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The structure of low-energy collective states in proton-deficient N = 28 isotones is analyzed using structure
models based on the relativistic energy density functional DD-PC1. The relativistic Hartree-Bogoliubov model
for triaxial nuclei is used to calculate binding energy maps in the β-γ plane. The evolution of neutron and
proton single-particle levels with quadrupole deformation, and the occurrence of gaps around the Fermi surface,
provide a simple microscopic interpretation of the onset of deformation and shape coexistence. Starting from
self-consistent constrained energy surfaces calculated with the functional DD-PC1, a collective Hamiltonian
for quadrupole vibrations and rotations is employed in the analysis of excitation spectra and transition rates of
46Ar, 44S, and 42Si. The results are compared to available data, and previous studies based either on the mean-field
approach or large-scale shell-model calculations. The present study is particularly focused on 44S, for which data
have recently been reported that indicate pronounced shape coexistence.
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I. INTRODUCTION

Shapes of neutron-rich nuclei far from stability have ex-
tensively been explored in many experimental and theoretical
studies. The evolution of ground-state shapes in an isotopic
or isotonic chain, for instance, is governed by changes of
the underlying shell structure of single-nucleon orbitals. In
particular far from the β-stability line, the energy spacings
between single-nucleon levels change considerably with the
number of neutrons or protons. This can lead to reduced
spherical shell gaps, and in some cases spherical magic
numbers may partly or entirely disappear [1]. The reduction
of spherical shell closure often leads to the occurrence of
ground-states deformation and, in a number of cases, to the
coexistence of different shapes in a single nucleus.

In recent years a number of studies have been devoted to
the investigation of the fragility of the N = 28 magic number
in neutron-rich nuclei [2]. In β-stable nuclei the Z or N = 28
shell closure is the first magic number produced by the spin-
orbit part of the single-nucleon potential, which lowers the
f7/2 orbital with respect to the p3/2 and thus forms a spherical
shell gap at nucleon number 28. However, as a number of
experimental investigations have shown [3–13], in the proton-
deficient N = 28 isotones below 48Ca the spherical shell gap
is progressively reduced and the low-energy spectra of 46Ar,
44S, and 42Si display evidence of ground-state deformation and
shape coexistence.

Both large-scale shell model (SM) calculations [4–6,9–19]
and self-consistent mean-field (SCMF) models [5,6,20–26]
have been employed in the theoretical description of these phe-
nomena. The basic advantages of the SM approach include the
ability to simultaneously describe all spectroscopic properties
of low-lying states, the use of effective interactions that can be
related to microscopic internucleon forces, and the description
of collective properties in the laboratory frame. On the other

hand, since SM effective interactions depend on the choice
of active shells and truncation schemes, there is no universal
shell-model interaction that can be used for all nuclei.

A variety of structure phenomena, including regions of
exotic nuclei far from the line of β stability and close
to the nucleon drip lines, have been successfully described
with mean-field models based on the Gogny interaction, the
Skyrme energy functional, and the relativistic meson-exchange
effective Lagrangian [27–29]. The SCMF approach to nuclear
structure enables a description of the nuclear many-body
problem in terms of a universal energy density functional
(EDF). When extended to also take into account collective
correlations, this framework provides a detailed microscopic
description of structure phenomena associated with shell
evolution. Compared to the SM, the strong points of the
mean-field approach are the use of global functionals, the
treatment of arbitrarily heavy systems, model spaces that
include all occupied states (no distinction between core and
valence nucleons, no need for effective charges), and the
intuitive picture of intrinsic shapes.

A quantitative description of shell evolution, and in
particular the treatment of shape coexistence phenomena,
necessitates the inclusion of many-body correlations beyond
the mean-field approximation. The starting point is usually
a constrained Hartree-Fock plus BCS (HFBCS), or Hartree-
Fock-Bogoliubov (HFB) calculation of the binding energy
surface with the mass quadrupole components as constrained
quantities. In most studies calculations have been restricted
to axially symmetric, parity conserving configurations. The
erosion of spherical shell closures in nuclei far from stability
leads to deformed intrinsic states and, in some cases, mean-
field potential energy surfaces with almost degenerate prolate
and oblate minima. In order to describe nuclei with soft
potential energy surfaces and/or small energy differences be-
tween coexisting minima, it is necessary to explicitly consider
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correlation effects beyond the mean-field level. The rotational
energy correction, that is, the energy gained by the restoration
of rotational symmetry, is proportional to the quadrupole
deformation of the intrinsic state and can reach several
mega-electron volts (MeV) for a well deformed configuration.
Fluctuations of quadrupole deformation also contribute to the
correlation energy. Both types of correlations can be included
simultaneously by mixing angular momentum projected states
corresponding to different quadrupole moments. The most
effective approach for configuration mixing calculations is the
generator coordinate method (GCM), with multipole moments
used as coordinates that generate the intrinsic wave functions.

In recent years several accurate and efficient models,
based on microscopic energy density functionals, have been
developed that perform restoration of symmetries broken by
the static nuclear mean field, and take into account quadrupole
fluctuations. However, while GCM configuration mixing of
axially symmetric states has routinely been employed in
structure studies, the application of this method to triaxial
shapes presents a much more involved and technically difficult
problem. Only the most recent advances in parallel computing
and modeling have enabled the implementation of microscopic
models, based on triaxial symmetry-breaking intrinsic states
that are projected on particle number and angular momentum,
and finally mixed by the generator coordinate method [30–33].

In an approximation to the full GCM for five-dimensional
quadrupole dynamics, a collective Hamiltonian can be for-
mulated that restores rotational symmetry and accounts for
fluctuations around mean-field minima. The dynamics of
the five-dimensional Hamiltonian for quadrupole vibrational
and rotational degrees of freedom is governed by the seven
functions of the intrinsic deformations β and γ : the collective
potential, the three vibrational mass parameters, and three
moments of inertia for rotations around the principal axes.
These functions are determined by microscopic mean-field
calculations using a universal nuclear EDF. Starting from self-
consistent single-nucleon orbitals, the corresponding occupa-
tion probabilities and energies at each point on the constrained
energy surfaces, the mass parameters and the moments of
inertia are calculated as functions of the deformations β and
γ . The diagonalization of the resulting Hamiltonian yields
excitation energies and collective wave functions that can be
used to calculate various observables, such as electromagnetic
transition rates [34,35]. In this work we employ a recent
implementation of the collective Hamiltonian for quadrupole
degrees of freedom in a study of shape coexistence and
low-energy collective states in N = 28 isotones.

Both nonrelativistic and relativistic energy density func-
tionals have been used in SCMF studies of the erosion of the
N = 28 spherical shell gap. One of the advantages of using
relativistic functionals, particularly evident in the example
of N = 28 isotones, is the natural inclusion of the nucleon
spin degree of freedom, and the resulting nuclear spin-orbit
potential which emerges automatically with the empirical
strength in a covariant formulation. In the present analysis
we use the new relativistic functional DD-PC1 [36]. Starting
from microscopic nucleon self-energies in nuclear matter, and
empirical global properties of the nuclear matter equation of
state, the coupling parameters of DD-PC1 were fine-tuned to

the experimental masses of a set of 64 deformed nuclei in the
mass regions A ≈ 150–180 and A ≈ 230–250. The functional
has been further tested in calculations of medium-heavy
and heavy nuclei, including binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant multipole resonances. The present calculation
of N = 28 isotones, therefore, presents an extrapolation of
DD-PC1 to a region of nuclei very different from the mass
regions where the parameters of the functional were adjusted,
and thus a test of the global applicability of DD-PC1.

Section II includes a short review of the theoretical frame-
work: the relativistic Hartee-Bogoliubov model for triaxial
nuclei, and the corresponding collective Hamiltonian for
quadrupole degrees of freedom. The evolution of shapes in
the N = 28 isotones is analyzed in Sec. III: the quadrupole
constrained energy surfaces determined by DD-PC1, and
the resulting low-energy collective spectra, in comparison
to available data and previous SCMF and SM calculations.
Section IV summarizes the results and ends with an outlook
for future studies.

II. THEORETICAL FRAMEWORK

A. 3D relativistic Hartee-Bogoliubov model with a separable
pairing interaction

The relativistic Hartee-Bogoliubov model [28,29] provides
a unified description of particle-hole (ph) and particle-particle
(pp) correlations on a mean-field level by combining two
average potentials: the self-consistent mean field that encloses
long range ph correlations, and a pairing field �̂ which sums
up pp correlations. In the present analysis the mean-field
potential is determined by the relativistic density functional
DD-PC1 [36] in the ph channel, and a new separable pairing
interaction, recently introduced in Refs. [37,38], is used in the
pp channel.

In the RHB framework the mean-field state is described
by a generalized Slater determinant |�〉 that represents
the vacuum with respect to independent quasiparticles. The
quasiparticle operators are defined by the unitary Bogoliubov
transformation, and the corresponding Hartree-Bogoliubov
wave functions U and V are determined by the solution of
the RHB equation. In coordinate representation:(

hD − m − λ �

−�∗ −h∗
D + m + λ

)(
Uk(r)

Vk(r)

)
= Ek

(
Uk(r)

Vk(r)

)
.

(1)

In the relativistic case the self-consistent mean field corre-
sponds to the single-nucleon Dirac Hamiltonian ĥD , m is the
nucleon mass, and the chemical potential λ is determined
by the particle number subsidiary condition such that the
expectation value of the particle number operator in the ground
state equals the number of nucleons. The pairing field � reads

�ab(r, r ′) = 1

2

∑
c,d

Vabcd (r, r ′)κcd (r, r ′), (2)

where Vabcd (r, r ′) are the matrix elements of the two-body
pairing interaction, and the indices a, b, c, and d denote the
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quantum numbers that specify the Dirac indices of the spinor.
The column vectors denote the quasiparticle wave functions,
and Ek are the quasiparticle energies.

The single-particle density and the pairing tensor, con-
structed from the quasiparticle wave functions

ρcd (r, r ′) =
∑
k>0

V ∗
ck(r)Vdk(r ′), (3)

κcd (r, r ′) =
∑
k>0

U ∗
ck(r)Vdk(r ′), (4)

are calculated in the no-sea approximation (denoted by k > 0):
the summation runs over all quasiparticle states k with positive
quasiparticle energies Ek > 0, but omits states that originate
from the Dirac sea. The latter are characterized by quasiparticle
energies larger than the Dirac gap (≈1200 MeV).

In most applications of the RHB model the pairing part
of the Gogny force [39] was used in the particle-particle
(pp) channel. A basic advantage of the Gogny force is the
finite range, which automatically guarantees a proper cutoff
in momentum space. However, the resulting pairing field
is nonlocal and the solution of the corresponding Dirac-
Hartree-Bogoliubov integrodifferential equations can be time
consuming, especially for nuclei with nonaxial shapes. For that
reason a separable form of the pairing interaction was recently
introduced for RHB calculations in spherical and deformed
nuclei [37,38]. The interaction is separable in momentum
space: 〈k|V 1S0 |k′〉 = −Gp(k)p(k′) and, by assuming a simple
Gaussian ansatz p(k) = e−a2k2

, the two parameters G and a

were adjusted to reproduce the density dependence of the
gap at the Fermi surface in nuclear matter, calculated with a
Gogny force. For the D1S parametrization of the Gogny force
[39], the corresponding parameters of the separable pairing
interaction take the following values: G = −728 MeV fm3

and a = 0.644 fm. When transformed from momentum to
coordinate space, the force takes the form

V (r1, r2, r ′
1, r ′

2) = Gδ
(
R − R′)P (r)P (r ′) 1

2 (1 − P σ ), (5)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center-

of-mass and the relative coordinates, and P (r) is the Fourier
transform of p(k):

P (r) = 1

(4πa2)3/2
e−r 2/4a2

. (6)

The pairing interaction is of finite range and, because of the
presence of the factor δ(R − R′), it preserves translational
invariance. Even though δ(R − R′) implies that this force is not
completely separable in coordinate space, the corresponding
pp matrix elements can be represented as a sum of a finite
number of separable terms in the basis of a three-dimensional
(3D) harmonic oscillator. The interaction of Eq. (5) reproduces
pairing properties of spherical and axially deformed nuclei cal-
culated with the original Gogny force, but with the important
advantage that the computational cost is greatly reduced.

To describe nuclei with general quadrupole shapes, the
Dirac-Hartree-Bogoliubov equations (1) are solved by ex-
panding the nucleon spinors in the basis of a 3D harmonic
oscillator in Cartesian coordinates. In the present calculation
of N = 28 isotones complete convergence is obtained with

Nmax
f = 10 major oscillator shells. The map of the energy

surface as a function of the quadrupole deformation is
obtained by imposing constraints on the axial and triaxial
quadrupole moments. The method of quadratic constraint uses
an unrestricted variation of the function

〈Ĥ 〉 +
∑

μ=0,2

C2μ(〈Q̂2μ〉 − q2μ)2, (7)

where 〈Ĥ 〉 is the total energy and 〈Q̂2μ〉 denotes the expecta-
tion value of the mass quadrupole operators:

Q̂20 = 2z2 − x2 − y2 and Q̂22 = x2 − y2. (8)

q2μ is the constrained value of the multipole moment and C2μ

the corresponding stiffness constant [40].

B. Collective Hamiltonian in five dimensions

The self-consistent solutions of the constrained triaxial
RHB equations, that is, the single-quasiparticle energies and
wave functions for the entire energy surface as functions of
the quadrupole deformation, provide the microscopic input
for the parameters of a collective Hamiltonian for vibrational
and rotational degrees of freedom [34]. The five quadrupole
collective coordinates are parametrized in terms of the two
deformation parameters β and γ , and three Euler angles
(φ, θ, ψ) ≡ �, which define the orientation of the intrinsic
principal axes in the laboratory frame:

Ĥcoll = T̂vib + T̂rot + Vcoll, (9)

with the vibrational kinetic energy

T̂vib = − h̄2

2
√

wr

[
1

β4

(
∂

∂β

√
r

w
β4Bγγ

∂

∂β
− ∂

∂β

√
r

w
β3Bβγ

∂

∂γ

)

+ 1

β sin 3γ

(
− ∂

∂γ

√
r

w
sin 3γBβγ

∂

∂β

+ 1

β

∂

∂γ

√
r

w
sin 3γBββ

∂

∂γ

)]
(10)

and rotational kinetic energy

T̂rot = 1

2

3∑
k=1

Ĵ 2
k

Ik

. (11)

Vcoll is the collective potential. Ĵk denotes the components of
the angular momentum in the body-fixed frame of a nucleus,
and the mass parameters Bββ , Bβγ , Bγγ , as well as the moments
of inertia Ik depend on the quadrupole deformation variables
β and γ :

Ik = 4Bkβ
2 sin2(γ − 2kπ/3). (12)

Two additional quantities that appear in the expression for
the vibrational energy r = B1B2B3 and w = BββBγγ − B2

βγ

determine the volume element in the collective space.
The dynamics of the collective Hamiltonian is governed

by the seven functions of the intrinsic deformations β and γ :
the collective potential, the three mass parameters Bββ , Bβγ ,
Bγγ , and the three moments of inertia Ik . These functions
are determined by the microscopic nuclear energy density
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functional and the effective interaction in the pp channel.
The moments of inertia are calculated from the Inglis-Belyaev
formula:

Ik =
∑
i,j

|〈ij |Ĵk|�〉|2
Ei + Ej

k = 1, 2, 3, (13)

where k denotes the axis of rotation, the summation runs over
proton and neutron quasiparticle states |ij 〉 = β

†
i β

†
j |�〉, and

|�〉 represents the quasiparticle vacuum. The mass parameters
associated with the two quadrupole collective coordinates
q0 = 〈Q̂20〉 and q2 = 〈Q̂22〉 are calculated in the cranking
approximation:

Bμν(q0, q2) = h̄2

2

(
M−1

(1)M(3)M−1
(1)

)
μν

, (14)

where

M(n),μν(q0, q2) =
∑
i,j

|〈�|Q̂2μ|ij 〉〈ij |Q̂2ν |�〉|
(Ei + Ej )n

. (15)

Finally, the potential Vcoll in the collective Hamiltonian
Eq. (9) is obtained by subtracting the zero-point energy (ZPE)
corrections from the total energy that corresponds to the
solution of constrained RHB equations, at each point on the
triaxial deformation plane [34].

The Hamiltonian Eq. (9) describes quadrupole vibrations,
rotations, and the coupling of these collective modes. The
corresponding eigenvalue problem is solved using an expan-
sion of eigenfunctions in terms of a complete set of basis
functions that depend on the deformation variables β and γ ,
and the Euler angles φ, θ , and ψ [34]. The diagonalization of
the Hamiltonian yields the excitation energies and collective
wave functions:

�IM
α (β, γ,�) =

∑
K∈�I

ψI
αK (β, γ )�I

MK (�). (16)

The angular part corresponds to linear combinations of Wigner
functions

�I
MK (�) =

√
2I + 1

16π2(1 + δK0)

[
DI∗

MK (�) + (−1)IDI∗
M−K (�)

]
,

(17)

and the summation in Eq. (16) is over the allowed set of the K

values:

�I =
{

0, 2, . . . , I for I mod 2 = 0

2, 4, . . . , I − 1 for I mod 2 = 1.
(18)

Using the collective wave functions Eq. (16), various ob-
servables can be calculated and compared with experimental
results. For instance, the quadrupole E2 reduced transition
probability:

B(E2; αI → α′I ′) = 1

2I + 1
|〈α′I ′||M̂(E2)||αI 〉|2, (19)

where M̂(E2) is the electric quadrupole operator, local in the
collective deformation variables.

FIG. 1. (Color online) Self-consistent RHB triaxial quadrupole
constrained energy surfaces of N = 28 isotones in the β-γ plane
(0 � γ � 60◦). For each nucleus energies are normalized with respect
to the binding energy of the global minimum. The contours join points
on the surface with the same energy (in MeV).

III. EVOLUTION OF SHAPES IN THE N = 28 ISOTONES

A. Quadrupole binding energy maps

The 3D relativistic Hartree-Bogoliubov model, with the
functional DD-PC1 in the particle-hole channel and a separable
pairing force in the particle-particle channel, enables very
efficient constrained self-consistent triaxial calculations of
binding energy maps as functions of quadrupole deformation
in the β-γ plane. The resulting single-quasiparticle energies
and wave functions provide the microscopic input for the GCM
configuration mixing of angular-momentum projected triaxial
wave functions, or can be used to determine the parameters
of the collective Hamiltonian for vibrations and rotations: the
mass parameters, the moments of inertia, and the collective
potential. The solution of the corresponding eigenvalue prob-
lem yields the excitation spectra and collective wave functions
that are used in the calculation of electromagnetic transition
probabilities. This approach is here applied to the low-energy
quadrupole spectra of N = 28 isotones.

Figure 1 displays the self-consistent RHB triaxial
quadrupole constrained energy surfaces of N = 28 isotones
in the β-γ plane (0 � γ � 60◦), calculated using the DD-PC1
energy density functional, plus the separable pairing force
Eq. (5) in the particle-particle channel. For each nucleus
energies are normalized with respect to the binding energy
of the absolute minimum. The contours join points on the
surface with the same energy.

Starting from the spherical doubly magic 48Ca, we con-
sider the even-even N = 28 isotones obtained by successive
removals of proton pairs. The binding energy maps display a
rich variety of rapidly evolving shapes, and clearly demonstrate
the fragility of the N = 28 shell. By removing a pair of
protons from 48Ca, the energy surface of the corresponding
isotone 46Ar becomes soft both in β and γ , with a shallow
extended minimum along the oblate axis. Only four protons
away from the doubly magic 48Ca, DD-PC1 predicts a
coexistence of prolate and oblate minima at (β, γ ) = (0.34, 0◦)
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and (0.27, 60◦), respectively, in 44S. The two minima are
separated by a rather low barrier of less than 1 MeV and,
therefore, one expects to find pronounced mixing of prolate
and oblate configurations in the low-energy collective states
of this nucleus. For 42Si the binding energy displays a deep
oblate minimum at (β, γ ) = (0.35, 60◦), whereas a secondary,
prolate minimum is calculated ∼2.5 MeV higher. Finally, with
another proton pair removed, the very neutron-rich nucleus
40Mg shows a deep prolate minimum at (β, γ ) = (0.45, 0◦).

We note that similar binding energy surfaces were also
obtained in recent studies [41,42] based on the self-consistent
Hartree-Fock-Bogoliubov (HFB) model, using the finite-
range and density-dependent Gogny D1S interaction. On the
mean-field level the only qualitative difference is found for
40Mg. For this nucleus the present calculation predicts a
saddle point on the oblate axis, whereas a secondary local
oblate minimum is obtained in the HFB calculation with the
Gogny force.

The variation of mean-field shapes in an isotopic, or
isotonic, chain is governed by the evolution of the underlying
shell structure of single-nucleon orbitals. The formation of
deformed minima, in particular, can be related to the occur-
rence of gaps or regions of low single-particle level density
around the Fermi surface. In Figs. 2–5 we plot the neutron and
proton single-particle energy levels in the canonical basis for

FIG. 2. (Color online) Single-neutron and single-proton energy
levels of 46Ar as functions of the deformation parameters along closed
paths in the β-γ plane. Solid (black) curves correspond to levels with
positive parity, and (red) dashed curves denote levels with negative
parity. The dot-dashed (blue) curves corresponds to the Fermi levels.
The panels on the left and right display prolate (γ = 0◦) and oblate
(γ = 60◦) axially symmetric single-particle levels, respectively. In
the middle panel of each figure the neutron and proton levels are
plotted as functions of γ for a fixed value of the axial deformation
|β| at the approximate position of the mean-field minimum.

FIG. 3. (Color online) Same as described in the caption to Fig. 2
but for the nucleus 44S.

46Ar, 44S, 42Si, and 40Mg, respectively. Solid (black) curves
correspond to levels with positive parity, and (red) dashed
curves denote levels with negative parity. The dot-dashed
(blue) curves correspond to the Fermi levels. The neutron
and proton levels are plotted as functions of the deformation

FIG. 4. (Color online) Same as described in the caption to Fig. 2
but for the nucleus 42Si.
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FIG. 5. (Color online) Same as described in the caption to Fig. 2
but for the nucleus 40Mg.

parameters along closed paths in the β-γ plane. The panels on
the left and right display prolate (γ = 0◦) and oblate (γ = 60◦)
axially symmetric single-particle levels, respectively. In the
middle panel of each figure the neutron and proton levels
are plotted as functions of γ for a fixed value of the axial
deformation |β| at the approximate position of the mean-field
minima: |β| = 0.2 for 46Ar, |β| = 0.3 for 44S, and |β| = 0.4
for 42Si and 40Mg. In this way, starting from the spherical
configuration, we follow the single-nucleon levels on a path
along the prolate axis up to the approximate position of the
minimum (left panel), then for this fixed value of |β| the path
from γ = 0◦ to γ = 60◦ (middle panel) and, finally, back to
the spherical configuration along the oblate axis (right panel).
Negative values of β denote axial deformations with γ = 60◦,
that is, points along the oblate axis.

Figures 2–5 elucidate the principal characteristics of
structural changes in neutron-rich N = 28 nuclei: the near
degeneracy of the d3/2 and s1/2 proton orbitals, and the
reduction of the size of the N = 28 shell gap [2]. Between
the doubly magic 48Ca and 46Ar the spherical gap N = 28
decreases from 4.73 to 4.48 MeV (cf. Table I), in excellent
agreement with data: from 4.80 MeV in 48Ca to 4.47 MeV
in 46Ar [9,43]. Nevertheless, the gap between occupied and
unoccupied neutron levels in 46Ar is still largest at the spherical
configuration, as shown in the upper panel of Fig. 2. We note, in
particular, the agreement of the calculated energies of spherical
neutron states with experimental single-neutron energies [9].
For the proton states shown in the lower panel, the largest gap
is found at |β| = 0.2 and γ = 60◦, that is, on the oblate axis.
The competition between the spherical configuration favored
by neutron states and the oblate shape favored by proton states,
leads to the shallow extended oblate minimum shown in Fig. 1.

TABLE I. The DD-PC1 RHB theoretical neutron N = 28 spheri-
cal energy gaps, and the corresponding values of the axial deformation
for the minima of the quadrupole binding energy maps of 48Ca, 46Ar,
44S, 42Si, and 40Mg. Negative values of β denote oblate shapes.

�
sph
N=28 βmin

48Ca 4.73 0.00
46Ar 4.48 −0.19
44S 3.86 0.34
42Si 3.13 −0.35
40Mg 2.03 0.45

Two protons less, and the spherical N = 28 gap is reduced by
another 620 keV to 3.86 MeV in 44S. The largest gap between
neutron states is not the spherical one like in 46Ar, however, but
at the oblate deformation |β| ≈ 0.3 and γ = 60◦ (upper panel
of Fig. 3). The removal of two protons lowers the energy of the
corresponding Fermi level, and for 44S the largest gap is found
on the prolate axis (lower panel of Fig. 3). The formation of
the oblate neutron and prolate proton gaps is at the origin of
the coexistence of deformed shapes in 44S (cf. Fig. 1). In 42Si
both neutron and proton gaps are on the oblate axis resulting
in the pronounced oblate minimum at |β| ≈ 0.35. Finally, the
deep prolate minimum at β ≈ 0.35 in 40Mg arises because of
the neutron gap and, especially pronounced, proton gap on
the prolate axis. We note that the largest neutron gap for this
nucleus is still on the oblate side but, because the protons
strongly favor the prolate configuration, it produces only a
saddle point on the oblate axis, as shown in Fig. 1.

The erosion of the spherical N = 28 shell is also shown
in Table I, where we include the DD-PC1 RHB theoretical
neutron N = 28 spherical energy gaps, and the corresponding
values of the axial deformation for the minima of the
quadrupole binding energy maps of 48Ca, 46Ar, 44S, 42Si,
and 40Mg. Both experiment and theory point toward a strong
reduction of the N = 28 gap as more protons are removed
and, thus, the isotones become more neutron rich. N = 28
is the first “magic” number produced by the spin-orbit part
of the single-nucleon potential and, therefore, a relativistic
mean-field model automatically reproduces the N = 28 gap
because it naturally includes the spin-orbit interaction and the
correct isospin dependence of this term, as it was already
shown in the axial RHB calculation of neutron-rich N = 28
nuclei [22]. Experimentally, indirect evidence of the erosion
of the gap has been obtained by following the evolution of
excitation energies of the 2+

1 state and the E2 transitions
in N = 28 isotones and neighboring nuclei [3–5,9,13]. The
experimental results can be reproduced by both mean-field
[22,24] and shell model [18] calculations. As shown in Table I,
the DD-PC1 RHB calculation predicts a reduction of the
spherical N = 28 shell gap from 4.73 MeV in the doubly
magic nucleus 48Ca to 2.03 MeV in the well-deformed 40Mg.
We note that the theoretical values of the spherical shell gap
for 48Ca and 46Ar are very close to data: 4.80 MeV in 49Ca and
4.47 MeV in 47Ar, obtained by neutron stripping reactions
[9,43].
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FIG. 6. (Color online) The spectrum of 46Ar calculated with the
DD-PC1 relativistic density functional (left), compared to data [44]
(right) for the excitation energy of 2+

1 , and the reduced electric
quadrupole transition B(E2) (in units of e2 fm4). The prediction for
the electric monopole transition strength ρ2(E0; 0+

2 → 0+
1 ) is also

included in the theoretical spectrum.

B. Low-energy collective spectra

Starting from constrained self-consistent solutions of the
RHB equations, that is, using single-quasiparticle energies and
wave functions that correspond to each point on the energy
surfaces shown in Fig. 1, the parameters that determine the
collective Hamiltonian: the mass parameters Bββ , Bβγ , Bγγ ,
three moments of inertia Ik , as well as the zero-point energy
corrections, are calculated as functions of the quadrupole
deformations β and γ . The diagonalization of the resulting
Hamiltonian yields the excitation energies and reduced tran-
sition probabilities. In Figs. 6–8 we display the spectra of
46Ar, 44S, and 42Si calculated with the DD-PC1 relativistic
density functional plus the separable pairing force Eq. (5),
in comparison to available data for the excitation energies,
reduced electric quadrupole transition probabilities B(E2) (in
units of e2 fm4), and the electric monopole transition strength
ρ2(E0; 0+

2 → 0+
1 ). We emphasize that this calculation is

completely parameter-free, that is, by using the self-consistent
solutions of the RHB single-nucleon equations, physical
observables, such as transition probabilities and spectroscopic
quadrupole moments, are calculated in the full configuration
space and there is no need for effective charges. Using the
bare value of the proton charge in the electric quadrupole
operator, the transition probabilities between eigenstates of
the collective Hamiltonian can directly be compared to data.

Before considering the excitation spectra of individual
nuclei and, in particular, shape coexistence in 44S, in Fig. 9 we
illustrate the evolution with proton number of characteristic
collective observables: the excitation energy of the first 2+
state, the ratio E(4+

1 )/E(2+
1 ), and the reduced transition

probability B(E2; 2+
1 → 0+

1 ). The rapid decrease of the
ratio E(4+

1 )/E(2+
1 ) from ≈2.8 in 40Mg to ≈2.1 in 48Ca

is characteristic for a transition from a deformed rotational
nucleus to a spherical vibrator. Note, however, that even in

FIG. 7. (Color online) Same as described in the caption to Fig. 6
but for the nucleus 44S. The data are from Refs. [5,13].

the case of 40Mg the value of E(4+
1 )/E(2+

1 ) is considerably
below the rigid-rotor limit of 3.3. The excitation energy of
the first excited state 2+

1 can directly be compared to data.
The calculated E(2+

1 ) increases with proton number toward
the doubly magic 48Ca, but the predicted rise in energy is
not as sharp as in experiment. In fact, one expects that in
deformed nuclei, for example, 42Si, the calculated E(2+

1 )
is above the experimental excitation energy, because of the
well-known fact that the Inglis-Belyaev formula Eq. (13)
predicts effective moments of inertia that are smaller than
empirical values. The moments of inertia can generally be
improved by including the Thouless-Valatin (TV) dynamical
rearrangement contributions [41], but the calculation of the
TV moments of inertia [45] has not yet been implemented
in the collective Hamiltonian used in the present calculation.
The panel on the right of Fig. 9 displays the evolution with
proton number of another characteristic collective observable:
B(E2; 2+

1 → 0+
1 ) (in e2 fm4). The calculation reproduces the

empirical decrease of B(E2; 2+
1 → 0+

1 ) with proton num-
ber and, in particular, we notice the excellent agreement
between the parameter-free theoretical predictions and data
for 44S and 46Ar.

FIG. 8. (Color online) Same as described in the caption to Fig. 6
but for the nucleus 42Si. The data are from Ref. [11].
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LI, YAO, VRETENAR, NIKŠIĆ, CHEN, AND MENG PHYSICAL REVIEW C 84, 054304 (2011)

FIG. 9. (Color online) Evolution of the characteristic observables
E(2+

1 ) and B(E2; 2+
1 → 0+

1 ) (in e2 fm4) with proton number in N =
28 isotones. The ratio between the excitation energies of the first 4+

and 2+ states is also displayed in the inset. The microscopic values
calculated with the energy density functional DD-PC1 are shown in
comparison with available data.

Figure 6 displays the low-energy spectrum of 46Ar. The
excitation energy E(2+

1 ) is calculated considerably above the
experimental state, whereas the B(E2; 2+

1 → 0+
1 ) reproduces

the experimental value. In the present analysis we particularly
focus on 44S, for which data that indicate shape coexistence
were reported recently [13]. Already the data on the low
energy of the first 2+ state and the enhanced B(E2; 2+

1 → 0+
1 )

of 63(18) e2 fm4 [5] pointed towards a possible deformation
of the ground state of 44S. More recently, the structure of
this nucleus was studied by using delayed γ and electron
spectroscopy, and new data were reported for the reduced tran-
sition probability B(E2; 2+

1 → 0+
2 ) = 8.4(26) e2 fm4, and the

monopole strength ρ2(E0; 0+
2 → 0+

1 ) = 8.7(7) × 10−3 [13].
From a comparison to shell model calculations, a prolate-
spherical shape coexistence was inferred, and a two-level
mixing model was used to extract a weak mixing between
the two configurations. The spectrum of 44S calculated in
this work is compared to available data in Fig. 7. The model
nicely reproduces both the excitation energy and the reduced
transition probability B(E2; 2+

1 → 0+
1 ) for the first excited

state 2+
1 , and the theoretical value for B(E2; 0+

2 → 2+
1 ) is

also in good agreement with data. The experimental ratio
B(E2; 2+

1 → 0+
1 )/B(E2; 2+

1 → 0+
2 ) is 7.5, and the calculated

value is 5.2. The excitation energy of the state 0+
2 , however,

is calculated much higher than the experimental counterpart.
Together with the fact that the calculated monopole transition
strength ρ2(E0; 0+

2 → 0+
1 )(×103) = 23 is larger than the cor-

responding experimental value of 8.7(7), this result indicates
that there is more mixing between the theoretical states 0+

1 and
0+

2 than what can be inferred from the data.
The low-lying 0+

2 state with the excitation energy
1.365 MeV, the rather weak interband transition probabil-
ity B(E2; 2+

1 → 0+
2 ) = 8.4(26) e2 fm4, and the monopole

strength ρ2(E0; 0+
2 → 0+

1 ) = 8.7(7) × 10−3 have been re-
garded as fingerprints of shape coexistence in 44S [13]. One
reason for the more pronounced mixing between the calculated
0+

1 and 0+
2 in this work and, consequently, the higher excitation

energy of 0+
2 , could be the particular choice of the energy den-

sity functional and/or the treatment of pairing correlations [46].
The predicted barrier between the prolate and oblate minima
(cf. Fig. 1) could, in fact, be too low. Another reason for the
high excitation energy of 0+

2 could be the approximation used
in the calculation of mass parameters (vibrational inertial func-
tions). In the current version of the model the mass parameters
are determined by using the cranking approximation Eqs. (14)
and (15), in which the time-odd components (the so-called
Thouless-Valatin dynamical rearrangement contributions) are
omitted. Recently an efficient microscopic derivation of the
five-dimensional quadrupole collective Hamiltonian has been
developed, based on the adiabatic self-consistent collective
coordinate method [47]. In this model the moments of inertia
and mass parameters are determined from local normal modes
built on constrained Hartree-Fock-Bogoliubov states, and the
TV dynamical rearrangement contributions are treated self-
consistently. For the illustrative case of 68Se, it has been shown
that the self-consistent inclusion of the time-odd components
of the mean field can lead to an increase of the mass parameters
by 30%–200%, depending on the deformation. In fact, in the
present calculation an enhancement of the cranking masses
by a factor ∼2 brings the calculated excitation energies, and
also the monopole strength ρ2(E0; 0+

2 → 0+
1 ), in very close

agreement with the experimental spectrum.
In Table II we compare the experimental excitation energies

of the states 2+
1 , 0+

2 , and 2+
2 , the reduced transition proba-

bilities B(E2; 2+
1 → 0+

1 ) (e2 fm4), B(E2; 2+
1 → 0+

2 ), and the
monopole strength ρ2(E0; 0+

2 → 0+
1 ) × 103 in 44S, to the

results of the present work, the five-dimensional GCM(GOA)

TABLE II. Excitation energies (in MeV) of the states 2+
1 , 0+

2 , and 2+
2 , B(E2; 2+

1 → 0+
1 ) (e2 fm4), B(E2; 2+

1 → 0+
2 ), and the monopole

strength ρ2(E0; 0+
2 → 0+

1 ) × 103 in 44S. The experimental values [6,13] are compared to the results of the present work, the five-dimensional
GCM(GOA) calculation with the Gogny D1S interaction [42], the angular-momentum projected GCM calculation restricted to axial shapes
(AMPGCM) with the Gogny D1S interaction [25], and to shell-model calculations [13].

Experiment This work GCM(GOA) [42] AMPGCM [25] Shell model [13]

E(2+
1 ) 1.329(1) 1.491 1.267 1.410 1.172

E(0+
2 ) 1.365(1) 2.852 3.611 1.070 1.137

E(2+
2 ) 2.335(39) 2.851 2.557 1.830 2.140

B(E2; 2+
1 → 0+

1 ) 63(18) 72 105 75 75
B(E2; 2+

1 → 0+
2 ) 8.4(2.6) 14 6.3 – 19

ρ2(E0; 0+
2 → 0+

1 )(×103) 8.7(7) 23 5.4 – –
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calculation with the Gogny D1S interaction [42], the angular-
momentum projected GCM calculation restricted to axial
shapes (AMP GCM) with the Gogny D1S interaction [25],
and to shell-model calculations [13]. One might notice that all
three models based on constrained self-consistent mean-field
calculations of the binding energy maps (curves in the case
of axially symmetric AMP GCM), reproduce the data with
similar accuracy. It is interesting that only the axially sym-
metric calculation reproduces the very low excitation energy
of the state 0+

2 , whereas the result of the five-dimensional
GCM(GOA) calculation, although it was also based on the
Gogny D1S interaction, is even above the energy obtained
with DD-PC1. Table II shows that the best overall agreement
with data is obtained in the shell-model (SM) calculation of
Ref. [13], using the effective interaction SDPF-U [18] for
0h̄ω SM calculations in the sd-pf valence space, and with
a particular choice of the proton and neutron effective charges.

Based on the data included in Table II and on the SM
calculation with the SDPF-U effective interaction, in Ref. [13]
it was deduced that 44S exhibits a shape coexistence between
a prolate ground state (β ≈ 0.25) and a rather spherical
0+

2 state. The sequence of ground-state band states 0+
1 , 2+

1 ,
4+

2 , and 6+
2 is connected by strong E2 transitions, and the

excited states are characterized by the intrinsic quadrupole
moment Q0 ≈ 60 e fm2. This sequence was interpreted as a
rotational band of an axially deformed prolate shape with
β ≈ 0.25. The calculated 2+

2 state has a smaller quadrupole
moment Q0 = −0.3 e fm2, compatible with a spherical shape,
and is connected by a strong E2 transition to the 0+

2 state.
These SM results, therefore, indicate a prolate-spherical shape
coexistence in 44S [13].

To analyze configuration mixing in the low-energy spec-
trum based on the functional DD-PC1, in Fig. 10 we plot the
probability density distributions for the three lowest states of
the ground-state band: 0+

1 , 2+
1 , and 4+

1 , the state 0+
2 , and the

two states 2+
2 and 2+

3 . For a given collective state Eq. (16), the
probability density distribution in the (β, γ ) plane is defined
by

ρIα(β, γ ) =
∑

K∈�I

∣∣ψI
αK (β, γ )

∣∣2
β3, (20)

with the normalization:∫ ∞

0
βdβ

∫ 2π

0
ρIα(β, γ ) | sin 3γ |dγ = 1. (21)

The probability distribution of the ground state 0+
1 indicates a

deformation |β| � 0.3, extended in the γ direction from the
prolate configuration at γ = 0 to the oblate configuration at
γ = 60◦. The average deformation is (〈β〉, 〈γ 〉) = (0.32, 26◦),
and the γ softness reflects the ground-state mixing of con-
figurations based on the prolate and oblate minima of the
potential (cf. Fig. 1). With the increase of angular momentum
in the ground-state band (e.g. 2+

1 , 4+
1 , etc.), the states are

progressively concentrated on the prolate axis. For instance,
(〈β〉, 〈γ 〉) = (0.35, 23◦) for 2+

1 . The average β deformation
in the ground-state band gradually increases because of
centrifugal stretching. Again we note that the empirical value
B(E2; 2+

1 → 0+
2 ) is accurately reproduced by the present

calculation using just the bare proton charge. In contrast to

the SM prediction [13], the state 0+
2 is predominantly prolate,

although one notices a relatively large overlap between the
wave functions of the states 0+

1 and 0+
2 . The mixing between

these states is probably one of the reasons for the high
excitation energy of the second 0+ state, as predicted by the
present calculation (cf. Fig. 7). The probability distribution of
the state 2+

3 is concentrated on the prolate axis, and this state
is connected by a strong transition to 0+

2 : B(E2; 2+
3 → 0+

2 ) =
66 e2 fm4, comparable to B(E2; 2+

1 → 0+
1 ). We note, however,

that for the “coexisting” band based on 0+
2 the calculated ratio

E(4+)/E(2+) is only 2.33.
The calculated second 2+ state displays a probability

distribution extended in the γ direction and peaked on the
oblate axis. As shown in Fig. 7 and Table II, this state is
very close to the experimental candidate for the 2+

2 state,
which was suggested to be at 2335(39) keV by placing the
988 keV transition [6] on top of the 0+

2 or 2+
1 state [13].

The theoretical 2+
2 state can be interpreted as the (quasi)-γ

bandhead according to the strong E2 transitions to the states 3+
1

and 4+
2 . For the three lowest 2+ states, in Table III we include

the percentage of the K = 0 and K = 2 components in the
corresponding collective wave functions Eq. (16) (K denotes
the projection of the angular momentum on the intrinsic 3
axis), as well as the spectroscopic quadrupole moments. The
wave functions of the states 2+

1 and 2+
3 are dominated by K = 0

components, and the spectroscopic quadrupole moments are
negative (prolate configurations) with comparable magnitudes.
The positive quadrupole moment of 2+

2 points to a predominant
oblate configuration, and the ≈80% contribution of the K = 2
component in the wave function confirms that this state is the
bandhead of a (quasi) γ band (note the formation of the doublet
3+

1 and 4+
2 ).

Finally, Fig. 8 shows the low-energy collective spectrum
of 42Si. Even though the excitation spectrum and transition
pattern appear to be similar to that of 44S, with the exception
of a considerably weaker E2 transition 0+

2 → 2+
1 (cf. Fig. 7),

the ground-state band of this nucleus is in fact based on the
oblate minimum shown in the binding energy map of Fig. 1.
This is nicely illustrated in Fig. 11 where, just like in the
case of 44S in Fig. 10, we plot the probability distributions
of the collective wave functions 0+

1 , 2+
1 , and 4+

1 , the state
0+

2 , and the two states 2+
2 and 2+

3 . The wave functions of
the yrast states 0+

1 , 2+
1 , and 4+

1 are concentrated along the
oblate axis. The state 0+

2 is strongly prolate deformed, with
a peak in the probability distribution at β ≈ 0.5. This state
has a much smaller overlap with 2+

1 than in the case of

TABLE III. Percentage of the K = 0 and K = 2 components
(projection of the angular momentum on the body-fixed symmetry
axis) for the collective wave functions of the three lowest 2+ states
in 44S, and the corresponding spectroscopic quadrupole moments (in
e fm2).

K = 0 K = 2 Qspec

2+
1 88.4 11.6 −10.9

2+
2 21.5 78.5 7.8

2+
3 80.0 20.0 −9.6
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FIG. 10. (Color online) Probability distribution Eq. (20) in the β-γ plane for the lowest collective states of 44S, predicted by DD-PC1
energy density functional.

44S, and this explains the correspondingly weaker transition.
For 42Si, therefore, the solution of the collective Hamiltonian
based on the DD-PC1 functional, predicts a coexistence of
the oblate yrast band and the prolate sequence built on the
strongly deformed state 0+

2 . As already shown in Fig. 9, the
present calculation does not reproduce the exceptionally low
excitation energy of the state 2+

1 : 770(19) keV [11]. It is
interesting, however, that the calculated excitation energy of
this state is very close to the SM prediction obtained using the
SDPF-NR effective interaction [11]. Only by removing from
the SDPF-NR a schematic pairing Hamiltonian in the pf shell,
that is, by using the new effective interaction SDPF-U [18], the
2+ excitation energies of the silicon isotopes can be brought
in agreement with experiment.

IV. SUMMARY

Structure phenomena related to the evolution of single-
nucleon levels and shells in neutron-rich nuclei present a very
active area of experimental and theoretical research. Among
the microscopic models that can be used for a theoretical
analysis of these phenomena, the framework of nuclear energy
density functionals (EDFs) presently provides a complete and
accurate description of ground-state properties and collective
excitations across the entire chart of nuclides. In this work we
have used the recently introduced relativistic EDF DD-PC1
[36] to study the erosion of the N = 28 spherical shell in
neutron-rich nuclei and the related phenomenon of shape
evolution and shape coexistence in the N = 28 isotones 46Ar,
44S, 42Si, and 40Mg. Pairing correlations have been taken
into account by employing an interaction that is separable
in momentum space, and is completely determined by two

parameters adjusted to reproduce the empirical bell-shaped
pairing gap in symmetric nuclear matter [38].

The N = 28 shell closure is the first neutron magic number
produced by the spin-orbit part of the single-nucleon potential
and, therefore, a relativistic mean-field model automatically
reproduces the N = 28 spherical gap because it naturally
includes the spin-orbit interaction and the correct isospin
dependence of this term, as it was shown more than ten
years ago in the axial RHB calculation of neutron-rich N = 28
nuclei [22]. In particular, in the RMF approach there is no need
for a tensor interaction to reproduce the isospin dependence
(quenching) of the spherical N = 28 gap in neutron-rich
nuclei, as also shown in the present work in Table I, compared
to available data.

The functional DD-PC1 was adjusted exclusively to the
experimental masses of a set of 64 deformed nuclei in the
mass regions A ≈ 150–180 and A ≈ 230–250. The present
study of the N = 28 isotones thus presents an extrapolation
of DD-PC1 to a completely different region of the nuclide
chart, and a further test of the universality of nuclear EDFs.
It is not at all obvious that such an extrapolation will produce
results in agreement with experiment, especially in a detailed
comparison with spectroscopic data. The fact that it does is
remarkable, and justifies the approach to nuclear structure
based on universal energy density functionals.

Starting from self-consistent binding energy maps in the
β-γ plane, calculated in the relativistic Hartree-Bogoliubov
(RHB) model based on the functional DD-PC1, a recent
implementation of the collective Hamiltonian for quadrupole
vibrations and rotations has been used to calculate the excita-
tion spectra and transition rates of 46Ar, 44S, 42Si, and 40Mg.
The parameters that determine the collective Hamiltonian: the
vibrational inertial functions, the moments of inertia, and the
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FIG. 11. (Color online) Same as described in the caption to Fig. 10 but for the nucleus 42Si.

zero-point energy corrections, are calculated using the single-
quasiparticle energy and wave functions that correspond to
each point on the self-consistent RHB binding energy surface
of a given nucleus. The diagonalization of the collective
Hamiltonian yields the excitation energies and wave functions
used to calculate various observables.

The calculation performed in this work has shown that the
relativistic functional DD-PC1 provides an accurate micro-
scopic interpretation of the strong reduction of the N = 28
spherical energy gap in neutron-rich nuclei, and a quantitative
description of the evolution of shapes in N = 28 isotones in
terms of single-nucleon orbitals as functions of the quadrupole
deformation parameters β and γ . In particular, the predicted
values for the spherical shell gap in 48Ca (4.73 MeV) and in
46Ar (4.48 MeV), are very close to the data: 4.80 MeV in
49Ca and 4.47 MeV in 47Ar. The solutions of the collective
Hamiltonian based on DD-PC1 reproduce the evolution with
proton number of characteristic collective observables the
excitation energy of the first 2+ state, the ratio E(4+

1 )/E(2+
1 ),

and the reduced transition probability B(E2; 2+
1 → 0+

1 ). In
the present work we have focused on 44S, for which recent
data point toward a coexistence of shapes with different
deformations in the low-energy excitation spectrum. It has
been shown that the formation of the oblate neutron and
prolate proton gaps, illustrated in Fig. 3, is at the origin
of the predicted coexistence of deformed shapes in 44S.
The spectroscopic results have been compared to available
data, to triaxial (collective Hamiltonian) and axial (generator
coordinate method) calculations based on the Gogny D1S
HFB self-consistent mean-field energy maps, and to recent
shell-model (SM) calculations using the new SDPF-U effective
interaction. The present results are in qualitative agreement
with previous calculations based on the Gogny D1S HFB
model and, in particular, reproduce the data on both the

excitation energy of the first excited state 2+
1 and the reduced

transition probability B(E2; 2+
1 → 0+

1 ), and the theoretical
value for B(E2; 0+

2 → 2+
1 ) is also in good agreement with data.

The experimental ratio B(E2; 2+
1 → 0+

1 )/B(E2; 2+
1 → 0+

2 ) is
7.5, and the calculated value is 5.2. The theoretical monopole
transition strength ρ2(E0; 0+

2 → 0+
1 )(×103) = 23 is somewhat

larger than the corresponding experimental value of 8.7(7). The
calculation of transition rates in the collective Hamiltonian
model is completely parameter-free. One might notice that
the results predicted by the functional DD-PC1 have been
compared to those obtained using effective interactions that
were fine-tuned to data that include also this mass region,
or adjusted exclusively to data in this region of the mass
table (shell-model interactions). The fact that a global density
functional can even compete in a spectroscopic calculation
with shell-model interactions specifically customized to this
mass region, and the level of agreement with experiment,
presents a valuable result.

A discrepancy with respect to experiment in 44S is the
high excitation energy predicted for the state 0+

2 , a factor of
2 compared to data. It appears that the model predicts too
much mixing between the two lowest 0+ states, and this leads
to an enhancement of the corresponding monopole transition
strength. The pronounced mixing between the calculated 0+

1
and 0+

2 states, and the resulting repulsion, could be at the
origin of the high excitation energy of 0+

2 . The most obvious
reason is that this is an intrinsic prediction of the functional
DD-PC1. To check this one would have to perform calculations
using different functionals [48]. However, since also the Gogny
D1S + 5DCH model yields a similar result, the functional
itself probably is not the main problem. A more probable
reason is that the mass parameters calculated in the cranking
approximation are simply too small, as discussed in Sec. III B.
Finally, the excited 0+ state could also have pronounced
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non-collective components that are not included in our
model space (2-quasiparticle contributions). This is certainly
a possibility, and it would partially explain why the calculated
B(E2) to the first 2+ state is larger than the experimental
value. The shell-model calculation of Ref. [13] predicts the
excitation energy of 0+

2 in better agreement with experiment,
but the calculated B(E2) for the transition from the first 2+
state is more than a factor 2 larger than the experimental value
(only about 50% larger in the present calculation). Therefore, it
appears that the structure of the second 0+ state in 44S remains
an open problem.

This present analysis of low-energy spectra of N = 28 iso-
tones has clearly demonstrated the advantages of using EDFs
in the description of deformed nuclei: an intuitive mean-field
interpretation in terms of coexisting intrinsic shapes and the
evolution of single-particle states, spectroscopic calculations
performed in the full model space of occupied states, and the
universality of EDFs that enables their applications to nuclei in

different mass regions, including short-lived systems far from
stability.

ACKNOWLEDGMENTS

This work was supported in part by the Major State
973 Program 2007CB815000, the NSFC under Grant Nos.
10975008, 10947013, 11105110, and 11105111, the South-
west University Initial Research Foundation Grant to Doctor
(Nos. SWU110039 and SWU109011), the Fundamental Re-
search Funds for the Central Universities (XDJK2010B007
and XDJK2011B002) and the the MZOS project 1191005-
1010. The work of J.M, T.N., and D.V. was supported
in part by the Chinese-Croatian project “Nuclear struc-
ture and astrophysical applications.” T.N. and Z. P. Li ac-
knowledge support by the Croatian National Foundation for
Science.

[1] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602
(2008).

[2] O. Sorlin, Nucl. Phys. A 834, 400c (2010).
[3] O. Sorlin et al., Phys. Rev. C 47, 2941 (1993).
[4] H. Scheit et al., Phys. Rev. Lett. 77, 3967 (1996).
[5] T. Glasmacher et al., Phys. Lett. B 395, 163 (1997).
[6] D. Sohler et al., Phys. Rev. C 66, 054302 (2002).
[7] A. Gade et al., Phys. Rev. C 71, 051301(R) (2005).
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