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Microscopic energy density functionals have become a standard tool for nuclear structure calculations,
providing an accurate global description of nuclear ground states and collective excitations. For spectroscopic
applications, this framework has to be extended to account for collective correlations related to restoration of
symmetries broken by the static mean field, and for fluctuations of collective variables. In this paper, we compare
two approaches to five-dimensional quadrupole dynamics: the collective Hamiltonian for quadrupole vibrations
and rotations and the interacting boson model (IBM). The two models are compared in a study of the evolution
of nonaxial shapes in Pt isotopes. Starting from the binding energy surfaces of 192,194,196Pt, calculated with a
microscopic energy density functional, we analyze the resulting low-energy collective spectra obtained from the
collective Hamiltonian, and the corresponding IBM Hamiltonian. The calculated excitation spectra and transition
probabilities for the ground-state bands and the γ -vibration bands are compared to the corresponding sequences
of experimental states.

DOI: 10.1103/PhysRevC.84.014302 PACS number(s): 21.10.Re, 21.60.Ev, 21.60.Fw, 21.60.Jz

I. INTRODUCTION

One of the major research topics in theoretical nuclear
structure physics has been the study of quadrupole collective
dynamics from a microscopic viewpoint [1–4]. Quadrupole
collectivity results from multinucleon dynamics of nuclear
surface deformation. The equilibrium shape of a nucleus
can change depending on the number of valence nucleons:
a spherical vibrator, a deformed rotor, or a soft shape in
between. In most isotopic or isotonic sequences, the transition
between different shapes is gradual, but in a number of cases,
with the addition or subtraction of only a few nucleons,
one finds signatures of abrupt changes in observables that
characterize equilibrium shapes. These structure phenomena
have been investigated using concepts of quantum shape-phase
transitions [4], and advanced self-consistent beyond-mean-
field approaches [5–9].

Microscopic studies based on energy density functionals
(EDFs) have been quite successful in reproducing with
remarkable accuracy various intrinsic (bulk) properties of
medium-mass and heavy nuclei, such as binding energies,
density distributions, charge radii, giant resonances, etc.
[2,3]. The current generation of EDFs includes nonrelativistic
Skyrme [10,11] and Gogny [12,13] functionals, as well as
relativistic density functionals [14,15]. The framework of
EDFs has also been extended beyond the mean-field level
to describe excitation spectra and electromagnetic transition
rates. Models have been developed that perform restoration of
symmetries broken by the static nuclear mean field and take
into account quadrupole fluctuations: generator coordinate
method configuration mixing calculations [2,3,16–18] and
solutions of the collective Hamiltonian with quadrupole
degrees of freedom [8,9,19–21].

Another successful approach to the low-lying structure of
medium-mass and heavy nuclei is based on the interacting
boson approximation [22]. The interacting boson model
(IBM), in particular, provides not only an algebraic but, in
some cases, also a microscopic description of nearly spherical
and γ -unstable shapes [22–27]. From a microscopic point of
view, the collective J = 0+ and 2+ pairs of valence protons
(neutrons) are mapped onto the corresponding boson images
with J = 0+ and 2+, denoted by sπ (sν) and dπ (dν) bosons,
respectively [23]. A number of studies have been carried out to
derive the IBM Hamiltonian, starting from nucleonic degrees
of freedom in terms of the conventional mapping method that
starts from the shell model [23], the more recent approach
based on binding energy maps calculated with microscopic
EDFs [26], etc.

A static self-consistent mean-field solution in the intrinsic
frame, for instance, a map of the energy surface as a function
of quadrupole deformation, is characterized by symmetry
breaking—translational, rotational, and particle number—
and can only provide an approximate description of bulk
ground-state properties. To calculate excitation spectra and
electromagnetic transition rates in individual nuclei, it is
necessary to include correlations that arise from symmetry
restoration and fluctuations around the mean-field minimum.
Both types of correlations can be included simultaneously by
mixing angular-momentum projected states corresponding to
different quadrupole moments. The most effective approach
for configuration mixing calculations is the generator co-
ordinate method (GCM), with multipole moments used as
coordinates that generate the intrinsic wave functions. It must
be noted that, while GCM configuration mixing of axially
symmetric states has been implemented by several groups
and routinely used in nuclear structure studies [28–30], the
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application of this method to triaxial shapes presents a much
more involved and technically difficult problem [18,31]. In
addition, the use of general EDFs, that is, with an arbitrary
dependence on nucleon densities, in GCM-type calculations,
often leads to discontinuities or even divergences of the energy
kernels as a function of deformation [32,33]. Only for certain
types of density dependence can a regularization method be
implemented, which corrects energy kernels and removes the
discontinuities and divergences [34–36].

In an approximation to the full GCM approach to five-
dimensional quadrupole dynamics that restores rotational
symmetry and allows for fluctuations around the triaxial mean-
field minima, a collective Hamiltonian can be formulated, with
deformation-dependent parameters determined by constrained
microscopic self-consistent mean-field calculations. The dy-
namics of the five-dimensional Hamiltonian for quadrupole
vibrational and rotational degrees of freedom is governed by
the seven functions of the intrinsic quadrupole deformations:
the collective potential, three vibrational mass parameters, and
three moments of inertia for rotations around the principal
axes [8,9,19–21].

Another approximation consists in mapping the self-
consistent mean-field solution to a boson (IBM) Hamiltonian.
In Refs. [26,27], the energy surface for quadrupole degrees
of freedom, calculated from a microscopic EDF, was mapped
onto the corresponding boson energy surface under certain
approximations. The interaction strengths of the boson Hamil-
tonian are determined by the mapping procedure. One then
proceeds to calculate the excitation spectra and wave functions
in the laboratory frame [26,27]. The validity of the method of
Ref. [26] was tested in various mass regions [27,37,38].

It would, therefore, be interesting to compare the two
approximations starting from the same self-consistent mean-
field solution based on a microscopic EDF. In this paper,
we compare spectroscopic observables calculated with the
IBM Hamiltonian to the solution of the collective quadrupole
Hamiltonian, with both calculations based on relativistic
Hartree-Bogoliubov (RHB) [14] self-consistent binding en-
ergy surfaces. The framework of relativistic EDFs and the
corresponding collective Hamiltonian have successfully been
employed in studies of the evolution of ground-state shapes
and spectroscopic properties of medium-heavy and heavy
nuclei [8,9,15,21,39]. In the present analysis, we consider the
even-even isotopes 192–196Pt. In the IBM framework, these
γ -soft nuclei can be characterized by the O(6) dynamical
symmetry [22,40,41].

The paper is organized as follows. In Sec. II, we briefly
describe the theoretical procedures used to derive the collective
Hamiltonian and the IBM Hamiltonian starting from a given
EDF. The microscopic RHB energy surface and the mapped
IBM energy surface are discussed in Sec. III. Spectroscopic
properties of 192–196Pt calculated with the two models are
compared in Sec. IV. Section V summarizes the results and
presents a short outline of future work.

II. THEORETICAL FRAMEWORK

The map of the energy surface as a function of the
quadrupole collective variables β and γ [1] is obtained from
self-consistent RHB calculations with additional constraints

on the axial and triaxial mass quadrupole moments. The
quadrupole moments can be related to the polar deformation
parameters β and γ . The parameter β is simply proportional
to the intrinsic quadrupole moment, and the angular variable
γ specifies the type and orientation of the shape. The limit
γ = 0 corresponds to axial prolate shapes, whereas the
shape is oblate for γ = π/3. Triaxial shapes are associated
with intermediate values 0 < γ < π/3. In this paper, the
constrained RHB calculations have been performed using the
relativistic functional DD-PC1 [42]. Starting from microscopic
nucleon self-energies in nuclear matter, and empirical global
properties of the nuclear matter equation of state, the coupling
parameters of DD-PC1 have been determined in a careful
comparison of the calculated binding energies with data, for
a set of 64 axially deformed nuclei in the mass regions A ≈
150–180 and A ≈ 230–250. DD-PC1 has been further tested in
a series of calculations of properties of spherical and deformed
medium-heavy and heavy nuclei, including binding energies,
charge radii, deformation parameters, neutron skin thickness,
and excitation energies of giant multipole resonances. For the
examples presented here, pairing correlations have been taken
into account by employing a pairing force that is separable
in momentum space, and is completely determined by two
parameters adjusted to reproduce the empirical bell-shaped
pairing gap in symmetric nuclear matter [43].

The entire dynamics of the collective Hamiltonian is
governed by seven functions of the intrinsic deformations β

and γ : the collective potential, the three mass parameters: Bββ ,
Bβγ , Bγγ , and the three moments of inertia Ik . These functions
are determined by the choice of a particular microscopic
nuclear energy density functional and a pairing functional.
The quasiparticle wave functions and energies, that correspond
to constrained self-consistent solutions of the RHB model,
provide the microscopic input for the parameters of the
collective Hamiltonian [21],

Ĥcoll = T̂vib + T̂rot + Vcoll, (1)

with the vibrational kinetic energy,

T̂vib = − h̄2

2
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and rotational kinetic energy,

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

. (3)

Vcoll is the collective potential. Ĵk denotes the components
of the angular momentum in the body-fixed frame of a
nucleus, and the mass parameters Bββ , Bβγ , Bγγ , as well
as the moments of inertia Ik , depend on the quadrupole
deformation variables β and γ : Ik = 4Bkβ

2 sin2(γ − 2kπ/3).
Two additional quantities that appear in the expression for
the vibrational energy, r = B1B2B3 and w = BββBγγ − B2

βγ ,
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determine the volume element in the collective space. The
moments of inertia are computed using the Inglis-Belyaev
(IB) formula [44,45], and the mass parameters associated
with the two quadrupole collective coordinates q0 = 〈Q̂20〉 and
q2 = 〈Q̂22〉 are calculated in the cranking approximation. The
potential Vcoll in the collective Hamiltonian Eq. (1) is obtained
by subtracting the zero-point energy corrections from the total
energy that corresponds to the solution of constrained RHB
equations, at each point on the triaxial deformation plane.
The Hamiltonian Eq. (1) describes quadrupole vibrations,
rotations, and the coupling of these collective modes. The cor-
responding eigenvalue problem is solved using an expansion of
eigenfunctions in terms of a complete set of basis functions that
depend on the deformation variables β and γ , and the Euler an-
gles φ, θ , and ψ [21]. The diagonalization of the Hamiltonian
yields the excitation energies and collective wave functions
for each value of the total angular momentum and parity that
are used to calculate observables. An important advantage
of using the collective model based on self-consistent mean-
field single-(quasi)particle solutions is the fact that physical
observables, such as transition probabilities and spectroscopic
quadrupole moments, are calculated in the full configuration
space and there is no need for effective charges. Using the
bare value of the proton charge in the electric quadrupole
operator, the transition probabilities between eigenvectors of
the collective Hamiltonian can be directly compared with data.

In an equivalent approach, the RHB binding energy surface
can be mapped onto the IBM Hamiltonian. Starting from the
energy surface ERHB(β, γ ) calculated with the DD-PC1 plus
separable-pairing functional, each point on the (β, γ ) plane is
mapped onto the corresponding point on the energy surface
calculated in the IBM, referred to hereafter as EIBM(βB, γB),
using the method proposed in Ref. [27]. Here βB and γB denote
the boson images of the quadrupole deformation parameters
β and γ , respectively, that are used as constraints in the
self-consistent RHB calculation and appear as variables in
the collective Hamiltonian. The boson images βB and γB

are related to β and γ through the proportionality βB ∝ β,
and the equality γB = γ , respectively [26,27]. This mapping
procedure is used to determine the strength parameters of the
IBM Hamiltonian.

We consider the proton-neutron IBM (IBM-2) model [23]:
the number of proton (neutron) bosons, denoted by nπ (nν),
are assumed to equal half the number of valence protons
(neutrons). In the consistent-Q formalism [22] the IBM-2
Hamiltonian reads

ĤIBM = ε(n̂dπ + n̂dν) + κQ̂π · Q̂ν, (4)

where n̂dρ = d†
ρ · d̃ρ (ρ = π or ν) and Q̂ρ = [s†ρd̃ρ +

d†
ρ s̃ρ](2) + χρ[d†

ρd̃ρ](2) denote the d-boson number operator
and the quadrupole operator, respectively. ε and κ are coupling
constants. The parameters χπ,ν inside the quadrupole operators
are quite relevant to determining whether a nucleus is prolate
or oblate deformed.

The bosonic energy surface EIBM(β, γ ) corresponds to
the classical limit of the Hamiltonian ĤIBM: EIBM(βB, γB) =
〈�(βB, γB)|ĤIBM|�(βB, γB)〉. |�(βB, γB)〉 denotes the
boson coherent state [46]: |�(βB, γB)〉 ∝ ∏

ρ=π,ν[s†ρ +

βρ cos γρd
†
ρ0 + 1√

2
βρ sin γρ(d†

ρ+2 + d
†
ρ−2)]nρ |0〉, up to a nor-

malization constant. Here |0〉 is the boson vacuum and the
variables βρ and γρ are the corresponding polar deformation
parameters. As in our previous studies [26,27], it is assumed
that βπ = βν ≡ βB and γπ = γν ≡ γB . The analytical form
of EIBM(βB, γB) can be found in Refs. [26,27]. Hereafter, we
denote the bosonic energy surface as EIBM(β, γ ), omitting the
indices of βB and γB .

The boson Hamiltonian ĤIBM, parametrized by the micro-
scopically calculated coupling constants, is diagonalized in
the M = 0 boson space. Here M denotes the z component of
the total boson angular momentum L. Reduced quadrupole
transition probabilities B(E2) are calculated for transitions
between the eigenstates of the IBM Hamiltonian.

Here we point out again that the total boson energy
EIBM(β, γ ) has been related to the microscopic EDF energy
surface (total energy). However, for the IBM Hamiltonian
ĤIBM, one cannot make a distinction between the kinetic and
potential terms, as in the corresponding collective Hamiltonian
Ĥcoll. Nevertheless, the effects relevant to both vibrational and
rotational kinetic energies are assumed to be incorporated
into the IBM approach by adjusting EIBM(β, γ ) to be as
close as possible to the microscopic surface ERHB(β, γ ).
This prescription turned out to be valid for vibrational and
γ -soft nuclei at moderate quadrupole deformation [26,27],
similarly to the conventional mapping method of Ref. [23]. For
rotational nuclei with large quadrupole deformation, however,
the overall scale of the IBM rotational spectra differs from
the experimental one [26,27]. The discrepancy partially arises
because nuclear rotational properties, characterized by the
overlap of the intrinsic state and the rotated one, differ
from the rotational characteristics of the corresponding boson
system [47]. This problem may be cured by the recently
proposed prescription [47], in which the rotational response
(i.e., cranking) of the boson system is related to the rotational
response of the nucleon system. This procedure goes beyond
simple analysis of the zero-frequency energy surface. In order
that the boson rotational response becomes equal to the
fermion (nucleon) response, an additional kinetic term L̂ · L̂
has to be included in the boson Hamiltonian, with a coupling
constant determined microscopically [47]. The term L̂ · L̂
directly influences the moment of inertia of rotational band
with the eigenvalue L(L + 1). However, the above-mentioned
problem, concerning the IBM rotational spectra, does not occur
in the considered Pt nuclei, and thus one does not need to
include the L̂ · L̂ term in the present case.

Similar problems with the overall scale of the rotational
spectra are also encountered in the collective Hamiltonian
model, when the IB formula is used to calculate the moments of
inertia [8,9,21]. The inclusion of an additional scale parameter
is often necessary because of the well-known fact that the
IB formula predicts effective moments of inertia that are
considerably smaller than empirical values. More realistic
values are only obtained if one uses the Thouless-Valatin
(TV) formula, but this procedure is computationally much
more demanding. In the present case, we have used the IB
moments of inertia in the calculation of excitation spectra of
Pt nuclei, and the agreement with experiment is such that no
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renormalization of the effective moments of inertia is required.
This result allows for a direct comparison of the IBM spectra
to the solutions of the collective Hamiltonian.

III. BINDING ENERGY SURFACES IN THE β-γ PLANE

Most deformed nuclei display axially symmetric prolate
ground-state shapes, but few areas of the nuclide chart are
characterized by the occurrence of nonaxial shapes. One
example is the A ≈ 190 mass region, where both prolate to
oblate shape transitions, and even triaxial ground-state shapes,
have been predicted.

The left-hand side of Fig. 1 shows the self-consistent RHB
quadrupole binding energy maps of the 192,194,196Pt isotopes in
the β-γ plane, calculated with the DD-PC1 energy density
functional. The energy surfaces are γ soft, with shallow
minima at γ ≈ 30◦. In general, the equilibrium deformation
decreases with mass number and, proceeding to even heavier
isotopes, one finds that the energy map of 198Pt has also a
nonaxial minimum, whereas 200Pt displays a slightly oblate
minimum [15], signaling the shell closure at the neutron
number N = 126. On the right-hand side of Fig. 1, we plot the
corresponding IBM energy surfaces EIBM(β, γ ), obtained by
mapping each point of surface ERHB(β, γ ) onto the energy
surface calculated in the IBM, following the procedure of
Ref. [27]. To be able to compare the low-energy spectra in
the two models, the IBM surfaces are mapped in such a way as
to reproduce the RHB energy surfaces up to ≈2 MeV above
the mean-field minimum. This means that the maps shown
in Fig. 1 can only be compared for values of β not very
different from the minimum βmin. For larger values of β, that
is, for higher excitation energies, the topology of the RHB
surfaces is determined by single-nucleon configurations that
are not included in the model space (valence space) from which
the IBM bosons are constructed. For large β deformations,
therefore, one should not try to map the microscopic energy
surfaces onto the IBM. This is the reason why the IBM energy
surfaces are, by construction, always rather flat in the region
β 	 βmin. In the vicinity of the minima, the curvatures of the
IBM energy maps are rather similar to those of the original
RHB surfaces both in β and γ directions. The derived values
for the χπ and χν parameters in Eq. (4) satisfy χπ + χν ∼ 0,
characteristic for a γ -soft energy surface.

One might notice that the IBM energy maps reproduce the
value of β at the minima predicted by the RHB calculation,
whereas the mapping does not reproduce the shallow triaxial
minima of the RHB surfaces. The minima of the IBM maps are
either oblate or prolate. This is because the IBM Hamiltonian
of Eq. (4) is too restricted to produce a triaxial minimum.
In the analytical expression for EIBM(β, γ ), the γ -dependent
term is proportional to (χπ + χν) cos 3γ , and this places the
minimum either on the prolate or oblate side according to
the sign of (χπ + χν). The Pt nuclei considered here do not
display any rapid structural change but remain γ soft. This
feature appears to be independent of the choice of the EDF. A
recent microscopic calculation using the Gogny-D1S EDF [13]
also yielded shallow triaxial shapes, rather flat in the oblate
region [37], but quantitatively consistent with the present

analysis. A similar trend was reported in other EDF-based
studies of ground-state shapes of Pt isotopes [39,48,49]. In the
present calculation, the RHB surfaces become softer in γ with
increasing neutron number, and the softest nucleus is 196Pt.
The corresponding IBM energy surfaces follow this evolution,
but do not reproduce the triaxial minima because of the reasons
explained above. The recent Gogny-EDF calculation [37]
predicts 192Pt to be the softest Pt isotope in this mass region.

IV. SPECTROSCOPIC PROPERTIES

In Fig. 2, we display the corresponding low-energy col-
lective spectra of 192,194,196Pt obtained from the collective
Hamiltonian (middle panels) and the IBM Hamiltonian (panels
on the right). The calculated ground-state and (quasi-) γ -
vibration bands are compared to the corresponding sequences
of experimental states [50]. The eigenstates of the collective
Hamiltonian in Eq. (1) are completely determined by the
DD-PC1 energy density functional plus a separable pairing
interaction, and the transition probabilities are calculated in
the full configuration space using the bare value of the proton
charge. Since ĤIBM in Eq. (4) acts only in the boson valence
space, to calculate the B(E2) values, one needs two additional
parameters: the proton-boson and neutron-boson effective
charges. For simplicity, here we take these effective charges
to be equal, and in each nucleus normalize the B(E2) values
obtained in the IBM to reproduce the transition probability
B(E2; 2+

1 → 0+
1 ) calculated with the collective Hamiltonian.

Thus we can only compare the ratios of the IBM B(E2)
values, divided by B(E2; 2+

1 → 0+
1 ), to those predicted by the

collective Hamiltonian based on DD-PC1, and to available
data.

For the ground-state band, both the collective Hamiltonian
and the IBM predict excitation spectra in close agreement with
experiment. For 192Pt, in particular, the calculated ground-state
bands seem to indicate a somewhat larger deformation than
observed experimentally. In fact, the theoretical energy ratio
R4/2 = E(4+

1 )/E(2+
1 ) is 2.59 with the collective Hamiltonian

and 2.69 with the IBM Hamiltonian, compared to the exper-
imental value R4/2 = 2.48. A similar trend is also found for
the other two nuclei. A more pronounced difference between
the predictions of the two models is found in the E2 decay
pattern of the ground-state band, particularly in 194Pt nucleus
for which data are available up to angular momentum 10+.
For the spectrum calculated with the collective model, the
E2 transition rates from the state with angular momentum L

(L � 2) to the one with L − 2 keep increasing as functions of
L, even though the corresponding experimental B(E2) values
in 192,194Pt decrease starting from L = 6. The trend of the
B(E2) values calculated with the IBM, on the other hand, is
much closer to experiment. The B(E2)’s decrease in the IBM
because the model space is built from valence nucleons only,
and the wave functions of higher angular-momentum states
correspond to simple configurations of fully aligned d bosons
[22], whereas there is no limit on the angular momentum of
eigenstates of the collective Hamiltonian.

A more significant difference between the spectroscopic
properties predicted by the collective Hamiltonian and the IBM
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FIG. 1. (Color online) Self-consistent binding-energy maps of 192,194,196Pt in the β-γ plane (0◦ � γ � 60◦), calculated with the RHB model
using the DD-PC1 functional (left panels), and the corresponding mapped energy surface of the IBM, EIBM(βB, γB ). The IBM total energies
are depicted in terms of β and γ , where β ∝ βB and γ = γB (see text for definition).

is found in the sequence of levels built on the state 2+
2 —the

(quasi-) γ band. The IBM spectra display a staggering of
excitation energies above 2+

γ , with the formation of doublets
(3+

γ 4+
γ ), (5+

γ 6+
γ ), etc., whereas the collective Hamiltonian

yields a regular excitation pattern consistent with the ex-
perimental band. To be more precise, the IBM spectra
correspond to γ -unstable nuclei, and are close to the limit
of O(6) dynamical symmetry, in which eigenstates of a boson
Hamiltonian with the same τ quantum number are degenerate
[40]. On the other hand, the γ bands predicted by the collective
model, as well as the experimental sequence, seem to be
closer to rigid triaxiality [52]. The difference between the

collective Hamiltonian and the IBM arises probably because
the shallow triaxial minima of the RHB energy surfaces are
not reproduced by the mapping onto the IBM total energy
(cf. Fig. 1). The agreement of the IBM (quasi-) γ band
with experiment could be improved by introducing additional
interaction terms in the IBM Hamiltonian, i.e., three-body
terms (the so-called cubic terms) [53,54]. Terms of this
type will have to be included for a more precise analysis
and comparison of states above the yrast with experimental
results.

A nice feature of the present calculation, particularly
the one with the IBM Hamiltonian, is that the predicted
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FIG. 2. (Color online) Low-lying collective spectra of 192,194,196Pt
nuclei, calculated with the collective Hamiltonian based on the
DD-PC1 functional and the corresponding IBM Hamiltonian, in
comparison with available data. For each nucleus, the B(E2)
values (in Weisskopf units) obtained in the IBM are normalized to
the B(E2; 2+

1 → 0+
1 ) predicted by the collective Hamiltonian. The

experimental excitation spectra and B(E2) values are from Refs. [50]
and [51], respectively.

B(E2) values for the transition 2+
2 → 2+

1 are comparable to
or even larger than those corresponding to 4+

1 → 2+
1 . This

result is consistent with the experimental trend, whereas in
the recent Gogny-based EDF calculation of Ref. [37], the
2+

2 → 2+
1 transitions were much weaker than 4+

1 → 2+
1 . The

corresponding Gogny energy surfaces displayed pronounced
oblate minima in Ref. [37], unlike the present energy maps
shown in Fig. 1.

Finally, in Figs. 3 and 4, we compare the absolute squares of
the collective wave functions for the yrast states 0+

1 , 2+
1 , and 4+

1 ,
and the bandhead of the γ band of 192Pt, calculated in the two

models. These quantities are proportional to the probability
density distributions in the β-γ plane. Figure 3 shows the
distributions

∑L
M=−L |〈�L

M |�(β, γ )〉|2, where |�L
M〉 denotes

the IBM eigenstate for the state with angular momentum L

and projection M . The wave functions of the yrast states are
concentrated along the oblate axis, only for the state 4+

1 the
maximum of the absolute square is located at γ ∼ 55◦, and
somewhat larger deviations from pure oblate configurations
are found for higher angular momenta. For the state 2+

2 ,
on the other hand, the peak appears in the triaxial region
(γ ∼ 35◦), and the distribution is extended more toward oblate
quadrupole deformations. The rather large overlap of the
collective wave functions for the states 2+

1 and 2+
2 explains

the particularly strong 2+
2 → 2+

1 transitions in this nucleus,
and similarly in the other two Pt isotopes considered here.
The corresponding absolute squares of the eigenstates of the
collective Hamiltonian are shown in Fig. 4. In this case, already
the wave functions of the yrast states reflect the γ softness
of the RHB energy surface, and the maxima of the absolute
squares are found in the triaxial region of the β-γ plane.

V. CONCLUSIONS AND OUTLOOK

Structure phenomena related to shape evolution currently
present a very active research field in low-energy nuclear
physics. Radioactive-beam facilities continue to provide in-
teresting new data on shapes in regions of exotic nuclei far
from stability. The variation of ground-state shapes is, of
course, governed by the evolution of the underlying shell
structure of single-nucleon orbitals. It is, therefore, important
to develop microscopic approaches that can be employed in
quantitative analyses of shape phenomena and the resulting
complex excitation spectra and decay patterns across the entire
chart of nuclides. Such a framework is provided by nuclear
energy density functionals (EDFs).

The advantages of EDFs are evident already at the basic
level of implementation: an intuitive interpretation of self-
consistent mean-field results in terms of intrinsic shapes and
single-particle states, and the universality of EDFs that enables
their applications to all nuclei throughout the periodic chart.
The latter is particularly important for extrapolations to regions
of short-lived nuclei far from stability. When considering
spectroscopic applications, the framework of EDF must be
extended beyond the mean-field level to allow for a systematic
treatment of dynamical effects related to restoration of broken
symmetries and fluctuations in collective coordinates. To
calculate excitation spectra and transition rates, it is necessary
to project states with good quantum numbers from the mean-
field solution, and also take into account fluctuations around
the mean-field minimum.

In this work, we have compared two well-known models
that explicitly consider quadrupole collective correlations,
both starting from maps of binding energy calculated with the
same microscopic EDF. The first is the generalized collective
Hamiltonian for quadrupole vibrations and rotations. The
dynamics of the five-dimensional Hamiltonian is governed by
the collective potential, the three vibrational mass parameters,
and three moments of inertia for rotations around the principal
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FIG. 3. (Color online) Absolute squares of the IBM wave functions in the β-γ plane for the yrast states 0+
1 , 2+

1 , and 4+
1 , and the bandhead

of the γ band 2+
2 of 192Pt.

axes. These functions of the quadrupole deformation param-
eters are determined by constrained mean-field calculations
using a given nuclear EDF. The diagonalization of the resulting
Hamiltonian yields excitation energies and collective wave
functions that can be used to calculate various observables.
Calculations are performed in the full model space of occupied
states (no distinction between core and valence nucleons and
no need for effective charges). The second model considered in
this work is the well-known and very successful IBM-2. In this
approach, the configuration space is first restricted to valence
nucleons only, and further mapped to the space of s and d

bosons. To determine the parameters of the IBM Hamiltonian,
the energy surface calculated using a microscopic EDF is
mapped onto the corresponding boson energy surface under
certain approximations. One then proceeds to calculate the
excitation spectra and wave functions in the laboratory frame.
To calculate transition probabilities, however, one needs
to adjust the effective boson charges. Here this has been
done so that, in each nucleus, the calculated B(E2; 2+

1 →
0+

1 ) coincides with the value obtained using the collective
Hamiltonian.

The two models have been compared here in a study
of the evolution of nonaxial shapes in Pt isotopes. Starting
from the binding energy surfaces of 192,194,196Pt, calculated
with the DD-PC1 energy density functional plus a separable
pairing interaction, we have analyzed the resulting low-energy
collective spectra obtained from the collective Hamiltonian

and the corresponding IBM-2 Hamiltonian. The calculated
ground-state and γ -vibration bands have also been compared
to the corresponding sequences of experimental states. Both
models predict that excitation energies and B(E2) values are
in agreement with data. In particular, we notice the excellent
result for the predicted excitation energy of the bandhead of the
γ band, as well as the good agreement with the experimental
B(E2) values for transitions between the γ band and the yrast
band.

There are also significant differences in the predictions of
the two models. With the present form of the IBM Hamiltonian,
restricted to two-body boson interactions, its expectation value
in the boson coherent state does not reproduce the shallow
triaxial minima of the binding energy maps predicted by the
constrained self-consistent mean-field calculation using DD-
PC1. Since the mapped IBM energy surface is γ soft rather than
triaxial, the resulting spectra display a staggering of excitation
energies above 2+

γ , with the formation of doublets (3+
γ 4+

γ ),
(5+

γ 6+
γ ), etc., in contrast to the regular excitation pattern

observed in experiment and reproduced by the collective
Hamiltonian. This problem could be solved by including three-
body boson terms in the IBM Hamiltonian, and work along this
line is already in progress. When considering the calculated
B(E2) values for transitions in the ground-state band, the
IBM reproduces the gradual decrease of transition rates with
angular momentum for L � 6, reflecting the finiteness of the
valence space. On the other hand, even though the collective
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FIG. 4. (Color online) Same as described in the caption to Fig. 3, but for the eigenstates of the collective Hamiltonian.

Hamiltonian predicts parameter-free B(E2) values in excellent
agreement with experiment for transitions between low-spin
states, the calculated transition probabilities keep increasing
with angular momentum, in contrast to data.

Both models are based on binding energy surfaces cal-
culated at zero rotational frequency. In general, this leads
to effective rotational moments of inertia that are lower
than empirical values, that is, the calculated rotational bands
are stretched in energy compared to experimental bands.
In the collective Hamiltonian, the moments of inertia can
be improved by including the Thouless-Valatin dynamical
rearrangement contributions. For the IBM Hamiltonian, one
needs to include the kinetic rotational term [47] and perform
the mapping of microscopic energy surfaces calculated at finite

values of the rotational frequency. We have already started
with the implementation of these modifications in our current
version of the collective Hamiltonian based on relativistic EDF
and in the IBM Hamiltonian. The comparison of the improved
models will be the subject of a future study.
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