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We report transverse momentum (pT � 15 GeV=c) spectra of ��, K�, p, �p, K0
S, and �

0 at midrapidity

in pþ p and Auþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. Perturbative QCD calculations are consistent

with �� spectra in pþ p collisions but do not reproduce K and pð �pÞ spectra. The observed decreasing

antiparticle-to-particle ratios with increasing pT provide experimental evidence for varying quark

and gluon jet contributions to high-pT hadron yields. The relative hadron abundances in Auþ Au at
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pT * 8 GeV=c are measured to be similar to the pþ p results, despite the expected Casimir effect for

parton energy loss.

DOI: 10.1103/PhysRevLett.108.072302 PACS numbers: 25.75.Dw, 13.85.Ni

Quarks and gluons are the fundamental particles carry-
ing color charge and participating in the strong interaction.
High-energy partons are produced through hard processes
in hadron-hadron collisions and, like all particles carrying
color or electric charges, lose energy while traversing the
hot and dense medium created in heavy ion collisions [1,2].
In all model calculations, the amount of parton energy loss
is proportional to the color-charge Casimir factor (the
relative coupling strength of gluon radiation from quarks
or from gluons), and strongly depends on the medium
traversed and on the parton mass [1,3,4]. This energy
loss suppresses hadron spectra at high pT in heavy ion
collisions, an effect referred to as jet quenching and quan-
tified by the nuclear modification factors (RAA, the ratio of
heavy ion collision spectra to pþ p collision spectra
scaled by the number of underlying binary nucleon-
nucleon inelastic collisions) [1,5,6].

The study of identified hadron spectra at high pT in pþ
p collisions also provides quantitative constraints on
model calculations based on perturbative quantum chro-
modynamics (pQCD) [7]. In next-to-leading order (NLO)
pQCD calculations, inclusive production of single hadrons
is described by the convolution of parton distribution
functions (PDFs), parton-parton interaction cross sections,
and fragmentation functions (FFs). Specifically, the FFs
[8–10] were primarily derived from elementary electron-
positron collisions. The NLO pQCD framework has been
verified with calculations successfully describing the spec-
tra of inclusive charged hadrons, �0, and jets [5,6,11] at
RHIC. However, the flavor-separated quark and gluon FFs
are not well constrained, especially for baryon production.
To understand further the mechanisms of particle produc-
tion in pþ p collisions and parton interactions with the
medium in heavy ion collisions, it is necessary to provide
more stringent constraints on the quark and gluon FFs by
comparing theoretical calculations with experimental data
in the same kinematics in pþ p collisions.

Measurements sensitive to the flavor of the initial hard
scattered parton will provide further constraints and in-
sights into the jet quenching mechanism [1,3,4,12–17]. An
open question is whether the interaction of the hard partons
with the medium alters the relative abundances of the
identified-particle spectra (jet chemistry). Two examples
of these interactions with the medium are enhanced parton
splitting [12] and flavor changes of the initial parton (jet
conversion) [13]. These processes are expected to modify
the high-pT identified-particle ratios in heavy ion versus
pþ p collisions. The centrality dependence of antiproton
and pion spectra in Auþ Au collisions indicates that the
suppression magnitude for antiprotons is similar to that for

pions [14]. This is unexpected since antiproton production
is dominated by gluon fragmentation, while pions have a
comparable contribution from both gluon and quark jets
[8]. The Casimir factor for gluons is 9=4 times that for
quarks, which is expected to induce larger energy loss
when gluons traverse the medium [4]. Naively, this would
result in more suppressed antiproton spectra compared to
pion spectra. A jet conversion mechanism, where a parton
can change flavor or color charge after interaction with a
medium, has been proposed whose calculations show a net
quark to gluon jet conversion in this medium [15]. This
leads to a better agreement with experimental data [15,16].
It is also predicted that the suppression pattern of kaons
would differ significantly from that of pions due to the
notable difference in relative abundance of strange quarks
produced in jets versus the statistical expectations in a hot
and dense medium [13]. Experimental measurements of
identified hadrons at high pT in pþ p collisions are re-
quired to more accurately determine the pþ p reference
and to provide further constraints to the FFs. Together with
the Auþ Au measurements, it will help to understand the
parton interactions with the medium.
In this Letter, we report ��, K�, pð �pÞ, K0

S, and �0 pT

spectra at midrapidity (jyj< 0.5) up to 15 GeV=c in pþ p
collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The hadron spectra and

particle ratios in pþ p collisions are compared to NLO
pQCD calculations with various FFs. In addition, spectra
of K� þ pð �pÞ (measured by h� � ��), K0

S, and �0 in the

12% most central Auþ Au collisions are presented. RAA

are presented for K� þ pð �pÞ, K0
S, �

þ þ ��, and �0.

A total of 21� 106 12% most central Auþ Au colli-
sions used in this analysis were taken in 2004 at STAR
[18]. The central trigger was based on an on-line cut of
energy deposited in the zero-degree calorimeters. The pþ
p data used for this analysis were taken in 2005.
Experimental study of identified hadrons at high pT in pþ
p collisions was made possible by two technical advances:
(1) using the STAR barrel electromagnetic calorimeter
(BEMC) [19] as a trigger device for charged hadrons in
pþ p collisions; and (2) improving the calibration and
understanding of the ionization energy loss (dE=dx) of
charged particles in the relativistic rise region in the time
projection chamber (TPC) [20]. The minimum bias pþ p
collision events were identified by the coincidence of two
beam-beam counters [5]. On-line triggers, which utilized a
minimum bias trigger and the energy deposited in either a
single BEMC tower (high tower trigger, HT) or in a con-
tiguous ����� ¼ 1� 1 rad region (jet patch trigger,
JP) of the BEMC, were used for the pþ p collisions.
A total of 5:6� 106 JP events with transverse energy
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ET > 6:4 GeV were used for ��, K�, and pð �pÞ analyses.
To reduce trigger biases, only away-side particles (at azi-
muthal angles 90�–270� from the JP trigger) were used in
the analysis. Another 5:1� 106 events with ET > 2:5 GeV
(HT1), and 3:4� 106 events with ET > 3:6 GeV (HT2)
were used for K0

S ! �þ�� and �0 ! �þ�� reconstruc-

tion by requiring that one of the daughter pions trigger the
high tower. The trigger enhancement factor in the range of
10–1000 [21] and bias have been determined by embed-
ding PYTHIA events in the STAR geometry and selecting
events that pass various detector thresholds present in real
events. Consistencies of spectra from minimum bias data
sets and between charged and neutral hadrons in the over-
lapping pT range were utilized to check the trigger
corrections.

The dE=dx measured in the TPC was used to identify
��, K�, and pð �pÞ at 3< pT < 15 GeV=c at midrapidity
[14,22,23]. The pion, kaon, and proton yields were ex-
tracted from a three-Gaussian fit to the inclusive positively
or negatively charged particle dE=dx distributions at a
given momentum. The recalibrated dE=dx in the TPC
[21] enabled us to measure high-pT kaons. K0

S ! �þ þ
�� decays were identified through the V0 topology [24].
The �0 ! �þ þ �� yields were obtained using cocktail
methods, after like-sign �þ�þ and ���� pair invariant
mass distribution backgrounds were subtracted from
unlike-sign �þ�� pair distributions [25]. For the line
shape of �0 ! �þ þ ��, the procedure and formula in
[25] were used with the �0 mass at 775 MeV and Breit-
Wigner width 155 MeV [26]. The possible �0 particle [27]
(mass at � 600 MeV and Breit-Wigner width scanning
from 100 to 500 MeV) was included in the cocktail fit as
part of the systematic study on effect of other contributions
on �0 yields. This results in �20% systematic error in �0

yields and improves the �2 per degree of freedom
(�2=NDF) up to a factor of 3 to be around unity. The fit
with best �2=NDF was used to obtain the default �0

yields, where the �0=�0 ratio is about 25% independent
of pT . An additional systematic check was performed
using the modified Soeding parametrization for a possible
interference effect [28] on �0 line shape. This results in
larger �2=NDF and �0 yields are within the stated system-
atic uncertainty.

Acceptance and efficiency corrections were studied by
Monte Carlo GEANT simulations. Weak-decay feed-down
contributions (e.g., K0

S ! �þ þ ��) are subtracted from

the pion spectra [14]. Inclusive p and �p production are
presented, without hyperon feed-down subtraction [14]. In
central Auþ Au collisions, systematic errors for K0

S yields

are 4%–10% [29], and those for �0 yields are 32%, domi-
nated by signal reconstructions (20%) and cocktail fits
(20%). The systematic errors from low to high pT for
��, K�, p, and �p in pþ p collisions include uncertainties
in efficiency ( � 5%), dE=dx position and width (5%–
70%), momentum distortion due to charge buildup in the

TPC volume (0%–12%), the smearing of the measured
spectra due to momentum resolution (0%–7%), and trigger
correction factors (40%–10%). Systematic uncertainties
for K0

S and �
0 yields in pþ p collisions include uncertain-

ties in trigger enhancement factors and biases (< 20%),
momentum resolution (1%–20%), efficiency (5%), and
cocktail fits of �0 yields (20%). The normalization uncer-
tainties on the invariant yields and cross sections are 8%
and 14% in pþ p collisions, respectively. The cancella-
tion of the correlated systematic errors is taken into
account for the particle ratios.
The invariant yields d2N=ð2�pTdpTdyÞ of ��, K�, K0

S,

�0, p, and �p from pþ p collisions, and those ofK þ pð �pÞ,
K0

S, and �0 in central Auþ Au collisions are shown in

Fig. 1. In pþ p collisions, our measurements are consis-
tent with those from minimum bias collisions within sys-
tematic errors in the overlapping pT region [23]. The K�
and K0

S yields are consistent within statistical and system-

atic uncertainties, which verifies that the JP trigger condi-
tion for the K� measurement was correctly accounted for
in the simulation. Also shown in Fig. 1 are the NLO
calculations for ��, K�, p, and �p spectra based on AKK
[9] and DSS [10] FFs. Both calculations are consistent with
the charged pion spectra in pþ p collisions, but deviate
from the kaon and proton spectra.
In Fig. 2, particle ratios are shown as star symbols as a

function of pT from pþ p collisions. Our results are
consistent with minimum bias results [23] in the overlap-
ping pT region and are extended to pT � 15 GeV=c. We
show for the first time that at this collision energy, ��=�þ,
�p=p, and K�=Kþ ratios decrease with increasing pT in
pþ p collisions at midrapidity. This indicates relatively

4 6 8 10 12 14

]
−2 )c

 [
(G

eV
/

dy
)

T
dp

T
p

π2
N

/(
2

d

−1410

−1110

−810

−510

−210
+π

0.1×S
0K

0.1×+K
0.001×p
10×0ρ

 AKK 2008+
 AKK 2008−
 DSS+
 DSS−

p+p

4 6 8 10 12 14

−π
0.1×−

K
0.001×p

0ρ
S
0K

p++K
p+−

K

p+p

Au+Au central

)c (GeV/
T

p

FIG. 1 (color online). The invariant yields d2N=ð2�pTdpTdyÞ
of ��, K�, K0

S, �
0, p, and �p from nonsingly diffractive pþ p

collisions (�NSD ¼ 30:0� 3:5 mb [5]), those of K þ pð �pÞ, K0
S,

and �0 in central Auþ Au collisions, and NLO calculations with
AKK [9] and DSS [10] FFs. The uncertainty of yields due to the
scale dependence as evaluated in [10] is about a factor of 2. Bars
and boxes (bands) represent statistical and systematic uncertain-
ties, respectively.
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larger valence quark contributions to �þ, Kþ, and p at
high pT than to their respective antiparticles. The NLO
pQCD calculations with DSS and AKK FFs are consistent
with the ��=�þ ratio but deviate from most of the other
ratios measured. In the past, flavor-separated quark and
gluon FFs were usually poorly determined for particles
carrying a high fraction of the parton energy. Our mea-
surements in pþ p collisions provide necessary con-
straints on the FFs in these ranges, which is crucial for
the jet quenching studies at RHIC. Also shown in Fig. 2 are
the p=�þ and �p=�� ratios in central Auþ Au collisions
with central values same as in [14] and updated uncertain-
ties at high pT . For pT > 6 GeV=c, the errors of p=�þ and
�p=�� in [14] were dominated by the systematic uncer-
tainty from the dE=dx calibration, while the uncertainties
from the kaon contamination were estimated to be insig-
nificant withK�=Kþ ¼ 0:94 andK=� ratio in the range of
0.16 to 0.20. Although our current measurement of K=�
ratio does not rule out this range of 0.16 to 0.20, we
reevaluate the uncertainties in kaon contamination with
the new measurements from pþ p collisions and update
its error propagation to the p=�þ and �p=�� ratios in
central Auþ Au collisions, shown in Fig. 2.

The nuclear modification factors RAA and double ratios
of RAA are shown in Fig. 3 for K� þ pð �pÞ, K0

S, �
0, and ��.

Instead of using the individually extracted K and pð �pÞ
yields [14] in the RAA, we obtain the combined K� þ
pð �pÞ yield with smaller systematic uncertainties by sub-
tracting the charged pion yields from the inclusive hadron
yields. At pT * 8 GeV=c, a common suppression pattern

is observed for the different mesons (K0
S, �

�, and �0),

despite the differences in quark flavor composition and
mass. We also observe that K� þ �p shows a magnitude
of suppression similar to that ofKþ þ p, despite the differ-
ent contributions from gluon and quark jets and any
Casimir factor effects on jet energy loss. A model for jet
conversion in the hot and dense medium overpredicts the
K0

S enhancement at high pT [13], as shown in Fig. 3.

It is worthwhile to highlight two important inputs to the
jet conversion model calculation shown in Fig. 3: the kaon
spectrum in pþ p collisions with the specific FF used in
the model does not match our measurement, and the origi-
nal RAAðK0

SÞ in the absence of jet conversion was assumed

to be equal to RAAð��Þ [13].
Enhanced parton splitting can also significantly change

the jet hadron chemical composition [12]. In this model,
heavier hadrons at high pT become more abundant relative
to the case without the enhanced parton splitting mecha-
nism. Naively, the heavier �0 meson is expected to be
less suppressed than the ��;0 and � [30] since all of
them originate from the same parton fragmentation with
similar constituent quark content. However, our measure-
ments indicate that the �0 and �� suppressions are
similar in central Auþ Au collisions. In addition, possible
in-medium hadronization in the deconfined matter can lead
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to less suppression for protons than for kaons and pions at
8<pT < 20 GeV=c [31]. A comprehensive comparison
requires quantitative modeling and calculations incorpo-
rating 3D hydrodynamics in an expanding medium [3,32]
and proper light flavor-separated quark and gluon FFs.
Since the protons are only a small part of the inclusive
charged hadrons in pþ p collisions, we note that a factor
of 2 enhancement of RAAðpþ �pÞ relative to RAAð��Þ leads
to a 20% enhancement of RAA½K� þ pð �pÞ� compared to
RAAð��Þ. This 20% enhancement falls within the range of
our systematic uncertainties [23]. Improved identified-
particle measurements in Auþ Au collisions are needed
to tighten constraints on phenomenological models related
to jet quenching.

In summary, we report identified-particle pT spectra at
midrapidity up to 15 GeV=c from pþ p and Auþ Au
collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The NLO pQCD models

describe the �� spectra but fail to reproduce the K and
pð �pÞ spectra at high pT . The measured antiparticle to
particle ratios are observed to decrease with increasing
pT . This reflects differences in scattering contributions to
the production of particles and antiparticles at RHIC. At
pT * 8 GeV=c, a common suppression pattern is observed
for different particle species. Incorporating our pþ p data
in generating the flavor-separated FFs in the same kine-
matic range will provide new inputs and insights into the
mechanisms of jet quenching in heavy ion collisions.
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