
Role of momentum transfer in the quenching of
Gamow-Teller strength

Marketin, Tomislav; Martinez-Pinedo, Gabriel; Paar, Nils; Vretenar, Dario

Source / Izvornik: Physical Review C - Nuclear Physics, 2012, 85

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevC.85.054313

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:477630

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-03

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevC.85.054313
https://urn.nsk.hr/urn:nbn:hr:217:477630
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7288
https://dabar.srce.hr/islandora/object/pmf:7288


PHYSICAL REVIEW C 85, 054313 (2012)

Role of momentum transfer in the quenching of Gamow-Teller strength

T. Marketin
Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany and

Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

G. Martı́nez-Pinedo
Institut für Kernphysik, Technische Universität Darmstadt, D-64289 Darmstadt, Germany and

GSI Helmholtzzentrum für Schwerionenforschung, Planckstraße 1, D-64291 Darmstadt, Germany

N. Paar and D. Vretenar
Physics Department, Faculty of Science, University of Zagreb, 10000 Zagreb, Croatia

(Received 16 March 2012; published 17 May 2012)

Background: Differential cross sections for the (p,n) and (n,p) reactions on 90Zr over the interval of 0–50-MeV
excitation energy were used to determine the corresponding Gamow-Teller (GT) strengths, and the resulting
quenching factor is ≈0.9 with respect to the Ikeda sum rule. In this procedure the contribution of the isovector
spin monopole (IVSM) strength was subtracted from the total strength without taking into account the interference
between the GT and the IVSM modes.
Purpose: To determine the quantitative effect of the IVSM excitation mode on the L = 0 strength in charge-
exchange reactions on several closed-shell nuclei and the Sn isotopic chain.
Method: The fully consistent relativistic Hartree-Bogoliubov model plus proton-neutron relativistic quasiparticle
random-phase approximation (pn-RQRPA) are employed in the calculation of transition strength in the β− and
β+ channels.
Results: The inclusion of the higher-order terms, that include the effect of finite momentum transfer, in the
transition operator shifts a portion of the strength to the high-energy region above the GT resonance. The total
strength is slightly enhanced in nuclei with small neutron-to-proton ratios but remains unchanged with increasing
neutron excess.
Conclusions: Terms that include momentum transfer in the transition operator act mostly to shift the strength to
high excitation energies but hardly affect the total strength. Based on the strength obtained using the full L = 0
transition operator in the pn-RQRPA calculation, we have estimated the impact of the IVSM on the strength
measured in the charge-exchange reactions on 90Zr and found that the data are consistent with the Ikeda sum
rule.
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I. INTRODUCTION

Collective spin and isospin excitations in atomic nuclei have
been the subject of many experimental and theoretical studies
(for an extensive review see Ref. [1]). Of particular interest
is the Gamow-Teller (GT) resonance, a collective oscillation
of neutrons that coherently change the direction of their spins
and isospins without changing their orbital motion. A detailed
knowledge of the GT strength distribution is essential for the
understanding of nuclear beta decay and weak processes in
stars [2]. It was first predicted in 1963 [3] and observed in (p,n)
reactions a decade later [4]. Further measurements identified a
problem that is still actively discussed, and that is the quench-
ing of the Gamow-Teller strength. In numerous experiments
across the whole nuclear chart only around 60% of the strength
predicted by the model-independent Ikeda sum rule had been
observed [1,5]. These experiments, however, were only able
to measure the strength up to the excitation energy of the giant
resonance. A consistent analysis of (p,n) and (n,p) reaction
data from 90Zr over a much wider range of excitation energies
concluded that the GT strength is actually quenched by
approximately 10% [6,7]. Theoretical models systematically

overestimate the transition strength compared to the measured
values [8]. This effect was attributed to two possible processes:
(i) coupling of the GT mode to �-isobar nucleon-hole (� − h)
configurations and (ii) second-order configuration mixing. It
has been shown that the former process is responsible for only
a small fraction of the quenching [9,10], leaving the latter as
the major mechanism for shifting the GT strength to higher
energies [11–13].

The spin-isospin operator structure of the (p,n) probe
is similar to that of the Gamow-Teller (GT) operator [9].
However, they become comparable only if the GT cross
section is measured at very small momentum transfer q. In the
(p,n) reaction this condition can be met only for zero degree
scattering, small excitation energies, and high bombarding
energies. Extraction of the L = 0 strength at high excitation
energies, where higher-multipole response dominates, is very
difficult [14,15]. Nevertheless, recent experiments reported
data on the Gamow-Teller response in 90Zr, in both β− [6] and
β+ channels [7], up to 50-MeV excitation energies. Therefore,
in the total strength, contributions from higher-order terms in
the expansion in q appear, the first of which is the isovector
spin monopole (IVSM) mode. This mode, with the transition
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MARKETIN, MARTÍNEZ-PINEDO, PAAR, AND VRETENAR PHYSICAL REVIEW C 85, 054313 (2012)

operator r2σ τ , represents a collective excitation of the nucleus
with quantum numbers Jπ = 1+, L = 0, S = 1, and T =
1. Even though the first observation of the isovector spin
monopole mode was reported in 1983 [16], a quantitative
analysis and determination of the strength remain difficult
[17–19]. The unknown IVSM strength also introduces uncer-
tainties in the measurement of the Gamow-Teller strength. To
obtain precise quantitative data on the total GT strength, and
indirectly on the quenching, the contribution of the isovector
spin monopole mode and of higher-order terms in momentum
transfer must be subtracted from the measured strength.
Although interference occurs between the GT and IVSM
modes, these contributions are usually subtracted incoherently
from the spectrum because the distribution of GT strength in
the IVSM resonance region is unknown [7]. Related to new
measurements of nuclear response in unstable nuclei [20], the
correct treatment of effects that influence the extraction of the
Gamow-Teller strength is all the more important.

Not much theoretical work has been reported on the
IVSM strength so far. Isovector spin excitations with angular
momentum L = 0, 1, and 2 have been studied in Ref. [21]
employing the Skyrme SIII Hartree-Fock (HF) model and
the random-phase approximation (RPA) with a schematic
residual p-h interaction. The Skyrme functionals SGII and
SIII were used in a self-consistent HF plus Tamm-Dancoff
approximation study that focused only on the IVSM mode
in 48Ca, 90Zr, and 208Pb [22]. In both cases the IVSM
mode was identified at excitation energies between 20 and
60 MeV with respect to the ground-state energy of the parent
nucleus. A non-energy-weighted sum rule was devised that
involves particle numbers and radii [21], and the calculated
strengths were shown to be consistent with values obtained
from ground-state densities. The effect of the isovector spin
monopole mode and higher-order terms in momentum transfer
on the quenching of GT strength has not been investigated so
far.

In this study we explore the IVSM mode of excitation
within a self-consistent microscopic theory and analyze the
effect of momentum transfer on spin-isospin excitations. The
relativistic Hartree-Bogoliubov (RHB) model plus proton-
neutron relativistic quasiparticle random-phase approximation
(pn-RQRPA) are employed for the calculation of the IVSM
strength. This framework, based on the covariant energy
density-functional theory, is a charge-exchange extension of
the relativistic quasiparticle RPA formulated in the canonical
basis of the RHB model [23]. The RHB model plus pn-RQRPA
have already been successfully applied to the analysis of
the Fermi and the Gamow-Teller responses [24], β-decay
half-lives [25,26], neutrino-nucleus cross sections [27], total
muon capture rates [28], and electron capture rates [29].

The IVSM strength is calculated for the closed-shell nuclei
48Ca, 90Zr, and 208Pb. The isovector spin monopole operator
is also considered in the context of an expansion of the
transition operator with respect to the momentum transfer
in the reaction. The impact of the momentum transfer on
the total L = 0 strength and its distribution is examined in
the Sn isotopic chain between A = 100 and 150. Section II
introduces the formalism, and Sec. III presents the results and

discussion. Section IV contains a short summary and conclud-
ing remarks.

II. THEORETICAL FORMALISM

The relativistic quasiparticle random-phase approximation
(RQRPA) was formulated in the canonical single-nucleon
basis of the RHB model in Ref. [23] and extended to the
description of charge-exchange excitations (pn-RQRPA) in
Ref. [24]. The RHB plus RQRPA model is fully self-consistent:
in the particle-hole channel, effective Lagrangians with
density-dependent meson-nucleon couplings are employed,
and pairing correlations are described by the pairing part
of the finite range Gogny interaction [30]. In both the ph

and pp channels the same interactions are used in the RHB
equations that determine the canonical quasiparticle basis
and in the matrix equations of the RQRPA. This is very
important because the energy weighted sum rules are fulfilled
only if the pairing interaction is consistently included both
in the static RHB and in the dynamical RQRPA calculation. In
the present work all calculations are performed using one of the
most accurate meson-exchange density-dependent relativistic
mean-field interactions in the ph channel: DD-ME2 [31].

Transitions between the 0+ ground state of a spherical
even-even parent nucleus and the Jπ excited state of the
corresponding odd-odd daughter nucleus are induced by
a charge-exchange operator T JM . Taking into account the
rotational invariance of the nuclear system, the quasiparticle
pairs are coupled to good angular momentum and the matrix
equations of the pn-RQRPA read(

AJ BJ

B
∗J A

∗J

) (
XλJ

Y λJ

)
= Eλ

(
1 0

0 −1

) (
XλJ

Y λJ

)
. (1)

The matrices A and B are defined in the canonical basis [32]:

AJ
pn,p′n′ = H 11

pp′δnn′ + H 11
nn′δpp′ + (upvnup′vn′ + vpunvp′un′)

×V
phJ

pn′np′ + (upunup′un′ + vpvnvp′vn′ )V ppJ

pnp′n′ ,

BJ
pn,p′n′ = (−1)jp′−jn′ +J (upvnvp′un′ + vpunup′vn′ )V phJ

pp′nn′

− (upunvp′vn′ + vpvnup′un′ )V ppJ

pnp′n′ . (2)

Here p, p′ and n, n′ denote proton and neutron quasipar-
ticle canonical states, respectively, V ph is the proton-neutron
particle-hole residual interaction, and V pp is the corresponding
particle-particle interaction. The canonical basis diagonalizes
the density matrix, and the occupation amplitudes vp,n are
the corresponding eigenvalues. However, the canonical basis
does not diagonalize the Dirac single-nucleon mean-field
Hamiltonian ĥD and the pairing field �̂, and therefore the
off-diagonal matrix elements H 11

nn′ and H 11
pp′ appear in Eq. (2):

H 11
κκ ′ = (uκuκ ′ − vκvκ ′)hκκ ′ − (uκvκ ′ + vκuκ ′ )�κκ ′ . (3)

For each energy Eλ, XλJ and YλJ in Eq. (1) denote the cor-
responding forward- and backward-going QRPA amplitudes,
respectively. The total strength for the transition between
the ground state of the even-even (N,Z) nucleus and the
excited state of the odd-odd (N + 1, Z − 1) or (N − 1, Z + 1)
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nucleus, induced by the operator T JM , reads

B±
λJ =

∣∣∣∣∣
∑
pn

〈p||T J ||n〉[XλJ
pnupvn + (−1)J Y λJ

pn vpun

]∣∣∣∣∣
2

.

(4)

The discrete strength distribution is folded by the Lorentzian
function:

R(E)± =
∑

λ

B±
λJ

1

π

	
2

(E − Eλ±)2 + (
	
2

)2 . (5)

In the present calculation the width of the Lorentzian function
is 	 = 1 MeV.

The spin-isospin interaction terms are generated by ρ- and
π -meson exchange. Because of parity conservation, the one-
pion direct contribution vanishes in the mean-field calculation
of a nuclear ground state. Its inclusion is important, however,
in calculations of excitations that involve spin and isospin
degrees of freedom. The particle-hole residual interaction in
the pn-RQRPA is derived from the Lagrangian density:

Lint
π+ρ = −gρψ̄γ μ �ρμ�τψ − fπ

mπ

ψ̄γ5γ
μ∂μ �π �τψ. (6)

Vectors in isospin space are denoted by arrows, and boldface
symbols indicate vectors in ordinary three-dimensional space.

The coupling between the ρ meson and the nucleon is
assumed to be a function of the vector density ρv = √

jμjμ,
with jμ = ψ̄γμψ . In Ref. [33] it has been shown that the
explicit density dependence of the meson-nucleon couplings
introduces additional rearrangement terms in the residual
two-body interaction of the RRPA and that their contribution
is essential for a quantitative description of excited states.
However, since the rearrangement terms include the corre-
sponding isoscalar ground-state densities, it is easy to see
that they are absent in the charge-exchange channel. For the
ρ-meson coupling the functional form used in the DD-ME2
density-dependent effective interaction [31] reads

gρ(ρv) = gρ(ρsat)e
−aρ (x−1), (7)

where x = ρv/ρsat, and ρsat denotes the saturation vector
density in symmetric nuclear matter. For the pseudovector
pion-nucleon coupling the standard parameters are used (see
Ref. [34]):

mπ = 138.0 MeV,
f 2

π

4π
= 0.08. (8)

The derivative type of the pion-nucleon coupling necessitates
the inclusion of a zero-range Landau-Migdal term, which ac-
counts for the contact part of the nucleon-nucleon interaction:

Vδπ = g′
(

fπ

mπ

)2

�τ1 �τ2�1 · �2δ(r1 − r2), (9)

where

� =
(

σ 0

0 σ

)
, (10)

and the parameter g′
DD-ME2 = 0.52 is adjusted to reproduce the

GTR excitation energy in 208Pb.
The pn-RQRPA model is fully consistent: the same

interactions, both in the particle-hole and particle-particle
channels, are used in the RHB equation that determines the
canonical quasiparticle basis and in the pn-RQRPA Eq. (1). In
both channels the same strength parameters of the interactions
are used in the RHB and RQRPA calculations. With respect
to the RHB calculation of the ground state of an even-even
nucleus, the charge-exchange channel includes the additional
one-pion exchange contribution.

The two-quasiparticle configuration space includes states
with both nucleons in the discrete bound levels, states with
one bound nucleon and one nucleon in the continuum,
and also states with both nucleons in the continuum. In
addition to configurations built from two-quasiparticle states
of positive energy, the RQRPA configuration space contains
pair configurations formed from fully or partially occupied
states of positive energy and empty negative-energy states
from the Dirac sea. The inclusion of configurations built from
occupied positive-energy states and empty negative-energy
states is essential for the consistency of the model [24].

In the pp channel of the RHB model a phenomenological
pairing interaction is used, the pairing part of the Gogny force:

V pp(1, 2) =
∑
i=1,2

e−[(r1−r2)/μi ]2

× (Wi + BiP
σ − HiP

τ − MiP
σ P τ ), (11)

with the set D1S [35] for the parameters μi , Wi , Bi , Hi , and Mi

(i = 1, 2). This force has been very carefully adjusted to the
pairing properties of finite nuclei all over the periodic table. In
particular, the basic advantage of the Gogny force is the finite
range, which automatically guarantees a proper cutoff in the
momentum space. The same Gogny interaction is also used in
the T = 1 pairing channel of the pn-RQRPA.

III. RESULTS

In the first part the calculated strength distributions for
the isovector spin monopole transition operator in 48Ca, 90Zr,
100−150Sn, and 208Pb are analyzed. We then calculate the L = 0
strength and show the effect of momentum transfer on the
strength distribution and the total strength in the tin isotopic
chain.

A. Isovector spin monopole strength

The isovector spin monopole (IVSM) operator reads

T IVSM
± =

A∑
i=1

r2
i �τ±. (12)

In Fig. 1 we display the IVSM strength for 90Zr up to
70-MeV excitation energy in both the β− and β+ channels.
Because of the structure of the IVSM operator of Eq. (12), the
dominant feature of the spectrum is a strong peak at the position
of the Gamow-Teller (GT) resonance. However, unlike the
GT operator that excites only 0h̄ω transitions, the isovector
spin monopole operator can also excite 2h̄ω transitions. These
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FIG. 1. (Color online) The pn-RQRPA strength distribution of
isovector spin monopole states in 90Zr. The dashed curve denotes
the total strength with 0h̄ω transitions included, whereas the solid
curve corresponds to the strength for which only 2h̄ω and higher
excitations are included in the configuration space, for the (a) β− and
(b) β+ channels.

relatively weak transitions at excitation energies above the
giant resonance contribute a significant portion of the total
strength, because even though each individual transition is
weak their number is large. The 2h̄ω transitions are also
responsible for all the strength above the GT resonance in
the β+ channel. The amount of strength above the resonance
in the two channels is comparable, so that the value of the
sum rule is mostly determined by the strength contained in the
resonances.

The non-energy-weighted sum rule for the IVSM transition
strength reads [21]

S− − S+ = 3[N〈r4〉n − Z〈r4〉p]. (13)

Using the values of 〈r4〉n,p that correspond to the RHB self-
consistent ground-state solution, we have verified that the sum
rule Eq. (13) is satisfied in our calculation (see Table I).

The IVSM strength distribution is dominated by the 0h̄ω

components, so the isotopic behavior of the positions of the
centroids is almost identical to that in the case of the pure
Gamow-Teller strength. This component of the strength masks
the contribution of higher-order configurations. Therefore we
exclude the 0h̄ω configurations from the QRPA basis in
order to examine the characteristics of the 2h̄ω and higher
components. The solid curve shown in Fig. 1 corresponds to
the strength for which only 2h̄ω and higher excitations are
included in the configuration space. In Table II we compare
the energy centroids of the IVSM distributions in the β−
and the β+ channels (excluding 0h̄ω configurations) with the

corresponding values obtained with two Skyrme functionals:
SGII and SIII [22]. The agreement is very good in the β−
channel, whereas in the β+ channel the centroids calculated
with the relativistic functional DD-ME2 are found to be a
few MeV higher than those predicted by the two Skyrme
functionals. Both calculations predict a decreasing of the
energy centroids with increasing mass in the β+ channel, in
agreement with the results of Ref. [21]. This result indicates
that it may be practical to focus on very heavy nuclei in the
search for the IVSM resonance in the β+ channel, as the
resonance is predicted to be at rather low energies.

For the Sn isotopic chain with neutron-to-proton ratios
ranging from N/Z = 1 to 2, in Fig. 2 we compare the centroids
of the Gamow-Teller and the IVSM strength, considering
only the 2h̄ω and higher transitions for the latter. It appears
that the IVSM strength function has a somewhat more
pronounced mass and/or isospin dependence. In the lighter
Sn isotopes the IVSM centroids are found just below 50 MeV,
or approximately 25 MeV above the GT centroids. At mass
150 the IVSM energy centroid rapidly approaches 20 MeV,
only 13 MeV above the corresponding GT centroid.

B. L = 0 strength

The L = 0 strength obtained in charge-exchange reactions
corresponds to the squared matrix element of the L = 0
operator:

T̂(±) = jL=0(qr)�τ±, (14)

where q is the momentum transfer. In the long wavelength
limit (i.e., q → 0) the spherical Bessel function can be
approximated by

j0(qr) ≈ 1 − q2r2

6
+ · · · , (15)

and usually only the first term is retained. However, if the
momentum transfer is not negligible then, together with the
Gamow-Teller operator, the isovector spin monopole term has
to be taken into account [21]:

Ô(±) = �τ± − q2

6
r2�τ±. (16)

For a (p,n) reaction, the total energy and momentum of a
proton with kinetic energy T reads

Ep = T + mp, pp =
√

E2
p − m2

p, (17)

and, for the outgoing neutron,

En = Ep − Ex, pn =
√

E2
n − m2

n, (18)

TABLE I. Integrated strengths of the isovector spin monopole operator in 48Ca, 90Zr, and 208Pb nuclei. Proton and neutron radii correspond
to the RHB self-consistent ground solution. All values are given in units of fm4.

S− S+ S− − S+ 〈r4〉n 〈r4〉p 3[N〈r4〉n − Z〈r4〉p]

48Ca 11037 2837 8200 227.382 181.359 8218
90Zr 28773 11772 17001 438.375 409.187 16654
208Pb 266890 43795 223095 1318.019 1118.283 223095
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TABLE II. Energy centroids of the isovector spin monopole strength Ē− and Ē+ in the β− and the β+ channel, respectively, for the nuclei
48Ca, 90Zr, and 208Pb. The values calculated with the relativistic functional DD-ME2, where only 2h̄ω and higher configurations are taken into
account, are compared to those obtained with the Skyrme functionals SGII and SIII [22].

DD-ME2 SGII SIII

Ē− (MeV) Ē+ (MeV) Ē− (MeV) Ē+ (MeV) Ē− (MeV) Ē+ (MeV)

48Ca 34.1 33.9 35.7 29.6 35.2 31.5
90Zr 40.0 24.2 40.0 20.8 39.6 22.1

208Pb 37.4 18.3 39.9 14.3 38.3 16.5

where Ex is the excitation energy of the nucleus with respect to
the ground state of the target (parent) nucleus. The momentum
transfer is defined as

|q| = | pp − pn| =
√

p2
p + p2

n − 2pppn cos ϑ, (19)

where ϑ denotes the angle between the momenta of the
incoming and outgoing particles. Assuming the cross section
is measured at forward angles, one can set ϑ ≈ 0◦ and obtain
a simple expression for the momentum transfer:

q = |pp − pn|. (20)

Using Eqs. (17)–(20), one notices that the momentum
transfer depends linearly on the excitation energy of the
nucleus and has a 1/(1 + T/m)2 dependence on the kinetic
energy of the incoming proton, as shown in Fig. 3(b).
This makes the effect of higher-order terms in the expansion
Eq. (15) more pronounced for higher excitation energies and
lower incoming energies.

Figs. 4(a)–4(d) show a comparison between the L = 0
strengths in 90Zr, calculated with the full operator Eq. (14), the
Gamow-Teller operator, and the q2-order operator Eq. (16).
In the upper panels we display the strength distributions
in the β− channel. At excitation energies below 30 MeV,
shown in Fig. 4(a), momentum transfer is rather small. The
only significant contribution to the total strength below the
GT resonance comes from the Gamow-Teller term, while in

100 104 108 112 116 120 124 128 132 136 140 144 148
A

0

10

20

30

40

50

E
 [M

eV
]

GT
IVSM

Sn

FIG. 2. (Color online) Energy centroids of the isovector spin
monopole strength in tin isotopes (excluding the 0h̄ω transitions),
in comparison with the corresponding Gamow-Teller centroids.

the region of the resonance the IVSM term in the operator
actually reduces the strength calculated with the Gamow-Teller
operator.

The largest contribution to the strength of the 0h̄ω part of
the GT plus IVSM operator comes from the orbits around the
Fermi surface. In the harmonic-oscillator basis the mean value
of the r2 is equal for all orbits in a major shell; hence, the
following proportionality relation is obtained:

Ô(0h̄ω) =
∑
i,j

〈i|
(

1 − q2r2

6

)
�τ±|j 〉a+

i aj

=
(

1 − q2

6
〈r2〉

)∑
i,j

〈i |�τ±| j 〉 a+
i aj , (21)

where the 〈r2〉 denotes the mean value of the r2 operator in the
major shell. This relation implies that the value of the GT plus
IVSM matrix element will always be lower than in the case of
the Gamow-Teller operator. The reduction will be greater with
increasing momentum transfer, i.e., with increasing excitation
energy with respect to the ground state of the parent nucleus.
Comparison of the three peaks in Figs. 4(a) and 4(b) found
below 24-MeV excitation energy, that are composed entirely
of 0h̄ω configurations [see Fig. 1(a)], shows the behavior
predicted by Eq. (21).

As already shown in Fig. 1, the strength at high excitation
energies originates from 2h̄ω transitions. For instance, the peak
at 32.5 MeV predominantly corresponds to the ν1f5/2 →
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FIG. 3. Momentum transfer for a (p,n) reaction, calculated using
Eqs. (17)–(20). (a) q plotted for a constant kinetic energy of the
incoming proton equal to T = 300 MeV. (b) q plotted for constant
excitation energy of the nucleus of Ex = 50 MeV.

054313-5
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FIG. 4. (Color online) Comparison of the pn-RQRPA strengths
obtained with the Gamow-Teller operator (dashed), the GT + IVSM
operator Eq. (16) (full), and the full L = 0 operator Eq. (14) (dash-
dotted) in 90Zr. The upper panels display the strength in the β−

channel, whereas the strength in the β+ channel is shown in the lower
panels. Different scales are used for the region of low excitation
energy below 30 MeV (left) and excitation energies in the interval 20
to 70 MeV (right).

π2f7/2 transition. The matrix elements of the GT operator
are small in this case, and the IVSM term of the operator
dominates. In the expansion of the spherical Bessel function
j0(qr) successive terms have alternating signs, so that the next
term reduces the strength of the isovector spin monopole mode.
This is particularly visible above 40-MeV excitation energy as
the next term is proportional to q4/120.

The corresponding strength in the β+ channel is plotted
in the lower panels of Fig. 4. In the low-energy region the
behavior is similar to that of the β− channel; the contribution
of terms with finite momentum transfer slightly reduces
the strength of the GT resonance. However, this reduction
is smaller due to the lower momentum transfer involved,
corresponding to the lower excitation energy. At excitation
energies above 20 MeV, the strength is strongly suppressed by
higher-order terms in expansion in Eq. (15), in contrast with
the β− channel. Thus, instead of shifting the strength to higher
energies, in the β+ channel finite momentum transfer simply
reduces the total strength. The enhancement and reduction of
the strength in comparison to the Gamow-Teller strength in
the β− and β+ channels, respectively, were observed in all the
nuclei studied in this work.

The shift of the strength to higher energies is further
analyzed for the Sn isotopic chain and illustrated in Fig. 5,
where we show the effect of finite momentum transfer on
the strength distribution and on the total strength in the β−
channel. The energy E95%, below which one finds 95% of the
calculated Gamow-Teller strength, is defined by the relation

0.95 =
∑Ei�E95%(N,Z)

i Bi(GT)∑
i Bi(GT)

. (22)

E95% ranges from >30 MeV in the lightest tin isotopes to
≈13 MeV in 150Sn. For each isotope we calculate the ratio
of the total strength (including the effect of finite momentum

100 104 108 112 116 120 124 128 132 136 140 144 148
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0.6

0.8

1

1.2

1.4

η
ζ

Sn

FIG. 5. (Color online) Ratios η and ζ defined in Eqs. (23) and
(24), respectively, for the Sn isotopes. Open symbols denote ratios
calculated with the GT + IVSM operator Eq. (16), and filled symbols
are for those obtained using the full L = 0 operator Eq. (14).

transfer) below E95% and the total strength,

η =
∑Ei�E95%

i Bi(X)∑
i Bi(X)

, (23)

where X denotes the operators Ô and T̂ introduced in Eqs. (14)
and (16), respectively. Values of η < 0.95 indicate that the
higher-order terms in the operator shift a portion of the strength
from the resonance to higher excitation energies. To see the
effect of momentum transfer on the total strength, we also
plot the ratio of the total strength calculated with the operators
O introduced in Eq. (16) and T in Eq. (14) and the total
Gamow-Teller strength:

ζ =
∑

i Bi(X)∑
i Bi(GT)

. (24)

For Sn isotopes with masses in the interval 100 � A � 150
the ratios defined in Eqs. (23) and (24) are plotted in Fig. 5.
Open symbols denote results obtained with the GT plus IVSM
operator Eq. (16). One notices that for light isotopes a rather
large amount of strength is found above the Gamow-Teller
resonance. The fraction of strength found at lower energies
increases with the addition of neutrons to η = 0.8 for 116Sn.
From A = 116 the ratio η is a linear function of the mass
and reaches the value of η = 0.9 for 150Sn. The ratio of the
total strengths ζ is considerably larger than one for lighter
isotopes but rapidly converges to ζ = 1 with the addition of
neutrons. With filled symbols we denote results obtained using
the full L = 0 operator Eq. (14). The prominent feature is
that, with respect to the GT plus IVSM operator, the ratio η

increases and ζ decreases for all isotopes. Since the next term
in the expansion Eq. (15) is proportional to q4, a relatively
large momentum transfer is necessary for an effect to be
noticeable [see also Figs. 4(b), 4(d), 6(b), and 6(d)]. Therefore,
this term in the expansion does not affect the resonance but
reduces the strength at high energies and in this way reduces
the total strength and increases the fraction of the strength
below the GT resonance. Because the energy centroid of the

054313-6



ROLE OF MOMENTUM TRANSFER IN THE QUENCHING OF . . . PHYSICAL REVIEW C 85, 054313 (2012)

0

2

4

6

8

R
 [M

eV
-1

]

0

0.2

0.4

0.6

0.8

1

GT-
O-
T-

0 5 10 15 20 25 30
E [MeV]

0

10

20

30

40

50

R
 [M

eV
-1

]

30 40 50 60 70 80 90
E [MeV]

0

0.2

0.4

0.6

0.8

100
Sn

144
Sn

(a)

(c)

(b)

(d)

FIG. 6. (Color online) Comparison of the β− strength distribu-
tions in 100Sn (upper panels) and 144Sn (lower panels), calculated with
the Gamow-Teller operator, the GT + IVSM operator Eq. (16), and
the full L = 0 operator Eq. (14). Note the different scales used for
the resonance region and the region of high-excitation energies.

2h̄ω and higher-order components of the IVSM strength is
higher in isotopes with a low number of excess neutrons, with
correspondingly large momentum transfer, higher-order terms
have a more pronounced effect in Sn isotopes with A ≈ 100.
The largest differences of the ratios η and ζ , with respect to
those calculated with the GT plus IVSM operator Eq. (16), are
found in the lightest Sn nuclei.

This effect is further illustrated in Fig. 6, where we compare
the strength calculated using the Gamow-Teller operator with
those obtained using the GT plus IVSM operator Eq. (16) and
the full L = 0 operator Eq. (14), in two Sn isotopes: 100Sn
and 144Sn. In the former the resonance is at 23-MeV excitation
energy with respect to the ground state of the parent nucleus,
and the corresponding momentum transfer is q = 0.181 fm−1

for the incoming proton kinetic energy T = 300 MeV. The
inclusion of the IVSM term reduces the strength of the
resonance by approximately 30%. In 144Sn the resonance is
at 11 MeV, with the corresponding momentum transfer q =
0.086 fm−1. Since the square of momentum transfer appears
in the IVSM operator, in this case the effect on the resonance
is significantly smaller. It is important to note that, even
though the relative reduction of the resonance is more
pronounced in the lighter isotope, more strength is actually
subtracted from the resonance in 144Sn, B(GT−) − B(T−) =
8.0, than in 100Sn, B(GT−) − B(T−) = 3.7. In Fig. 7 we plot
a comparison of the calculated strengths that are predicted
at energies above E95% using the pure Gamow-Teller operator
and the operators defined in Eqs. (16) and (14) for the nuclei in
the Sn isotopic chain. One notices that the difference between
the strength obtained using the operators defined in Eqs. (14)
or (16) and the GT strength is practically constant. Because
of this, in light isotopes there is enough additional strength to
overcome the reduction of the resonance and even increase the
total strength. In heavy isotopes the strength at high energies
mostly compensates for the strength lost in the resonance but
does not increase the total strength.

In Table III we display the values of the ratio ζ defined
in Eq. (24), in both the β− and the β+ channel for three
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FIG. 7. (Color online) β− pn-RQRPA strength located at energies
above E95% in Sn isotopes with 100 � A � 150. The GT operator
(circles), the GT + IVSM operator defined in Eq. (16) (squares), and
the full L = 0 operator Eq. (14) (diamonds) have been used in the
calculation of the strength distributions.

representative nuclei: 48Ca, 90Zr, and 208Pb. The momentum
transfer corresponds to a kinetic energy of 300 MeV for the
incoming proton (neutron). The results for 90Zr are particularly
important because of the recent analysis of both (p,n) and
(n,p) data [6,7], that determined the GT quenching factor:

Q ≡ SGT
β− − SGT

β+

3(N − Z)
= 0.88 ± 0.06. (25)

In the β− channel the L = 0 strength was measured up
to 50-MeV excitation energy: SL=0

β− = 33.5 ± 0.6(stat.) ±
0.4(MD) ± 4.7(σ̂GT). Employing a distorted-wave impulse
approximation (DWIA) model to estimate the contribution
of the isovector spin monopole strength, the assumption was
made that the complete IVSM strength is concentrated in a
single state at 35 MeV. The estimated contribution was then
subtracted from the measured strength, and the value of the
total Gamow-Teller strength was determined: SGT

β− = 29.3 ±
0.5(stat.) ± 0.4(MD) ± 0.9(IVSM) ± 4.7(σ̂GT). This means
that the IVSM contribution enhances the total strength by
approximately 15%. Our results using the full L = 0 operator
show (see Table III) that the total strength in the β− channel is
not modified by the inclusion of higher-order terms, and their
only effect is to shift part of the strength to energies above

TABLE III. The ratio ζ defined in Eq. (24), for the β− and β+

channels in 48Ca, 90Zr and 208Pb. The second and third columns
display results calculated with the GT + IVSM operator Eq. (16). In
the last two columns we show the results obtained with the full L = 0
operator Eq. (14). The momentum transfer corresponds to a kinetic
energy of 300 MeV for the incoming nucleon.

(1 − q2r2

6 )�τ± j0(qr)�τ±

β− β+ β− β+

48Ca 1.043 0.821 1.030 0.661
90Zr 1.043 0.871 0.999 0.851
208Pb 0.952 0.810 0.877 0.342
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the resonance. Therefore, the result of the present calculation
implies SGT

β− = SL=0
β− .

The experimental value of the L = 0 strength in the
β+ channel was determined in Ref. [7]: SL=0

β+ = 5.4 ±
0.4(stat.) ± 0.3(MD) ± 0.9(σ̂GT). After subtracting the IVSM
strength, the value of the GT+ strength was deduced: SGT

β+ =
2.9 ± 0.4(stat.) ± 0.3(MD) ± 0.3(IVSM) ± 0.5(σ̂GT). The
present calculation indicates, however, that the total GT
strength in the β+ channel is actually reduced by ≈15% by
the inclusion of finite momentum-transfer terms. Therefore,
using the total measured L = 0 strength, we deduce the GT
strength in the β+ channel: SGT

β+ = 6.3. The deduced value

for the Ikeda sum rule, SGT
β− − SGT

β+ = 33.5 − 6.3 = 27.2, is
consistent with the quenching factor extracted from data in
Ref. [7]. However, in the β− channel data were only obtained
below 50-MeV excitation energy, whereas our calculation
predicts that approximately 6% of the total strength is located
above this energy. Assuming that the measured strength
actually corresponds to only 94% of the total strength, we
obtain SGT

β− = 35.6 and, therefore, the value of the sum rule:

SGT
β− − SGT

β+ = 29.3. Considering the experimental uncertainty,
in particular the one originating from the Gamow-Teller unit
cross section, this result may indicate that no quenching of
the experimental strength with respect to the Ikeda sum rule
occurs. We note that arguments for this conclusion were
already put forward from the point of view of the shell
model [36].

IV. CONCLUSION AND OUTLOOK

An accurate determination of Gamow-Teller strength re-
mains a challenge for charge-exchange reaction experiments.
With the progress of experiments that can provide data on
the nuclear response at high excitation energies, the effect
of finite momentum transfer must be taken into account. In
this work the L = 0 strength has been analyzed in the Sn
isotopic chain, 48Ca, 90Zr, and 208Pb. Employing the RHB plus
pn-RQRPA framework, we have compared strength functions
calculated using the GT operator, the GT plus isovector spin
monopole mode term, and the operator that contains the full
momentum-transfer dependence.

The transition strength for the pure isovector spin monopole
operator has been calculated for 48Ca, 90Zr, and 208Pb. We have
decomposed the contributions to the strength into 0h̄ω and
2h̄ω and higher components and found that 0h̄ω contributes
mainly to the resonance. The large numbers of 2h̄ω and higher
transitions form a very broad structure at excitation energies
between 30 and 60 MeV. The calculated energy centroids
are in very good agreement with values previously obtained
using two different Skyrme interactions. The dependence of
the centroids on neutron number has been shown for the Sn
isotopic chain with the neutron-to-proton ratio in the interval
from N/Z = 1 to 2. The IVSM centroids are located at
high excitation energies, ranging from 25 MeV above the
GT centroids for the lightest isotopes to 12 MeV for the
heaviest.

Evaluations of GT strength from experimental cross sec-
tions of charge-exchange reactions take into account the

isovector spin monopole mode but, because of the unknown
distribution of the IVSM strength, its contribution is subtracted
incoherently from the total measured strength. To analyze
the validity of this procedure, we have calculated the L = 0
strength using the GT plus IVSM operator Eq. (16) and the full
L = 0 operator Eq. (14). It has been found that the inclusion of
the isovector spin monopole term contributes to the strength
at high excitation energies and also reduces the strength of
the resonance. The shift of the strength to higher excitation
energies has been analyzed for the Sn isotopic chain with
masses in the range 100 < A < 150. The total L = 0 strength
for isotopes with low number of excess neutrons is enhanced,
whereas it is not modified for isotopes with A � 120. The full
L = 0 operator only changes the strength at high excitation
energies, i.e., for large momentum transfer. A similar analysis
of the effect of finite momentum transfer has been performed
for 48Ca, 90Zr, and 208Pb. For 90Zr, in particular, the results have
been compared with a recent analysis of the GT quenching
factor based on (p,n) and (n,p) data. We have found that
the total strength in the β− channel is not modified by the
inclusion of higher-order terms, i.e., SGT

β− = SL=0
β− . The strength

in the β+ channel is reduced by approximately 15% by the
inclusion of finite momentum-transfer terms, in contrast to
the assumption made in the analysis of experimental cross
sections. Combining these results with the model prediction
that 6% of the strength in the β− is located above 50-MeV
excitation energy, we find that the Ikeda sum rule is satisfied
within experimental uncertainty.

The determination of Gamow-Teller strength, complicated
however by the excitation of the IVSM mode, was also
performed using the (3He,t) reaction on 208Pb [37] and 150Nd
[38]. Because the IVSM transition density has a node close to
the surface, probes that penetrate deep into the nucleus display
smaller cross sections due to the cancellation of contributions
from the surface and the bulk. In contrast, probes absorbed
at the surface have larger cross sections because there is no
contribution from the volume region. An analogous effect
can be obtained using probes with different energies (see
Sec. IVA in Ref. [17]). The present calculation does not
differentiate between various probes, and the only effect of
the energy of the incoming probe is on momentum transfer.
It would be interesting to perform a study of the interference
of Gamow-Teller and isovector spin monopole modes, taking
into account the characteristics of the experimental probe. One
could, in particular, combine the RQRPA transition densities
with a DWIA calculation and compare the resulting cross
sections with the experiment.
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[13] S. Drożdż, V. Klemt, J. Speth, and J. Wambach, Phys. Lett. B

166, 18 (1986).
[14] M. C. Vetterli et al., Phys. Rev. C 40, 559 (1989).
[15] B. D. Anderson, C. Lebo, A. R. Baldwin, T. Chittrakarn,

R. Madey, J. W. Watson, and C. C. Foster, Phys. Rev. C 41,
1474 (1990).

[16] J. D. Bowman et al., Phys. Rev. Lett. 50, 1195 (1983).
[17] D. L. Prout et al., Phys. Rev. C 63, 014603 (2000).
[18] R. G. T. Zegers et al., Phys. Rev. C 63, 034613 (2001).
[19] R. G. T. Zegers et al., Nucl. Phys. A 731, 121 (2004).
[20] M. Sasano et al., Phys. Rev. Lett. 107, 202501 (2011).
[21] N. Auerbach and A. Klein, Phys. Rev. C 30, 1032 (1984).
[22] I. Hamamoto and H. Sagawa, Phys. Rev. C 62, 024319 (2000).
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