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Because financial crises are characterized by dangerous rare events
that occur more frequently than those predicted by models with
finite variances, we investigate the underlying stochastic process
generating these events. In the 1960s Mandelbrot [Mandelbrot B
(1963) J Bus 36:394–419] and Fama [Fama EF (1965) J Bus 38:34–
105] proposed a symmetric Lévy probability distribution function
(PDF) to describe the stochastic properties of commodity changes
and price changes. We find that an asymmetric Lévy PDF, L, char-
acterized by infinite variance, models several multiple credit ratios
used in financial accounting to quantify a firm’s financial health,
such as the Altman [Altman EI (1968) J Financ 23:589–609] Z score
and the Zmijewski [ZmijewskiME (1984) J Accounting Res 22:59–82]
score, and models changes of individual financial ratios, ΔXi . We
thus find that Lévy PDFs describe both the static and dynamics
of credit ratings. We find that for the majority of ratios, ΔXi scales
with the Lévy parameter α ≈ 1, even though only a few of the in-
dividual ratios are characterized by a PDF with power-law tails
X−1−α

i with infinite variance. We also find that α exhibits a striking
stability over time. A key element in estimating credit losses is the
distribution of credit rating changes, the functional form of which
is unknown for alphabetical ratings. For continuous credit ratings,
the Altman Z score, we find that PðΔZÞ follows a Lévy PDF with
power-law exponent α ≈ 1, consistent with changes of individual
financial ratios. Estimating the conditional PðΔZ jZÞ versus Z , we
demonstrate how this continuous credit rating approach and its
dynamics can be used to evaluate credit risk.

complex systems ∣ econophysics ∣ rating migrations

Most tests and tools used in statistics assume that any errors
in a financial model are Gaussian distributed, and it is a

common practice in economics to use a Gaussian distribution to
approximate empirical data. Mandelbrot (1) and Fama (2) were
among the first to notice that the logarithm of cotton price fluc-
tuations and common stock price fluctuations have fatter tails than
those produced by a Gaussian distribution, and they proposed a
stable Lévy distribution to model the stochastic properties of the
fluctuations. Analyzing high-frequency data, Mantegna and Stan-
ley (3) reported that the stable Lévy distribution accurately models
only a broad central region of the probability distribution function
(PDF) of stock price changes, whereas Gopikrishnan et al.
reported that a power law with an exponent value beyond the Lévy
regime is needed to describe the tails (4, 5).

The central limit theorem (CLT) implies that the mean of a
sufficiently large number of independent random variables, each
with finite variance, will approximately follow a normal distribu-
tion (6). A generalization of the CLT shows that the mean of a
sufficiently large number of independent random variables, each
with infinite variance, approximately follows a stable Lévy distri-
bution Lα;γðxÞ ¼ ð1∕πÞ∫ ∞

0 dq expð−γqαÞ cosðqxÞ, where γ > 0 and
0 < α < 2 (6, 7). Infinite variances are related to power-law
distributions, and the general rule when combining two or more
power-law variables, x1þα, is that the one with the smallest power-
law exponent (the fattest power law) dominates when x → ∞,
which holds even if some variables are Gaussian distributed
(8, 9). Because in finance one commonly deals with credit ratios
defined as multiple financial ratios, if only one ratio is found to be

power-law distributed, the credit ratio itself is also power-law
distributed.

In contrast to the previous literature on financial ratios, we
focus not on ratios, Xi, but on dynamics of credit ratios, repre-
sented by their changes, ΔXi. For each of eight individual ratios
Xi comprising the Altman Z score (10), the Zmijewski Zm score
(11), and also the Shumway Hazard model (12), we find asym-
metric Lévy L PDFs in changes of financial ratios, ΔXi, which
are related to credit rating changes and thus to credit risk. We
find that L models several multiple credit ratios such as the
Altman Z score and the Zmijewski score. PðZÞ follows an L
PDF with scale parameter α ¼ 1.06� 0.02 and skewness para-
meter β ¼ 0.70� 0.02. We depart from the usual discrete alpha-
bet credit ratings, such as Moody’s (13), and choose the Z score
as a proxy for the continuous credit rating (14), where the ΔZ
quantifies credit rating migrations. We find that PðΔZÞ follows
a Lévy PDF with a power-law exponent α ≈ 1. We demonstrate
how our previous findings can be used to model credit risk.

Methods and Data
In modeling changes of financial ratios and multiple credit scores,
we choose the asymmetric Lévy L because, e.g., multiple credit
scores Z are characterized by heavy tails in PðZÞ, and we fit them
with a scale parameter α. We model asymmetry in the PDF tails
using skewness parameter β, the location (mean) of multiple
credit scores using shift parameter μ, and the spread using para-
meter σ. For both the symmetric Lévy Lα;γ and its generalization,
L, the PDF generally cannot be written analytically. L is deter-
mined by its characteristic function φðtÞ: L ¼ 1

2π ∫
∞
−∞φðtÞe−ixtdt,

where

φðt; μ;c;α;βÞ ¼ expfitμ − jσtjα 1 − iβsgn tð ÞΦ½ �g: [1]

In Eq. 1, sgnðtÞ is the sign of t, Φ ¼ tanðπα∕2Þ, and β ∈ ½−1;1�
(15). When β ¼ 0 and α ¼ 1, the L becomes the Cauchy distri-
bution, the analytic form of which is well-known.

For power-law distributed variables with a cumulative distribu-
tion function (CDF), Pðs > xÞ ∼ x−ζ

0 , a Zipf plot of size s versus
rank R asymptotically (R ≫ 1) follows a power law with exponent
ζ (16),

ζ ¼ 1∕ζ0: [2]

If CDF is a Lévy distribution, then ζ0 ¼ α.
We analyze financial data for each quarter during the period

2000–2009 of 488 publicly traded manufacturing firms. The data
are available at http://www.wikinvest.com. Our body of data in-
cludes (i) working capital to total assets (X1), (ii) retained earn-
ings divided by total assets (X2), (iii) earnings before taxes and
interest divided by total assets (X3), (iv) market value of equity
divided by book value of total liabilities (X4), (v) sales divided
by total assets (X5), (vi) net income divided by total assets (X6),
(vii) total liabilities divided by total assets (X7), and (viii) current
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assets divided by current liabilities (X8). To improve the quality of
the statistics, and to assess the common scaling properties of the
ratings and rating changes, for each ratio we aggregate all the
data into one common dataset.

Analysis
Just as stock market risk is determined by equity price changes,
so also is credit risk determined by the changes in credit ratings
(10–12, 17–19). To calculate both the distribution of expected
credit losses and the credit risk, we first need to know both the
distribution of rating changes and how credit (or bond) is calcu-
lated for each rating. We can then estimate both the mean of the
credit loss and the deviation from the mean—the credit risk (20).

Our interest in studying rare events in rating changes is three-
fold: (i) downgrade events are associated with large financial
losses, (ii) the distribution of rating changes helps us understand
the underlying dynamics of economic systems producing the tran-
sitions, and (iii) the rarer the event, the larger the error in any
estimation of its probability.

The discrete credit ratings of Fitch, Moody’s, and Standard &
Poor’s (S&P) are widely used in assessing a firm’s financial health
(13, 20). For example, an S&P credit rating is expressed alpha-
betically and uses discrete values such as AAA, AA, and A. This
approach is severely limited because it does not allow an analy-
tical evaluation of the distribution of rating changes, and it is a
discrete rating system, it is slow in responding to changes in cor-
porate credit quality, according to recent surveys (14).

In contrast to discrete credit rating systems, the Altman Z
score (10) is a continuous numerical score, the calculation of
which combines five financial ratios for each manufacturing firm
(see Methods and Data),

Z≡ 1.2X1 þ 1.4X2 þ 3.3X3 þ 0.6X4 þ 1.0X5: [3]

The smaller the Z score, the larger the probability that bank-
ruptcy will occur within 2 y. During the 2007–2009 recession,
two large financial institutions, J. P. Morgan and Nomura Secu-
rities advocated buying stocks of companies with a high Altman Z
score and selling stocks of companies with a low Z score (20).
Additionally, we note that Goldman Sachs has adopted the Z
score model for long-short baskets in 2008–2010 (top 10% and
bottom 10% Z scores). The prefactors multiplying the ratios Xi
in ref. 3 are determined by employing discriminant analysis, which
assumes normality in empirical data. Recently, the impact of out-
lier observations on the parameter estimation and significance
testing of the entire model was addressed in refs. 21–23, where
the authors used logarithmic transformations of the financial ra-
tios and truncated values for many ratios at two or three standard
deviations from the mean to reduce the outlier impact. Besides,
Altman and Saunders proposed using the firms’ multiple ratio
score as a superior means of addressing the correlation between
credit assets in asset management to arrive at an optimal portfo-
lio, both in terms of which securities to include and their weight-
ings (19).

In addition to the Altman Z score, the Zmijewski Zm score is
also a widely employed multiple credit ratio (11), and is a com-
bination of three financial ratios (see Methods and Data),

Zm ≡ −4.336 − 4.513X6 þ 5.679X7 þ 0.004X8: [4]

Another widely employed model, a Hazard model (12), incorpo-
rates X6 and X7 ratios for forecasting bankruptcy.

Utilizing the map between the Z score and the S&P bond
rating developed by Altman and Hotchkiss (14), we take the Z
score (14) as a proxy for a continuous credit rating, where the Z
changes quantify the rating changes.

For the eleven ratios computed for manufacturing companies
over the period 1954–1973, Deakin tested the assumption of
normality (24). With the exception of the total debt over total

assets ratio, none of the ratios was normally distributed at 5%
significance. Clearly, the largest contribution to deviation from
normality arises from the data in the tails.

In Fig. 1, for each individual ratio Xi comprising (A) the Alt-
man score and (B) the Zmijewski score, we find that the Zipf plot
of a ratio approximately follows a power law in the right-hand tail.
Note that the power-law Zipf exponents come from a broad
range, in agreement with ref. 25. McLeay reported that the tν-dis-
tribution (with the tails following x−ν−1) with ν degrees of freedom
provides a good descriptive model for three financial ratios—ν
ranges from 1.1 to 3.7, the last obtained for earnings-to-total as-
sets ratio (25). In addition to the Zipf ranking approach, we also
employ the maximum likelihood (ML) approach. We find that
three Xi ratios, one in the Altman score and two in the Zmijewski
score, follow asymmetric Lévy distributions with the ML values
for α and β reported in Table 1. For these ratios we find the Zipf
exponents ζ > 0.5, which is a precondition for a Lévy distribution
(ζ0 ¼ α < 2) (see Eq. 2). We can understand the importance of
this result if we recall the general rule for power laws—when
combining two or more power-law variables x1þαi , in the limit
x → ∞

a1x1þα1 þ a2x1þα1 þ…anx1þαn ∝ aax1þαa ; [5]

the variable with the fattest power law—the smallest power-
law exponent or largest Zipf exponent in Eq. 2— αa ¼½
minimum α1;α2;…;αnð Þ� dominates, and this behavior holds even
if some variables in [5] are Gaussian distributed (those where
α → ∞) (8, 9). This behavior implies that even when only one
power law x1þα is combined with many Gaussian-distributed vari-
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Fig. 1. Power laws in financial accounting ratios. For each of eight financial
ratios, Xi , comprising (A) the Altman Z and (B) the Zmijewski Zm score, we
find a power law in the Zipf plot of ratio. For each Xi , the Zipf plot in the
right tail follows a power law. The 2,000 data points represents 13% of all
data points.

Table 1. Ratio

Ratio X4 X6 X8

α 0.86 1.14 1.24
(0.07) (0.08) (0.07)

β 0.99 −0.22 0.97
(0.05) (0.03) (0.03)
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ables the combination is still a power law in the tails, i.e., power
laws dominate any other functional dependence in the tails where
rare events occur.

To test [5] we next collect 14,779 values for the Altman Z score,
and in Fig. 2A show the PDF PðZÞ. Note that Eq. 2 and Fig. 1A
give for the smallest exponent ζ0 ¼ α ¼ 0.81 (corresponding to
ζ ¼ 1.23). Applying the ML method we find that the PDF PðZÞ
is nicely fit by an asymmetric Lévy PDF,L, with a scale parameter
α ¼ 1.06� 0.02, a skewness parameter β ¼ 0.70� 0.02, where
μ ¼ 1.55� 0.02 and σ ¼ 0.81� 0.02 (see Eq. 1). Because
β ¼ 0.70� 0.02 is close to a limit of unity for an L PDF, the
PDF exhibits (significant) asymmetry. We stress that for the Zmi-
jewski score ML gives α ¼ 1.87� 0.02 and β ¼ 0.89� 0.08 in
agreement with Fig. 1B and [5] where the largest ζ ¼ 0.62.

The parameters obtained for the Altman Z score represent the
average behavior of the Z score for the data collected over one
decade. To test the stability of the parameters, in particular α,
which is supposed to be stable in the Lévy formalism, we next
fit the Z score on the L PDF of Eq. 1 for each quarter over the
last decade. In Fig. 2B we find that both α and β exhibit a striking
stability over time. Note that the Lévy distribution was first pro-
posed to describe commodities and the broad central region of
the PDF of price changes. Now we find that the generalized asym-
metric Lévy distribution describes even multiple credit scores.

In our approach where we take the Z score as a proxy for a
continuous credit rating, ΔZ quantifies the credit rating migra-
tions. In Fig. 3A, for each of five ratios comprising the Altman
score of Eq. 3 and, in Fig. 3B, for each of three ratios comprising
the Zmijewski score of Eq. 4, we find that the Zipf plot of changes
in ratio, ΔXi, also follows a power law. For each ratio, first, the
positive and negative tails of ΔXi virtually overlap and both fol-
low a power law. Second, the largest Zipf exponent—the smallest
power-law exponent of the PDF (see Eq. 2)—we find for ΔX4

corresponding to changes in the market value of equity divided
by the book value of total liabilities. In addition to X4, for the rest
of ratios the Zipf ζ ≈ 1. Motivated by this finding and the relation
between ζ and ζ0 in Eq. 2, for each of eight financial ratios, we
find applying the ML method that PðΔXiÞ is well fit by anL PDF

with parameters α and β reported in Table 2. For each ratio, asym-
metry in ΔXi measured by β is much smaller (significant for X1,
X2, and X7) than for Xi, and that the parameter α is relatively
close to 1. This result is surprising and reveals the complexity of
the stochastic process responsible for ratio changes, because in
Fig. 1 we find that the power-law Zipf exponent ζ for eight ratios
Xi is highly diversified, where ζ ranges between 0.19 and 1.72.
Finally, for each quarter over the last decade, for each of eight
ratios, we fit ΔXi on theL PDF and find a temporal stability in α
and β (in Table 3, we report average values for α and β).

Because ΔXi for each ratio follows a power law, from [5] we
expect that changes in the Altman Z score and changes in the
Zmijewski score will also follow a power law. First, we analyze
PðΔZÞ, disregarding the initial Z score (unconditional analysis),
and then we analyze PðΔZjZÞ taking into account the initial Z
score. Fig. 4A shows PðΔZÞ for varying time horizons ranging
from 3 mo to 2 y. For one quarter the ML approach gives
α ¼ 0.92, β ¼ −0.11, μ ¼ 0.02, and σ ¼ 0.17. For ΔZ ¼ 1;2;…;8
we obtain hαi ¼ 0.98� 0.02. A positive ΔZ is associated with rat-
ing upgrades, and a negative ΔZ with rating downgrades, includ-
ing bankruptcy. For each time horizon Δt, the PDF in the central
region exhibits an approximately symmetric form, implying that
the probability that a given company will increase its Altman Z
score approximately equals the probability that it will decrease its
Altman Z score. As expected, if we increase the time horizon, the
peak of the PDF will decrease, because the probability that the
company will retain its current rating score decreases with Δt.

We next focus on the tails of the distribution of rating changes,
PðΔZÞ, for two choices of time horizon: 3 mo (Fig. 4B) and 1 y
(Fig. 4C). We find that negative and positive tails are nearly iden-
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Fig. 2. (A) Asymmetric Lévy PDF of the Altman Z score, quarterly recorded.
The stable parameter α ¼ 1.06 implies infinite variance in Z. (B) Stability of
asymmetric Lévy parameters calculated for each quarter between 2000 and
2009 supporting the usage of Lévy PDFs.
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Fig. 3. Power laws in changes of eight financial accounting ratios. For each
of the five ratios Xi comprising (A) the Altman Z score and each of the three
ratios Xi comprising (B) the Zmijewski Zm score, the Zipf plot of ΔXi in the
right and left tails follows a power law.

Table 2. Difference in ratio

Δ Ratio ΔX1 ΔX2 ΔX3 ΔX4 ΔX5 ΔX6 ΔX7 ΔX8

α 1.19 0.91 1.05 0.80 1.25 0.92 1.17 0.96
(0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

β −0.12 −0.12 −0.02 −0.03 −0.05 −0.03 0.14 0.01
(0.03) (0.03) (0.03) (0.03) (0.04) (0.03) (0.03) (0.03)
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tical, and that the tails of PðΔZÞ follow a power law with exponent
1þ α ≈ 2. For a 1 y time horizon we find that the negative tail still
follows a power law with 1þ α ≈ 2 and that the positive tail fol-
lows a power law with 1þ α ≈ 2.2. The form of the PDF PðΔZÞ
calculated for different time horizons indicates the relative stabi-
lity in the tails, and that property is attributed to stable probability
distributions. We find that the PDF PðΔZÞ in both the central
region (Fig. 4B) and the tails (Fig. 4B) follows the Lévy distribu-
tion with a power-law exponent α ≈ 1. We also use the ML ap-
proach and again find that PðΔZÞ is less asymmetric than
PðZÞ, where α ¼ 0.92� 0.02, β ¼ −0.11� 0.03 [β ¼ 0.70� 0.02
for PðZÞ], μ ¼ 0.02� 0.01, and σ ¼ 0.17� 0.01. The power-law
exponent α is in agreement with the Zipf exponent ζ ¼ 1.21
obtained for ΔZ (see Eq. 2).

To find out whether the scaling results reported in Fig. 4A–C
are invariant in the choice of rating, we next study the Zmijewski
score Zm of Eq. 4. For a 3 mo time horizon, using the Zipf plot of
ΔZm in Fig. 4D, we find that the negative and positive tails follow
each other with the Zipf exponent ζ ¼ 0.81� 0.003. We estimate
the standard error on the power-law exponent using the method
presented in ref. 26. For ΔZm, ML approach with L PDF gives
α ¼ 1.09� 0.02, β ¼ 0.10� 0.03, μ ¼ −0.03� 0.003, and σ ¼
0.10� 0.002. We demonstrate, using the ML and Zipf ranking
approaches, that the empirical power-law regularities appear to
be invariant with respect to the choice of rating.

We next test whether the scaling results found in α parameter
in Figs. 1–4 are affected by economic crises. We perform the same
analysis as in Fig. 1, but now for data covering the crisis period
between 2007 and 2009. In Fig. 5A we show both the right 1þ α ≈
1.99� 0.15 and left 1þ α ≈ 2.16� 0.29 tails of the quarterly
changes in the Altman Z score, ΔZ. The results confirm that even
during a period of stock market crashes, the distribution of rating
changes in the tails follows a power law with exponent 1þ α ≈ 2.
In PðΔZÞ the temporal stability we find in α is in agreement with
the stability we previously found in PðZÞ (see Fig. 2B).

Table 3. Stability in difference of ratio

Δ Ratio ΔX1 ΔX2 ΔX3 ΔX4 ΔX5 ΔX6 ΔX7 ΔX8

α 1.19 0.92 1.06 0.81 1.24 0.93 1.18 0.96
(0.08) (0.07) (0.08) (0.06) (0.07) (0.07) (0.10) (0.06)

β −0.11 −0.14 −0.00 0.01 −0.02 −0.02 0.13 0.01
(0.11) (0.13) (0.16) (0.33) (0.22) (0.15) (0.16) (0.09)
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In finance one commonly calculates not the unconditional but
the CDF Pðf jiÞ that the initial credit rating i will change to f over
the next period. We set the initial rating to the alphabetic S&P
500 i ¼ AA rating that approximately corresponds to the Z range
of 4.25 to 5.5 found in ref. 14. We find that the tails of PðΔZjAAÞ
follows a power law with exponent 1þ α ≈ 2.15� 0.21. The ML
approach gives α ¼ 1.37, β ¼ −0.18, μ ¼ 0.12, and σ ¼ 0.46. In
Fig. 5B, we show three CDF PðΔZjiÞ for a different choice of
initial ranking i ¼ Z0 where each CDF is obtained by fitting em-
pirical data on the L PDF.

Finally, the previous analysis is accomplished by aggregating
the data of 488 manufacturing firms for each ratio implying that
the outcomes based on the fitted Lévy distributions reflect the
average behavior of the entire sector, not the single firms. Next,
for each of the 237 firms for which the data include 37 quarter
records, we fit the Z and ΔZ with L and obtain for the average α
values 1.70� 0.40 and 1.48� 0.34, respectively. For some of in-
dividual financial ratios, we also fit the X and ΔX withL. For the
average α of Xi and ΔXi we obtain, X3 (1.53� 0.34, 1.37� 0.40),
X6 (1.40� 0.35, 1.22� 0.38), and X8 (1.70� 0.37, 1.48� 0.33).
The values are different than those obtained for the aggregated
data, but still in the Lévy range. This result opens an interesting
and intriguing question about the firm homogeneity across the
entire market. Can we expect that each firm, even only manufac-
turing, is governed by the same dynamics? Clearly, to answer this
question we need more data and thus a much longer time series.

Application to Credit Risk Modeling
Credit risk has become perhaps the key risk management chal-
lenge of the late 1990s. A firm’s credit risk reflects all possible
credit migrations, i.e., it is quantified not only in terms of the pos-
sibility of a company’s filing for bankruptcy but also in terms of
any upgrades and downgrades in its credit rating. Suppose a com-
pany initially has a Moody’s credit rating of i ¼ Baa, which cor-
responds to a range of Z values in our continuous credit rating
(14, 20). When a two-year $100 million (5% loan) is revalued at
the end of the first year, after a credit event has occurred during
that year, the new loan value (in millions of dollars) (19, 20) will
be, as follows:

Bi;f ¼ 5þ 105

1þ r þ sf
; [6]

where r is the risk-free rates and sf is the annual credit spread on
zero coupon loans of a particular rating class f . The credit risk is
due to all possible credit rating migrations, from i to f , but also
because of variations in Bi;f values, which depend on the value of
the final credit rating f .

In the Moody’s discrete alphabet credit ratings, the number of
Bi;f values is finite because the number of different ratings is fi-
nite. In contrast, in our numerical approach the Z score is a proxy
for a continuous credit rating, and therefore theΔZ quantifies the
rating transition (migration). To calculate all Bi;f values, based on
Monte Carlo simulations, we first need to know the CDFof credit
rating migration given initial rating Baa, PðΔZjBaaÞ, which we
find empirically (Fig. 5B). We then need the r þ s values for each
ΔZ, which quantifies the transition from i to f . In Fig. 6A, based
on mapping between discrete alphabetic credit ratings and Z
values (20), we show the r þ s values versus the ΔZ. In calculating
r þ s versus ΔZ beyond the mapping, we reasonably assume that
for companies with the largest possible ΔZ (those that are least
risky when ΔZ ≫ 1) r þ s tends toward a risk-free rate r. In
contrast, for companies where the ΔZ goes to extremely negative
values (ΔZ ≪ −1) we may expect bankruptcy. Using a continuous
approach with a smaller number of parameters instead of a
discrete rating approach enables us to more clearly distinguish
between companies that are close to bankruptcy from those with
only a moderately bad ΔZ score. Because we assume two asymp-
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Fig. 6. (A) Risk-free rates plus credit spread versus ΔZ. We extrapolate the
functional dependence in agreement with hyperbolic tangent. (B) The PDF of
loan values has a short upside and a long downside tail.
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Fig. 7. Model simulations generating changes in Altman ΔZ score in agree-
ment with power-law findings in empirical data. We generate each of eight
financial variables needed to generate the Altman Z score: total assets,
AðtiÞ ¼ 1; total liabilities, DðtiÞ ¼ d2; retained earnings, REðtiÞ ¼ d3; earnings
before interest and taxes, EBITðtiÞ ¼ d4; market value of equity, MCAPðtiÞ ¼
d5; sales, SðtiÞ ¼ d6; current assets, CAðtiÞ ¼ d7; and current liabilities,
CLðtiÞ ¼ d8. Here di are set to the averages across manufacturing companies
over the period 2000–2009. Shown are (A) the Zipf plots of ΔZ and (B) the
central part of ΔZ. For geometric Brownian motion we use a Gaussian PDF
with mean μ ¼ 0 and standard deviation σ ¼ 0.006. Because the smallest
Δt in simulations is one hour, this hourly σ corresponds to annual σ ≈ 0.27.
In B we show how the spread of PðΔZÞ increases with increasing σ.
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totic limits for r þ s versus ΔZ, we fit this dependence to a hyper-
bolic tangent,

a tanhðbxþ cÞ þ d: [7]

We set the lower asymptotic limit (r þ s ¼ 1 when ΔZ ≪ −1) to
calculate a recovery rate (20, 27) of approximately 50% after
bankruptcy is declared (r þ s is calculated when Bi;f ≈ 0.5 · 105
in Eq. 6).

We next apply the previous approach to assess 1% risk as a
specified percentile level for the portfolio value distribution (28).
The lowest value that the portfolio will achieve 1% of the time is
the first percentile. We then perform Monte Carlo simulations.
For each simulation we generate ΔZ from PðΔZÞ, and based on
ΔZ we calculate Bi;f in Eq. 6 by using [7]. In Fig. 6B we show the
PDF of loan values due to the increase and decrease of Z values.
The PDF has a rapidly decreasing upside tail and a long downside
tail, as found in empirical data on loan values with a Baa initial
rating (20). Having this PDF one may estimate the 1% risk by
calculating the B1 value below, which there are 1% of all B values.

In our approach, stochasticity exists in credit rating migrations,
and interest rate and credit rating are deterministically related
(7). Our approach contradicts, e.g., the Black–Derman–Toy mod-
el (29), where the interest rate is stochastically evolved and fol-
lows a lognormal process. Now we demonstrate how we calculate
the price of a bond maturing at time T, when applying the same
approach to bond options (29). We subdivide a period between
0 and T on, e.g., n steps, each representing one quarter. If the
option expiration date T is 3 y, then n ¼ 12. In the first step,
having information about the initial ranking i we apply a CDF
of migration PðΔZjiÞ of Fig. 5B to determine a new ranking f 0,
where ΔZ ¼ f 0 − i. The new ranking, f 0, in the previous step is
also the initial ranking i0 for the next step. After 12 steps we are

able to calculate the final ranking f . By performing Monte Carlo
simulations on the exercise date we obtain the final credit rank-
ing, and also the final bond value, using formulas similar to Eq. 6
and [7].

Summary and Conclusion
Recently we have witnessed rapid growth in the study of power-
law tail phenomena in economics and finance (1, 2, 4, 5, 9,
30–35). We model the power-law scaling properties of credit rat-
ing changes using a multivariant Simon model, which is an exten-
sion of the Simon model used in the theory of firm growth (36).
We perform 100,000 Monte Carlo time steps, and for each exist-
ing company, calculate the Z score. We set the time step to be 1 h,
define a working day to be eight working hours, and a working
year to be ≈250 working days. Hence 100,000 steps represent
≈50 y. We calculate the Z score after 90,000 time steps and after
92,000 steps, a timespan of ≈1 y. Then we calculate PðΔZÞ over
the year. For σ ¼ 0.006 in Fig. 7A, the tail is well fit by a power
law with exponent ≈2, as is found in the data. In Fig. 7B, using
numerical simulations, we calculate that the choice for σ in the
Gaussian distribution determines the spread of PðΔZÞ. It is the
rich get richer formalism that naturally leads to fat power-law
tails in the distribution of rating changes. Geometric Brownian
motion is needed to assure the spread in PðΔZÞ.

Lévy PDFs were first proposed in finance to describe the com-
modity and price changes. We find asymmetric Lévy PDFs, L, in
multiple credit ratios and changes of individual financial ratios,
ΔXi, related to credit rating changes and hence credit risk.
Although power-law exponents in ratios Xi are highly diversified,
surprisingly, ΔXi are all fit by the power laws of a Lévy stable
regime. Existence of the Lévy PDFs in financial ratios has an
important implication: It calls for the development of a statistical
approach based on infinite variances (37).
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