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We consider dc-electronic transport through a nanowire suspended between normal- and spin-polarized

metal leads in the presence of an external magnetic field. We show that magnetomotive coupling between

the electrical current through the nanowire and vibrations of the wire may result in self-excitation of

mechanical vibrations. The self-excitation mechanism is based on correlations between the occupancy of

the quantized electronic energy levels inside the nanowire and the velocity of the nanowire. We derive

conditions for the occurrence of the instability and find stable regimes of mechanical oscillations.

DOI: 10.1103/PhysRevLett.107.236802 PACS numbers: 73.63.�b, 73.23.Hk, 75.76.+j, 85.85.+j

The magnetomotive coupling of electronic and mechani-
cal degrees of freedom induced by an external magnetic
field has formany years been a standard tool for implement-
ing electromechanical functionality on the micrometer and
nanometer scales [1,2]. Magnetomotive coupling relies on
the electron charge in the sense that an electrical current of
charged electrons induces a Lorentz force on the current
carrying conductor, while the motion of the conductor itself
induces an electromotive force on the charged electrons.
However, the electron spin is an additional degree of free-
dom that may influence electron transport and thus poten-
tially affect the electromechanics of a device. In particular,
it is well known that Zeeman splitting of electronic energy
levels affects the current flow in tunnel structures since the
electron tunneling rates become spin dependent [3–10].
Furthermore, as sample sizes are reduced to the nanoscale,
mesoscopic phenomena such as Coulomb blockade of tun-
neling [11] and quantization of electronic energy levels start
[12] to significantly affect electron transport, leading to a
pronounced nonlinear current-voltage characteristics
(CVC) [13–15]. In this Letter we demonstrate that the
interplay between spintronics and nanomechanics induced
by such mesoscopic effects gives rise to a fundamentally
new set of phenomena. In particular, we show below that
this interplay may result in self-excitation of mechanical
vibrations of a suspended nanowire subjected to an external
magnetic field and a dc voltage bias.

To be specific we consider the system sketched in
Fig. 1(a), which shows a single-wall carbon nanotube
(CNT) suspended between a normal- and a magnetic metal
lead. An external magnetic fieldH is applied perpendicular
to the nanotube and parallel to the magnetization direction
in the magnetic lead. We restrict the nanotube mechanical
degrees of freedom to the fundamental bending mode and
model it as a classical harmonic oscillator with frequency

!. The time evolution of the amplitude of the fundamental
bending mode uð�Þ is given by the equation

€uð�Þ þ!

Q
_uð�Þ þ!2uð�Þ ¼ =ð�Þ;

=ð�Þ ¼ �m�1Trð@uHe�ð�ÞÞ;
(1)

where Q is the quality factor characterizing the dissipative
processes induced by the coupling to heat baths in the
leads, m is the mass of the oscillator, � is the density
matrix of the electronic subsystem described by the
Hamiltonian He, defined as

FIG. 1. (a) A carbon nanotube (CNT) subject to an external
magnetic field H, suspended between normal (n) and magnetic
(m) metal leads biased by voltages �Vb. (b) Electronic energy
scheme for the junction:� is the chemical potential, "";# are spin-
split levels in the CNT, "ðnÞk and "ðmÞ

k� are electron energy bands in

the leads (k is the wave vector, � is spin).
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k;�

ayk�d�

þ tme
�iðeVb��uð�ÞpL�Þ=@

X
k;�

cyk�d� þ H:c:

(2)

Here ayk� and cyk� are creation operators for electrons in the

normal- and spin-polarized metal leads, respectively, dy� is
the creation operator for electrons in the nanotube, while
the index � ¼" , # labels the electronic spin.

The HamiltonianHl in Eq. (2) describes the two leads as
reservoirs of noninteracting electrons, while the expression
for Hd describes the electronic properties of the nanotube
considered as a quantum dot, with its second term repre-
senting the Coulomb interaction between two electrons
with different spin projections. The spacing between elec-
tronic levels inside the nanotube is assumed to be large
enough with respect to the symmetrically applied bias
voltage 2Vb for only a single pair of Zeeman-split electron
energy levels, "";# ¼ �0 ��BH=2, to be relevant for elec-

tronic transport (if H ¼ 0 the energy level �0 is spin
degenerate; �B is the Bohr magneton).

The Hamiltonian Ht in Eq. (2) describes electron tun-
neling between the nanotube and the leads in terms of the
tunneling amplitudes tn and tm between the nanotube and
the normal and magnetic lead, respectively. The phases of
the tunneling amplitudes depend on the nanotube deflec-
tion [16], the parameter pL ¼ �eHL=c gives the nanotube
momentum change induced by the Lorentz force when an
electron tunnels from the nanotube to a lead, and �� 1 is a
numerical factor determined by the spacial profile of the
fundamental mode.

The density matrix � obeys the Liouville–von Neumann
equation. Introducing the interaction representation,

�ð�Þ ¼ e�iH0�=@ ~�ð�ÞeiH0�=@; H0 ¼ Hl þHd, and exploit-
ing the reduced density matrix ansatz [17] ~�ð�Þ ¼
�dð�Þ�l one gets the following equations for �d and the
force term, =, in Eq. (1):

=ð�Þ¼� 1

i@m
Tr

�Z �

�1
d�0½@u ~Htð�Þ; ~Htð�0Þ��dð�0Þ�l

�
;

_�dð�Þ¼� 1

@
2
Trl

�Z �

�1
d�0½ ~Htð�Þ;½ ~Htð�0Þ;�dð�0Þ�l��

�
:

(3)

Here ~Htð�Þ ¼ eiH0�=@Htð�Þe�iH0�=@ and �dð�Þ ¼ Trlf~�g,
where Trl denotes a trace over all electronic states in the

leads, while �l ¼ e�ðHl��NÞ=kBT=Trlfe�ðHl��NÞ=kBTg, � is
the chemical potential, and N is the electron number
operator in the leads.

The two equations (3) describe the coupled dynamics of
the electronic and mechanical subsystems. To demonstrate

the interplay between spintronics and nanomechanics we
analyze them for the case when the bias voltage is applied
in such a way that the normal lead serves as a source (S)
electrode while the magnetic lead acts as a drain (D) [see
Fig. 1(b)].
Two additional conditions are assumed to be satisfied:

first, thatU � eVb � ~"� � "� �� � kBT, which means
that the charge transfer from the drain electrode to the
nanotube is exponentially suppressed, while the strong
electron-electron interaction inside the nanotube imposes

the Coulomb blockade constraint Trðdy" dy# d"d#�dÞ ¼ 0.

Second, that !��SðDÞ, kBT=@. Here ��
SðDÞ ¼2�@�1

t2nðmÞ�
�
nðmÞ, and the electronic density of states ��

nðmÞ are

assumed to be independent of energy for both leads and

also independent of spin in the source lead, so that �"
n ¼ �#

n

and hence �S ¼ �";#
S .

In the case of a low mechanical oscillator frequency one
can use a quasistatic approximation to solve Eqs. (1)–(3).
Neglecting the time dependence of �d and using the ap-
proximation uð�Þ � uð�0Þ ’ _uð�Þð�� �0Þ one finds that

=ð�Þ ¼ �HL

m
JðVb � �HL _uÞ; (4)

JðVÞ ¼ e�S�
#
D

�S þ �#
D þ �S expfðeV � ~""Þ=kBTg

: (5)

To arrive at Eq. (5) we assumed the magnetic lead to be

fully spin polarized, so that �"
m ¼ 0 [13–15]. To assume

partial polarization would be more realistic, but not im-
portant for our conclusions, as will be discussed below.
The physical interpretation of this result is obvious: the

force acting on the nanotube is the Lorentz force induced
by the quasistationary current JðVÞ, while the effective
voltage V is composed of the bias voltage Vb and the
electromotive force �HL _u that is induced by the motion
of the nanowire in the external magnetic field. Linearizing
Eq. (1) with = given by Eq. (4) one finds that the electro-
motive coupling induces an effective damping or pumping
of mechanical vibrations in accordance with the sign of
the differential conductance J0 ¼ dJ=dV. In the case of
pumping, which corresponds to J0 < 0, one can expect an
electromechanical instability resulting in self-excited os-
cillations of the nanowire if Q is large enough and the
instability parameter 	 is positive, i.e., if

	 � ��2H2L2

m
J0ðVbÞ �!

Q
> 0: (6)

It is obvious from Eq. (5) that the differential conductance
J0ðVÞ is negative for voltages such that jV � ~""=ej &
kBT=e. Even if the magnetic lead is less than 100%
polarized, as assumed in (5), J0ðVÞ would still be negative
in the same voltage interval [13–15]. Therefore, the neces-
sary condition J0ðVÞ< 0 for an instability to occur does not
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require 100% polarization. Nevertheless, for the sake of
clarity, we assume this to be the case in what follows.

The mechanism of the instability is most transparent
when eVb ¼ ~"", as in Fig. 1(b), and �BH � kBT. Under
such conditions electrons that jump from the S lead to the
spin-up level in the nanotube can only jump back, since
they can not reach any spin-up state in the D lead. Such
processes lead to random changes of the nanotube momen-
tum by �pL, which results in a diffusive motion in its
phase space. However, an electron that tunnels to the spin-
down level under the same circumstances can only proceed
by tunneling to the D-lead. This is because there are no
empty states in the S-lead at accessible energies. Tunneling
through the spin-down channel changes the net nanotube
momentum by pL and hence its mechanical energy by
pL _uð�Þ. Therefore, correlations between the probability
for tunneling through the spin-down level and the direction
of the nanotube motion can give rise to either damping or
pumping of its mechanical vibrations. Precisely such cor-
relations appear due to the Coulomb blockade of tunneling
to the spin-down level when the spin-up level is occupied.
Indeed, the population of the spin-up level increases when
the nanotube moves in such a direction that the electromo-
tive force shifts the ‘‘effective’’ chemical potential, �eff ¼
�� �HL _u, up. A shift in this direction means that elec-
tron tunneling to the spin-down level is decreased due to
the Coulomb blockade. When the nanotube moves in the
opposite direction the situation is reversed and the proba-
bility for electrons to tunnel to the spin-down level is
enhanced. This means that, on the average, momentum
transfer to the nanotube is more probable if the nanowire
moves in this particular direction. In short, the spin-up
level in the nanotube serves as an effective gate, which—
depending on the direction in which the nanotube moves—
increases or decreases the probability for electron
tunneling from the source- to the drain electrode via the
spin-down level, the only available channel in our case.
The described correlations between the tunneling pro-
cesses and the nanotube velocity lead to a ‘‘pumping’’ of
energy into the mechanical subsystem. If the rate of pump-
ing is larger than the rate of dissipation (due to damping),
the result is a mechanical instability.

To analyze how the instability described above evolves
we impose the ansatz uðtÞ ¼ u0 þ AðtÞ cosð!tÞ. Here u0 is
the stationary shift of the nanowire position induced by the
average Lorentz force and AðtÞ is the amplitude of the
harmonic oscillations, which by assumption is slowly vary-
ing, so that _A � !A. Inserting this ansatz into Eq. (1),
using Eqs. (4) and (5), and averaging over the fast oscil-
lations one gets an equation for the amplitude of the form

_A ¼ ��ðAÞ;
�ðAÞ ¼ !A

2Q
þ �HL

m!

Z �

��

d


2�
JðVb þ �HL!A sin
Þ sin
:

(7)

The first term in this expression for �ðAÞ describes the
damping of mechanical oscillations due to a coupling to
the thermal environment, while the second term describes
the pumping generated by the electronic current. If the
condition (6) is satisfied, pumping dominates over damp-
ing at small vibration amplitudes A and hence the ampli-
tude increases with time according to Eq. (7). However,
as can be inferred from Eq. (5), at large amplitudes
A � kBT=eHL! the pumping term in Eq. (7) saturates

at �ðHL=m!ÞJ0, where J0 � e�#
D is the characteristic

current through the system. Accordingly, the damping
and pumping terms cancel each other at a finite amplitude
Ast � ðQHL=m!2ÞJ0.
The exact value of the amplitude of stationary oscilla-

tions can be obtained by solving the equation �ðAstÞ ¼ 0.
A numerical analysis of the function �ðAÞ shows that,
depending on the bias voltage, the onset of stationary
nanowire oscillations in an increasing magnetic field can
be either soft (Ast increases continuously from zero) or
hard (Ast jumps to a finite value), see Fig. 2. In order to
investigate this situation analytically we assume the insta-
bility parameter to be small, j	ðVb;HÞj � 1, and expand
�ðAÞ in a Taylor series. Keeping terms up to the third order
in A one finds

�ðAÞ � �A

2

�
	� ð�HLÞ4!2

8m
J000ðVbÞA2

�
: (8)

(a) Soft excitation of nanowire oscillations, Fig. 2(a).—It is
readily seen from Eq. (8) that the onset of nanowire
oscillations is soft in the interval V	

1 < Vb < V	
2 , where

J000ðVbÞ> 0 [here V	
1;2 are the points of inflection of the

negative differential resistance curve J0ðVÞ]; for
	ðVb;HÞ> 0 the nonmoving state of the wire is unstable

and stationary oscillations with amplitude Að1Þ
st / ffiffiffiffiffiffiffiffiffiffiffiffiffi

	=J000
p

appear spontaneously, smoothly increasing in amplitude
with increasing values of 	ðVb;HÞ (that is with
increasing H).

FIG. 2. Behavior of the function �ðAÞ defined in Eq. (7) for
different magnetic fields leading to (a) soft excitation of nano-
wire oscillations at �V � Vb � ð�0 ��Þ=e ¼ 0:34 mV and
(b) hard excitation at �V ¼ 0:41 mV. Other parameter values
are T ¼ 0:2 K, Q ¼ 3
 104, �#

D=�S ¼ 0:4, !=�S ¼ 0:2
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(b) Hard excitation of nanowire oscillations,
Fig. 2(b).—With bias voltages Vb for which J000ðVbÞ< 0
(i.e., Vb < V	

1 , Vb > V	
2 ), the instability develops in a

qualitatively different way. There are now two bifurcation

points:Hð1Þ
c ðVbÞ, at which the curve�ðA;HÞ ‘‘touches’’ the

A axis from above [see Fig. 2(b)] and Hð2Þ
c ðVbÞ>Hð1Þ

c ðVbÞ
at which 	ðHð2Þ

c ðVbÞÞ ¼ 0. As long as H <Hð1Þ
c ðVbÞ the

nonmoving state of the nanowire is stable, as shown in

Fig. 3. However, in the interval Hð1Þ
c ðVbÞ<H <Hð2Þ

c ðVbÞ
the system is bistable since here both the nonmoving
state (A ¼ 0) and nanowire vibrations of a finite amplitude
Ast � ðQHL=m!2ÞJ0 (see above) are stable. When

H >Hð2Þ
c ðVbÞ the nonmoving state is unstable and vibra-

tions with a finite amplitude is the only stable stationary
state of the nanowire.

The existence of a region of magnetic fields and bias
voltages for which the system is bistable with respect to the
vibration amplitude results in a hysteretic behavior of the
averaged current �J ¼ R

JðVb þ �HL!A sin
Þd
=2�
under a change of magnetic field or bias voltage.

Figure 3 shows that the width of the hysteresis loop is
�0:1 mV with respect to the bias voltage and �1 T with
respect to the magnetic field, while its height is �J0.
In conclusion, we have considered the mechanical prop-

erties of a nanowire suspended between two metal leads,
one nonmagnetic and one magnetic. We have shown that
interplay betweenCoulombblockade of tunneling and spin-
dependent single-electron tunneling gives rise to a funda-
mentally new response to a magnetomotive coupling of the
electrical current through the nanowire and mechanical
oscillations of the nanowire. In particular, we have demon-
strated that in the presence of an external static magnetic
field, mechanical vibrations of a dc voltage-biased nano-
wire can be self-excited. In contrast to the resonant excita-
tion of nanowire oscillations that may be induced by an
electrical or magnetic ac signal, the amplitude of these self-
excited stationary vibrations is not limited by any resonant
condition and, as a result, they can be large. In a realistic
experimental situation with a CNT resonator of length
L� 1 �m, vibration frequency !� 2�
 200 MHz, and
quality factor Q� 104 carrying a characteristic current
J0 � 1 nA, the vibration amplitude is Ast � 10 nm at
T � 0:1 K in a magnetic field of �10 T. In principle,
oscillations with such an amplitude could be directly moni-
tored by clever imaging techniques [18]. We have also
demonstrated that the onset and disappearance of these
mechanical vibrations are manifest in a pronounced hyste-
retic behavior of the averaged electrical current through the
structure. This hysteresis also facilitates detection of the
self-excited nanowire vibrations in an experiment. In gen-
eral, spin accumulation at the nanowire-magnetic lead
contact may also result in an instability or hysteretic behav-
ior of the current-voltage characteristic due to the spin
transfer torque effect [19]. However, this requires [20]
current densities �10 �A=ðnmÞ2, which are orders of
magnitude higher than those considered here.
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