uncoupled. In this case we have in the
light quark sector T� ¼ 128 MeV, whereas Td ¼
270 MeV according to the parametrization of the PL po-
tential in the pure gauge sector. The value obtained for T�

is in the typical range found in the DSE approach [41]. The
peak position of the chiral susceptibility in the strange
quark sector does not coincide with the one in the light
quark sector in this case. When the quark and gluon sectors
are coupled these temperatures get synchronized so that
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Tc ¼ T� ¼ Td ¼ 195 MeV, as is demonstrated in the left

panel of Fig. 1.
At the same time, when coupling the PL potential to the

chiral quark sector, the width of the transition region
collapses to a tiny temperature interval around Tc, as is
demonstrated in Fig. 2, where the susceptibilities are
shown as functions of the scaled temperature T=Tc in the
same interval with (left panel) and without (right panel)
coupling the quark sector to the Polyakov-loop potential.

Both effects of coupling the chiral quark sector to the
PL, the synchronization of the chiral and deconfinement

transitions, as well as the narrowing of the width of the
QCD transition region, are obtained in a similar way for the
polynomial PL potential (5).
The value obtained for the QCD transition temperature,

Tc ¼ 195 MeV (193 MeV), for the logarithmic (polyno-
mial) PL potential, is closer to recent LQCD results than
the one obtained in PNJL or rank-1 separable nonlocal PNJL
models, but unsatisfactory for a quantitative description.
Within the framework of the PQM model, it has been
suggested [45] to rescale the T0 parameter of the PL poten-
tial depending on the quark flavor content of the system and
the chemical potential. We will follow such a prescription
also in the present approach. In Fig. 3, we show the resulting
temperature dependence of the order parameters for chiral
symmetry breaking (the normalized mass function
mðTÞ=mð0Þ) and for deconfinement (the PL�ðTÞ) for three
values of T0. According to [45] the case T0 ¼ 187 MeV
corresponds to Nf ¼ 2þ 1, while T0 ¼ 270 MeV is the

value for the pure gauge theory where the deconfinement
is a first-order phase transition. The coupling to the chiral
quark dynamics changes the character of this transition to a
crossover. Lowering the T0 parameter to 187 MeV changes
both deconfinement and chiral restoration to strong first-
order phase transitions! This change of character happens at
the critical value T0 ¼ 210 MeV, also shown in Fig. 3.
In Fig. 4, we summarize this finding by showing the

dependence of Tc on the T0 parameter of the PL potentials
(3) and (5). For the logarithmic PL potential (3), the posi-
tions of first-order transitions are characterized by the full
dots connected by a solid line, while the crossover transi-
tions are given as open dots connected by a dashed line. Two
regions of linear dependence can be identified when using
the logarithmic PL potential: Tc ¼ constþ 0:30T0 forT0 <
210 MeV and Tc ¼ constþ 0:40T0 for T0 > 210 MeV.
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FIG. 2 (color online). (Color online) Same as Fig. 1, but as a
function of the scaled temperature T=Tc with Tc ¼ 195 MeV
(left panel) and Tc ¼ T� ¼ 128 MeV (right panel). Without

coupling to the Polyakov loop, Td ¼ 2:11Tc is outside the range
shown.
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FIG. 3 (color online). (Color online) Temperature dependence
of the order parameters for chiral symmetry breaking
(mðTÞ=mð0Þ, blue lines) and for deconfinement (�ðTÞ, black
lines) for different choices for the parameter T0 in the
Polyakov-loop potential.

0.18 0.19 0.20

T[GeV]

10

20

30

40
su

sc
ep

tib
ili

tie
s

dΦ(Τ)/dT
dm

u,d
(T)/dT

dm
s
(T)/dT

0.1 0.15 0.2

T[GeV]

N
f
=2+1

w/o Polyakov loopw Polyakov loop

N
f
=2+1

FIG. 1 (color online). (Color online) Quark-mass susceptibil-
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When using the polynomial form (5) of the PL potential, we
find the linear dependence as Tc ¼ constþ 0:36T0. The
change in the character of the QCD transition from a cross-
over for T0 > 210 MeV to a first-order transition for T0 <
210 MeV is accompanied by a sudden change in slope at
T0 ¼ 210 MeV. It is remarkable that the T0- rescaling in-
troduced to account for a quark flavor dependence of the PL
potential, when applied to the nonlocal separable PDSE
model considered here, results in an obvious contradiction
with LQCD concerning the character of the QCD transition:
while in LQCD for Nf ¼ 2þ 1 the finite-T transition is a

crossover [57,58], the application of the suggested repara-
metrization with the corresponding value T0 ¼ 187 MeV
leads in the present model to a first-order transition.

On the other hand, for the polynomial PL potential (5),
the transition is a crossover for any of the considered
values of T0. Figure 4 illustrates this by the dashed line
connecting the points depicted by squares.

B. Meson screening masses at finite T

Following the approach to spatial meson screening
masses developed in [42] in its generalization by the
coupling to the Polyakov loop as given above, we have
evaluated the temperature dependence of scalar and pseu-
doscalar meson masses. In Fig. 5, we show the results with
(lower panel) and without (upper panel) PL coupling,
together with the behavior of the threshold to the contin-
uum estimated by the sum of the corresponding quark-
mass functions. Since the PL coupling leads to a strong
suppression of thermal quark excitations below the critical
temperature, the continuum thresholds are almost constant
with a sudden drop in the vicinity of Tc. This behavior is
reflected in the temperature dependence of the meson
screening masses. As a quantitative measure for the width

of the QCD transition, we suggest considering either the
difference of 	- and �- mass squared,�2

	�� ¼ M2
	 �M2

�,
or the difference between the temperature T	�2�, where
the 	meson mass equals the double pion mass (the thresh-
old for closing the 	 ! 2� decay channel), and the
temperature T	�2q, where the 	 meson mass equals the
double quark-mass (the threshold for opening the 	!2q)
decay channel). Both measures reveal that the width of the
transition region reduces from about 10% without to about
1% with PL coupling. Note that our results for the tem-
perature dependence of the 	- and �- meson without PL
coupling are very similar to those obtained earlier within
the DSE approach [59].
A crucial part of the correct chiral behavior of the light

pseudoscalar meson octet in the DS approach, where the
pseudoscalars are both q �q bound states and (almost-)
Goldstone bosons of the dynamically broken chiral sym-
metry of QCD, is the linear dependence of the squared
pseudoscalar masses on the current quark massesmq as the

chiral limit is approached

M2
P ¼ M2

ff0 ¼ constðmf þmf0 Þ: (22)

It is therefore interesting to investigate the validity of this
GMOR-type relationship in the present approach in the
vacuum and at finite temperatures.
To this end, one calculates M2

P ¼ M2
ff0 , the variable

‘‘pion’’ mass, for different values of current light quark
mass, mq, while the current strange quark mass is kept
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FIG. 4 (color online). (Color online) Pseudocritical tempera-
ture for the chiral restoration transition vs parameter T0 of the
Polyakov-loop potential in the logarithmic form (3) (black
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further details, see text.
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fixed. In Fig. 6 we show that this relation is very well
fulfilled in the vacuum (T ¼ 0) up to current quark masses
well exceeding 10m0

q. At finite temperatures, the GMOR-

like relation (22) qualitatively holds well up to T � Tc.
From the temperature independence of the pion mass up

to Tc, together with the validity of the GMOR-like relation
in this range of temperatures, we can conclude that the
temperature dependence of the chiral condensate must be
mirrored by that of f2�. It is a question of utmost impor-
tance for the phenomenology of hadronic matter whether
such a statement would also hold when one goes beyond
the rainbow-ladder level of description to which we re-
stricted ourselves in the present work.

IV. CONCLUSIONS

We have employed a Polyakov-loop Dyson-Schwinger
equation approach to investigate the pseudocritical tem-
peratures for the chiral and deconfinement transitions for
Nf ¼ 2þ 1 quark flavors using a rank-2 separable model

for the effective gluon propagator. We find that the pseu-
docritical temperature T� ¼ 128 MeV for the chiral resto-

ration and that for deconfinement, Td ¼ 270 MeV, differ
by more than a factor of 2 when the quark and gluon sectors
are considered separately. But when the coupling is
switched on these transitions get synchronized and
the pseudocritical temperatures become coincident
Tc ¼ T� ¼ Td ¼ 195 MeV.

We have investigated the dependence of Tc on the
parameter T0 of the Polyakov-loop potential. For the loga-
rithmic potential (3), we found two regions of linear de-
pendence with a change in slope at T0 ¼ 210 MeV,
accompanied by a change of the character of the QCD
transition from a crossover for T0 > 210 MeV to a

first-order transition for T0 < 210 MeV. It is a remarkable
finding of the present work that the T0- rescaling to account
for a quark flavor and chemical potential dependence of the
PL potential, which was suggested in [45] and investigated
in greater detail in [46] for different parameterizations of
the PL potential, when applied to the nonlocal separable
PDSE model considered here, results in an obvious contra-
diction with LQCD concerning the character of the QCD
transition. While in LQCD for Nf ¼ 2þ 1 the finite-T

transition is a crossover, in the present model with T0 ¼
187 MeV it is a first-order transition. Nevertheless, for a
different form of the PL potential, namely, the polynomial
form (5), we find that the QCD transition remains cross-
over even for the smallest considered values of T0.
As a consequence for possible phenomenological appli-

cations of the presented approach we discussed that the
coupling of the Polyakov loop to the chiral quark dynamics
narrows the temperature region in which chiral symmetry
is approached. Quantitative measures for this region are the
	-� squared mass difference (M2

	 �M2
�) and the differ-

ence of temperatures for opening the 	 ! �qq decay chan-
nel (T	� �qq) and the closing of the 	 ! 2� decay (T	�2�).

The narrowness of the QCD transition region (�T=Tc)
obtained from these measures is at the 1-percent level and
thus much too small for an adequate description of the
QCD transition as obtained in recent LQCD studies (see,
e.g., Ref. [60]).
We conclude that the separable PDSE approach provides

an essential improvement of the chiral quark dynamics in
PNJL models and nonlocal PNJL models, which use a
rank-1 separable ansatz for the quark interaction kernel,
since it provides a running of both, the dynamical quark-
mass function and the wave-function renormalization in
close agreement with LQCD simulations of the quark
propagator. It also provides the strong-coupling aspect of
a dynamical confinement mechanism due to the absence of
real quark-mass poles.
However, the investigation of the temperature depen-

dence of the chiral and deconfinement order parameters
characterizing the (pseudo-)critical temperature and the
width of the QCD transition reveals also some inadequate
aspects of the present level of description of this transition.
The critical temperature is too high and the transition
region is too narrow when compared with LQCD results.
A rescaling of the PL potential results in a lower value for
Tc, in accordance with recent LQCD results, but at the
price of a narrowing of the QCD transition region, for the
logarithmic PL potential, even changing the character of
the transition to a first-order one, in striking contradiction
with LQCD.
We expect that going beyond the rainbow-ladder level

by including hadronic fluctuations beyond the mean field
[47,61,62] will entail an improvement of the approach. As
has been demonstrated recently by including � and 	
fluctuations in a consistent 1=Nc scheme [62,63], going
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beyond the mean field will lead to a lowering of the chiral
transition temperature. The width of the transition region,
however, appears as a sensitive constraint for the choice of
an appropriate functional form of the PL potential. Its
possible dependence on the inclusion of hadronic correla-
tions deserves a detailed study. We plan to extend our work
in this direction.
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