TeV-scale seesaw mechanism with quintuplet fermions

Kumerički, Krešimir; Picek, Ivica; Radovčić, Branimir

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevD.86.013006

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:141911

Rights / Prava: In copyright

Download date / Datum preuzimanja: 2020-12-24

Repository / Repozitorij:

Repository of Faculty of Science - University of Zagreb
I. INTRODUCTION

We propose a seesaw model based on a fermionic hypercharge-zero weak quintuplet in conjunction with an additional scalar quadruplet which attains an induced vacuum expectation value. The model provides both tree-level seesaw $\sim v^6/M^2$ and loop-suppressed radiative $(1/16\pi^2) \cdot v^2/M$ contributions to active neutrino masses. The empirical masses $m_\nu \sim 10^{-1}$ eV can be achieved with $M \sim$ TeV new states, accessible at the LHC. For 5 fb$^{-1}$ of accumulated integrated luminosity at the LHC, there could be ~ 500 doubly-charged Σ^{++} or $\bar{\Sigma}^{++}$ fermions with mass $M_\Sigma = 400$ GeV, leading to interesting multi-lepton signatures. The neutral component of the fermion quintuplet, previously identified as a minimal dark matter candidate, becomes unstable in the proposed seesaw setup. The stability can be restored by introducing a Z_2 symmetry, in which case neutrinos get mass only from radiative contributions.

II. THE MODEL WITH FERMIONIC QUINTUPLETS

As announced above, the model we propose here is based on the symmetry of the SM gauge group $SU(3)_C \times SU(2)_L \times U(1)_Y$. In addition to usual SM fermions, we introduce three generations of hypercharge-zero quintuplets $\Sigma_R = (\Sigma^+_R, \Sigma^+_R, \Sigma^0_R, \Sigma^-_R, \Sigma^-_R)$, transforming as $(1, 5, 0)$ under the gauge group. Also, in addition to the SM Higgs doublet $H = (H^+, H^0)$ there is a scalar quadruplet $\Phi = (\Phi^+, \Phi^0, \Phi^-, \Phi^{--})$ transforming as $(1, 4, -1)$.

This is in contrast to a recent model for radiative neutrino masses [8] adopted subsequently in [10], where a use of the scalar sextuplet $\Phi \sim (1, 6, -1)$ avoids the tree-level contribution. In a tensor notation suitable to cope with higher $SU(2)_L$ multiplets [8] our additional fields are totally symmetric tensors Σ_{Rijk} and Φ_{ijk} with the following components:

$$
\Sigma_{R1111} = \Sigma^+_R, \quad \Sigma_{R1112} = \frac{1}{\sqrt{4}} \Sigma^+_R,
$$

$$
\Sigma_{R1122} = \frac{1}{\sqrt{6}} \Sigma^0_R, \quad \Sigma_{R1222} = \frac{1}{\sqrt{4}} \Sigma^-_R, \quad \Sigma_{R2222} = \Sigma^-_R;
$$

$$
\Phi_{111} = \Phi^+, \quad \Phi_{112} = \frac{1}{\sqrt{3}} \Phi^0, \quad \Phi_{122} = \frac{1}{\sqrt{3}} \Phi^-, \quad \Phi_{222} = \Phi^{--}.
$$

The gauge-invariant and renormalizable Lagrangian involving these new fields reads...
\[\mathcal{L} = \sum_R i\gamma^\mu D_\mu \Sigma_R + (D^\mu \Phi)^\dagger (D_\mu \Phi) \]
\[- \left(\overleftrightarrow{\partial} \Phi \Sigma_R + \frac{1}{2} (\Sigma_R)^C M \Sigma_R + \text{H.c.} \right) - V(H, \Phi). \]

(3)

Here, \(D_\mu \) is the gauge-covariant derivative, \(Y \) is the Yukawa-coupling matrix, and \(M \) is the mass matrix of the heavy leptons, which we choose to be real and diagonal. For simplicity, we drop the flavor indices altogether.

The scalar potential has the gauge-invariant form

\[V(H, \Phi) = -\mu_H^2 H^\dagger H + \mu_\Phi^2 \Phi^\dagger \Phi + \lambda_1 (H^\dagger H)^2 \]
\[+ \lambda_2 H^\dagger H \Phi^\dagger \Phi + \lambda_3 H^* H \Phi \Phi^\dagger \]
\[+ (\lambda_4 H^* H \Phi^\dagger \Phi + \text{H.c.}) + (\lambda_5 H \Phi^\dagger \Phi^\dagger \Phi + \text{H.c.}) \]
\[+ \lambda_6 \Phi^\dagger \Phi^\dagger \Phi^\dagger \Phi^\dagger. \]

(4)

In the adopted tensor notation the terms in Eqs. (3) and (4) read

\[\overleftrightarrow{\partial} \Phi \Sigma_R = \overleftrightarrow{\partial} \Phi \Sigma_R^{ij \ell} \epsilon^{ij \ell} \epsilon^{\ell k \ell'}, \]
\[(\Sigma_R)^C \Sigma_R = (\Sigma_R)^{ij \ell} \epsilon^{ij \ell} \epsilon^{\ell k \ell'}, \]
\[H^* H \Phi^\dagger \Phi = H^* H \Phi^\dagger \Phi^{ij \ell} \epsilon^{ij \ell} \epsilon^{\ell k \ell'}, \]
\[H^* H \Phi^\dagger \Phi = H^* H \Phi^\dagger \Phi^{ij \ell} \epsilon^{ij \ell} \epsilon^{\ell k \ell'}, \]
\[H^* H \Phi^\dagger \Phi = H^* H \Phi^\dagger \Phi^{ij \ell} \epsilon^{ij \ell} \epsilon^{\ell k \ell'}, \]
\[\Phi^\dagger \Phi^\dagger \Phi^\dagger \Phi^\dagger = \Phi^\dagger \Phi^\dagger \Phi^\dagger \Phi^\dagger. \]

(5)

Accordingly, the Majorana mass term for the quintuplet \(\Sigma_R \) is expanded in component fields to give

\[(\Sigma_R)^C \Sigma_R = (\Sigma_R^+)^C \Sigma_R^- - (\Sigma_R^0)^C \Sigma_R^- \]
\[+ (\Sigma_R^0)^C \Sigma_R^0 - (\Sigma_R^-)^C \Sigma_R^0 + (\Sigma_R^-)^C \Sigma_R^+. \]

(6)

The terms containing two charged Dirac fermions and one neutral Majorana fermion

\[\Sigma^+, \Sigma^- \]
\[\Sigma^0 = \Sigma_R^0 + \Sigma_R^0. \]

(7)

The Yukawa interaction terms from Eq. (3), when expressed like that in Eq. (5), read explicitly as

\[\overleftrightarrow{\partial} \Phi \Sigma_R = -\sqrt{\frac{3}{2}} \tilde{\nu}_L \Phi \Sigma_R^* \frac{1}{\sqrt{2}} \tilde{L}_R \Phi - \frac{1}{\sqrt{2}} \tilde{L}_L \Phi \Sigma_R^* + \sqrt{\frac{3}{2}} \tilde{L}_L \Phi^0 \Sigma_R^{-} \]
\[+ \frac{1}{\sqrt{2}} \tilde{L}_L \Phi^0 \Sigma_R^{-} \tilde{L}_R \Phi^0 \Sigma_R^{--} + \frac{1}{\sqrt{2}} \tilde{L}_L \Phi^{-} \Sigma_R^+ + \tilde{v}_L \Phi^{-} \Sigma_R^{++}. \]

(10)

The VEV \(v_\Phi \) generates a Dirac mass term connecting \(\nu_L \) and \(\Sigma_R^0 \), a nondiagonal entry in the mass matrix for neutral leptons given by

\[\mathcal{L}_{\nu^0} = -\frac{1}{2} (\bar{\nu}_L (\Sigma_R^0)^C) \left(\begin{array}{c} 0 \\ \frac{1}{\sqrt{2}} Y \nu \Phi \end{array} \right) \left(\begin{array}{c} \nu_L \Phi \end{array} \right)^C + \text{H.c.} \]

(11)

A similar term connecting light and heavy charged leptons gives the mass matrix for charged leptons

\[\mathcal{L}_{\Sigma^-} = (\overleftrightarrow{\partial} (\Sigma_R^0)^C) \left(\begin{array}{c} Y \nu \frac{\sqrt{3}}{2} \nu_\Phi \end{array} \right) \left(\begin{array}{c} \nu_L \Phi \end{array} \right)^C + \text{H.c.} \]

(12)

After diagonalizing the mass matrix for the neutral leptons, the light neutrinos acquire the Majorana mass matrix given by

\[m_{\nu}^{\text{tree}} = -\frac{1}{2} v_\Phi^2 Y M^{-1} Y^T. \]

(13)

In the basis where the matrix of heavy leptons is real and diagonal, \(M = \text{diag}(M_1, M_2, M_3) \), we can write \(m_{\nu}^{\text{tree}} \) as

\[(m_{\nu}^{\text{tree}})_{ij} = -\frac{1}{2} v_\Phi^2 \sum_k Y_{ik} Y_{jk} M_k. \]

(14)

Together with the induced VEV in Eq. (9), this gives
TeV-SCALE SEESAW MECHANISM WITH QUINTUPELT...

\[(m_\nu)_{ij}^{\text{tree}} = -\frac{1}{6} (\lambda^2_5)^2 \frac{v^6}{\mu_\Phi^2} \sum_k Y_{ik} Y_{jk} M_k, \]

which reflects the fact that the light neutrino mass is generated from the dimension-nine operator corresponding to the tree-level seesaw mechanism displayed on Fig. 1.

Besides at the tree level, the light neutrino masses arise also through one-loop diagrams displayed on Fig. 2. The crucial quartic \(\lambda_5 \) term in Eq. (4), which, expanded in component fields gives

\[HH\Phi\Phi = \frac{2}{\sqrt{3}} \Phi^- \Phi^+ H^0 H^0 - \frac{2}{3} \Phi^- \Phi^- H^+ H^- \]

\[+ \frac{2}{\sqrt{3}} \Phi^- \Phi^0 H^+ H^- - \frac{2}{3} \Phi^0 \Phi^0 H^0 H^0 \]

\[+ \frac{2}{3} \Phi^- \Phi^0 H^+ H^0 - 2 \Phi^+ \Phi^- H^+ H^- \]

There are two different contributions on Fig. 2, one with heavy neutral fields (\(\Sigma^0, \Phi^0 \)) and the other with heavy charged fields (\(\Sigma^\pm, \Phi^\pm \)) running in the loop. If we neglect the mass splitting within the \(\Sigma \) and \(\Phi \) multiplets, the contribution to the light neutrino mass matrix is given by

\[(m_\nu)_{ij}^{\text{loop}} = -\frac{5}{24} (\lambda^2_5 v^2) \sum_k Y_{ik} Y_{jk} \frac{M_k}{M_k^2} \ln \frac{m_\Phi^2}{M_k^2} \]

Finally, if \(m_\Phi^2 \approx M_k^2 \), then

\[(m_\nu)_{ij}^{\text{loop}} = -\frac{5}{48} (\lambda^2_5 v^2) \sum_k Y_{ik} Y_{jk} \frac{M_k}{M_k^2} \]

The tree-level and the loop contributions added together give the light neutrino mass matrix

\[(m_\nu)_{ij} = (m_\nu)_{ij}^{\text{tree}} + (m_\nu)_{ij}^{\text{loop}} \]

\[= -\frac{1}{6} (\lambda^2_5)^2 \frac{v^6}{\mu_\Phi^2} \sum_k Y_{ik} Y_{jk} M_k + \frac{5}{24} (\lambda^2_5 v^2) \sum_k Y_{ik} Y_{jk} M_k \]

\[\times \left[1 - \frac{M_k^2}{m_\Phi^2 - M_k^2} \ln \frac{m_\Phi^2}{M_k^2} \right] \]

In the case of comparable masses the light neutrino mass matrix reads

\[(m_\nu)_{ij} = \left[-\frac{1}{6} (\lambda^2_5)^2 \frac{v^6}{\mu_\Phi^2} + \frac{5}{48} (\lambda^2_5 v^2) \sum_k Y_{ik} Y_{jk} \frac{M_k}{M_k^2} \right] \]

From this expression we can estimate the high-energy scale of our model and the corresponding value for \(v_{\mu_\Phi} \) in Eq. (9).

For illustrative purposes, we take the same values for the mass parameters (\(\mu_\Phi = M_S = \Lambda_{NP} \)) and the empirical input values \(v = 174 \) GeV and \(m_\nu \sim 0.1 \) eV. For the moderate values \(Y \sim 10^{-3} \), \(\lambda_4 \sim 10^{-2} \) and \(\lambda_5 \sim 10^{-4} \) we get

FIG. 1. Tree-level diagram corresponding to dimension-nine operator in Eq. (15). The fermion line flow indicates a Majorana nature of the seesaw mediator.

FIG. 2. One-loop diagrams generating the light neutrino masses.

FIG. 3 (color online). For the portion of the parameter space left from the equality-division line, where the tree-level contribution to neutrino masses dominates, we plot \(m_{\text{tree}}/m_{\text{loop}} \). Right from the equality-division line, the one-loop contribution to neutrino masses dominates, and we plot \(m_{\text{loop}}/m_{\text{tree}} \).
\(\Lambda_N \approx 440 \text{ GeV} \) and \(v_\Phi \approx 160 \text{ MeV} \). Corresponding masses of the new states could be tested at the LHC. In Fig. 3 we display the part of the parameter space for which the tree-level (loop-level) contribution dominates.

IV. PRODUCTION OF QUINTUPLET LEPTONS AT THE LHC

The production channels of the heavy quintuplet leptons in proton-proton collisions are dominated by the quark-antiquark annihilation via neutral and charged gauge bosons

\[
q + \bar{q} \rightarrow A \rightarrow \Sigma + \bar{\Sigma}, \quad A = \gamma, Z, W^\pm.
\]

where the gauge Lagrangian relevant for the production is given by

\[
\mathcal{L}^{\Sigma\bar{\Sigma}} = + e(2 \Sigma^{++} \gamma^\mu \Sigma^{+} + \Sigma^{+} \gamma^\mu \Sigma^{+}) A_\mu \\
+ g \cos \theta_W (2 \Sigma^{++} \gamma^\mu \Sigma^{+} + \Sigma^{+} \gamma^\mu \Sigma^{+}) Z_\mu \\
+ g(\sqrt{2} \Sigma^{++} \gamma^\mu \Sigma^{+} + \sqrt{3} \Sigma^{+} \gamma^\mu \Sigma^{+}) W^-\mu + \text{H.c.}
\]

The cross section for the partonic process is

\[
\hat{\sigma}(q\bar{q} \rightarrow \Sigma \bar{\Sigma}) = \frac{\beta(3 - \beta^2)}{48 \pi} \hat{s}(V_L^2 + V_R^2).
\]

\(\hat{s} \equiv (p_q + p_{\bar{q}})^2 \) is the Mandelstam variable \(s \) for the quark-antiquark system, the parameter \(\beta \equiv \sqrt{1 - 4M_\Sigma^2/\hat{s}} \) denotes the heavy lepton velocity, and the left- and right-handed couplings are given by

\[
V_L^{(\gamma + Z)} = \frac{Q_S Q_q e^2}{\hat{s}} + \frac{g^{\Sigma\bar{Z}} g_{L,R} g^2}{c_W^2 (\hat{s} - M_Z^2)}.
\]

\(V_L^{(W^-)} = \frac{g^{W\Sigma} g^2 V_{ud}}{\sqrt{2}(\hat{s} - M_W^2)} = V_L^{(W^+)} \),

\(V_R^{(W^+)} = 0. \)

Here, \(g^{q}_{L,R} = T_3 s^2_{W} Q_q \) and \(g^{q}_{L} = - s^2_{W} Q_q \) are the SM chiral quark couplings to the Z boson. The vector couplings of heavy leptons to gauge bosons are

\[
g^{\Sigma Z} = T_3 - s^2_{W} Q_\Sigma \quad \text{and} \quad g^{WZ} = \sqrt{2} \quad \text{or} \quad \sqrt{3},
\]

where \(g^{WZ} \) can be read of the last row in Eq. (23), relevant for the production of \(\Sigma^+ + \Sigma^- \) and \(\Sigma^+ \Sigma^0 \) pairs, respectively.

In evaluating the cross sections for a hadron collider, the partonic cross section (24) has to be convoluted with the appropriate parton distribution functions (PDFs). To
evaluate the cross sections we have used CTEQ6.6 PDFs [13] via LHAPDF software library [14].

The cross sections for proton-proton collisions are presented on Fig. 4 for \(\sqrt{s} = 7 \) TeV appropriate for the 2011 LHC run, and for designed \(\sqrt{s} = 14 \) TeV on Fig. 5. Thereby we distinguish separately the production via neutral currents shown on the left panel, and via charged currents shown on the right panel of Figs. 4 and 5.

We extract in Table I the pair production cross sections from Fig. 4 for three selected values of \(M_\Sigma \). From this table we find that the doubly-charged \(\Sigma^{++} \) has the largest production cross section \(\sigma(\Sigma^{++} | M_\Sigma = 400 \text{ GeV}) = 60.9 \text{ fb} \) and doubly-charged \(\Sigma^{+++} \) has the smallest, still comparable \(\sigma(\Sigma^{+++} | M_\Sigma = 400 \text{ GeV}) = 43.5 \text{ fb} \). The production rates of other heavy leptons are in between. On Fig. 6 we plot the expected number of produced \(\Sigma^{++} \) and \(\Sigma^{+++} \) particles for three characteristic collider setups. In particular, for \(5 \text{ fb}^{-1} \) of integrated luminosity of 2011 LHC run at \(\sqrt{s} = 7 \) TeV, there should be about 520 doubly-charged \(\Sigma^{++} \) or \(\Sigma^{+++} \) fermions produced. In total, there should be 660 \(\Sigma \bar{\Sigma} \) pairs produced.

By testing the heavy lepton production cross sections, one can hope to identify the quantum numbers of the quintuplet particles, but in order to confirm their relation to neutrinos, one has to study their decays.

![Graph](image-url)

FIG. 6 (color online). Number of \(\Sigma^{++} \) and \(\Sigma^{+++} \) particles produced for three characteristic LHC collider setups, in dependence on the heavy lepton mass \(M_\Sigma \).

V. DECAYS OF QUINTUPLICATE STATES

Our focus here is entirely on the decay modes of the heavy lepton states listed in Eq. (7). Namely, provided that in our scenario the exotic scalar states are slightly heavier than the exotic leptons, the exotic scalar fields will not appear in the final states of heavy lepton decays. Note that exotic scalar states \(\Phi \sim (1, 4, 1) \) were considered recently in [15], in the context of modified type III seesaw model.

The couplings relevant for the decays at hand stem from off-diagonal entries in the mass matrices in Eqs. (11) and (12). The diagonalization of these matrices can be achieved by making the following unitary transformations on the lepton fields:

\[
\begin{align*}
&\begin{pmatrix} (v_L)^c \\ \Sigma_R^0 \\ \Sigma_R^+ \end{pmatrix} = U^0 \begin{pmatrix} (v_{mL})^c \\ \Sigma_{mR}^0 \\ \Sigma_{mR}^+ \end{pmatrix}, \\
&\begin{pmatrix} l_L \\ (\Sigma_L^0)^c \\ (\Sigma_L^+)^c \end{pmatrix} = U^L \begin{pmatrix} l_{mL} \\ (\Sigma_{mL}^0)^c \\ (\Sigma_{mL}^+)^c \end{pmatrix}, \\
&\begin{pmatrix} l_R \\ (\Sigma_R^0)^c \\ (\Sigma_R^+)^c \end{pmatrix} = U^R \begin{pmatrix} l_{mR} \\ (\Sigma_{mR}^0)^c \\ (\Sigma_{mR}^+)^c \end{pmatrix}.
\end{align*}
\]

Following the procedure in Refs. [7, 16, 17], the matrices \(U^0 \) and \(U^{L,R} \) can be expressed in terms of \(Y_{v\Phi} \) and \(M \). Thereby, by expanding \(U^0 \) and \(U^{L,R} \) in powers of \(M^{-1} \) and keeping only the leading-order terms, we get

\[
U^0 = \begin{pmatrix} V_{PMNS}^T & \frac{1}{\sqrt{2}} v_{\Phi} Y^{-1} V_{PMNS}^T \\ -\frac{1}{\sqrt{2}} v_{\Phi} Y^{-1} V_{PMNS}^T & 1 \end{pmatrix}, \quad U^L = \begin{pmatrix} 1 & 0 \\ \frac{1}{2} v_{\Phi} Y^{-1} & 1 \end{pmatrix}, \quad U^R = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}.
\]

Here, \(V_{PMNS} \) is a \(3 \times 3 \) unitary matrix which diagonalizes the effective light neutrino mass matrix in Eq. (21), and the nondiagonal entries are related to the sought couplings of heavy and light leptons, and are expressed in terms of the matrix-valued quantity

\[
V_{\Sigma} = (v_{\Phi} Y^{-1})_{\Sigma}.
\]

Next, for simplicity, we suppress the indices indicating the mass-eigenstate fields. The Lagrangian in the mass-eigenstate basis, relevant for the decays of the heavy leptons, has the neutral current part

\[
\mathcal{L}_{NCZ} = \frac{g}{c_W} \left[\bar{L} \left(\frac{1}{2} V_{PMNS}^T V_{PMNS} V_{\gamma} P_L - \frac{1}{2\sqrt{2}} V_{PMNS}^T V_{\gamma} \gamma P_R \right) \Sigma^0 + H.c. \right],
\]

and the charged current part

\[
\mathcal{L}_{CZ} \quad \text{(33)}
\]
$$L_{CC} = \bar{\nu} \left(-\sqrt{3} \gamma^\mu \nu \gamma^\nu P_L \right) + \bar{\nu} \left(-\sqrt{3} \gamma^\mu \nu \gamma^\nu P_R \right) \Sigma^+ + \bar{\nu} \left(-V \gamma^\mu P_L \right) \Sigma^0 + \bar{\nu} \left(-\sqrt{3} \gamma^\mu \nu \gamma^\nu P_R \right) \Sigma^{++} \right] W^- + \text{H.c.} \quad (34)$$

Let us start our list of the partial decay widths by the decays of neutral Σ^0 state

$$\Gamma(\Sigma^0 \to \ell^+ W^\mp) = \frac{g^2}{32 \pi} \left| V_{\ell e} \right|^2 M_{\Sigma^0}^3 \left(1 - \frac{M_{\ell W}^2}{M_{\Sigma^0}^2} \right)^2 \times \left(1 + 2 \frac{M_{\ell W}^2}{M_{\Sigma^0}^2} \right).$$

$$\sum_{m=1}^{3} \Gamma(\Sigma^0 \to \nu_m Z^m) = \frac{g^2}{32 \pi} \sum_{m=1}^{3} \left| V_{\ell e} \right|^2 M_{\Sigma^m}^3 \left(1 - \frac{M_{\ell W}^2}{M_{\Sigma^m}^2} \right)^2 \times \left(1 + 2 \frac{M_{\ell W}^2}{M_{\Sigma^m}^2} \right). \quad (35)$$

The positive singly-charged heavy lepton Σ^+ has the following partial decay widths:

$$\Gamma(\Sigma^+ \to \ell^+ Z^0) = \frac{g^2}{32 \pi} \left| V_{\ell e} \right|^2 M_{\Sigma^+}^3 \left(1 - \frac{M_{\ell W}^2}{M_{\Sigma^+}^2} \right)^2 \times \left(1 + 2 \frac{M_{\ell W}^2}{M_{\Sigma^+}^2} \right).$$

$$\sum_{m=1}^{3} \Gamma(\Sigma^+ \to \nu_m W^m) = \frac{g^2}{32 \pi} \sum_{m=1}^{3} \left| V_{\ell e} \right|^2 M_{\Sigma^m}^3 \left(1 - \frac{M_{\ell W}^2}{M_{\Sigma^m}^2} \right)^2 \times \left(1 + 2 \frac{M_{\ell W}^2}{M_{\Sigma^m}^2} \right). \quad (36)$$

Finally, the doubly-charged Σ^{++} state decays exclusively via a charged current, with the partial decay width

$$\Gamma(\Sigma^{++} \to \ell^+ W^+) = \frac{g^2}{32 \pi} \left| V_{\ell e} \right|^2 M_{\Sigma^{++}}^3 \left(1 - \frac{M_{\ell W}^2}{M_{\Sigma^{++}}^2} \right)^2 \times \left(1 + 2 \frac{M_{\ell W}^2}{M_{\Sigma^{++}}^2} \right). \quad (37)$$

The mass difference induced by loops of SM gauge bosons between two components of Σ quintuplet with electric charges Q and Q' is explicitly calculated in [1]
the lightest component of the Σ and Φ multiplets is again a DM candidate. The quartic λ_5 term in the scalar potential is still allowed so that neutrinos acquire radiatively generated masses given by Eq. (17).

If Σ^0 is the DM particle, its mass is fixed by the relic abundance to the value $M_\Sigma = 10$ TeV in [1]. The choice $\lambda_5 = 10^{-7}$ gives enough suppression to have small neutrino masses with large Yukawas, $Y \sim 0.1$. In this part of the parameter space the model could have interesting lepton flavor violating effects like in [8].

The neutral component of the scalar multiplet Φ could also be a DM particle, despite its tree-level coupling to the Z boson. Similar to the inert doublet model, the λ_5 term in the scalar potential in Eq. (4) splits the real and imaginary parts of the Φ^0 field. If the mass splitting is large enough, the inelastic scattering through the Z boson exchange is kinematically forbidden in direct detection experiments. In this case the new states could be within reach of the LHC. To ensure a large enough mass splitting, the coupling λ_5 cannot be too small. Accordingly, from Eq. (17), it follows that the Yukawa couplings have to be smaller, suppressing the lepton flavor violating effects.

VII. CONCLUSION

In this account we propose a TeV-scale model for neutrino masses based only on the gauge symmetry and the renormalizability of the SM. The model employs fermion quintuplets with zero hypercharge, which in isolation correspond to cosmological minimal dark matter candidate. Such TeV-scale fermions in conjunction with the scalar quadruplet can generate neutrino masses both by the tree-level contributions in Fig. 1 and the loop-level contributions in Fig. 2. Also, such states are expected to be abundantly produced at the LHC, and the distinctive signatures could come from doubly-charged components of the fermionic quintuplets. For 5 fb^{-1} of already accumulated integrated luminosity at the LHC ($\sqrt{s} = 7$ TeV), there could be ~ 500 produced doubly-charged Σ^{++} or $\Sigma^{+\pm}$ fermions, with mass $M_\Sigma = 400$ GeV. The decays of these states to SM charged

![Graph](image)

FIG. 9 (color online). Partial decay widths of Σ^{++} quintuplet lepton for $|V_{l\Sigma}| = 3.5 \times 10^{-7}$, in dependence on heavy quintuplet mass M_Σ.

$$\Gamma(\Sigma^i \rightarrow \Sigma^j \pi^\mp) = \frac{(g^{W\Sigma})_{ij}^2}{\pi} |G_F^2| V_{ud}^2 f_\pi^2 (\Delta M_{ij})^3$$

$$\times \sqrt{1 - \frac{m_{\pi}^2}{(\Delta M_{ij})^2}},$$

(40)

where $(g^{W\Sigma})_{ij}$ is given in Eq. (28). These decays are suppressed by small mass differences.

In Figs. 7–9 we plot the partial widths of the decays of Σ^0, Σ^+ and Σ^{++} given in Eqs. (35)–(37), respectively. Figures 8 and 9 also show pion final state decays from Eq. (40). We list the representative final states of these decays in Table II, which includes same-sign dilepton events as distinguished signatures at the LHC.

VI. POSSIBLE ROLE AS DARK MATTER

The fermionic quintuplet of this paper was selected previously as a viable MDM candidate in [1]. To employ it as a seesaw mediator requires additional scalar multiplets, which makes the neutral component of the quintuplet unstable. If we employ a Z_2 symmetry under which $\Sigma \rightarrow -\Sigma$, $\Phi \rightarrow -\Phi$ and all SM fields are unchanged, the lightest component of the Σ and Φ multiplets is again a DM candidate. The quartic λ_5 term in the scalar potential is still allowed so that neutrinos acquire radiatively generated masses given by Eq. (17).

If Σ^0 is the DM particle, its mass is fixed by the relic abundance to the value $M_\Sigma = 10$ TeV in [1]. The choice $\lambda_5 = 10^{-7}$ gives enough suppression to have small neutrino masses with large Yukawas, $Y \sim 0.1$. In this part of the parameter space the model could have interesting lepton flavor violating effects like in [8].

The neutral component of the scalar multiplet Φ could also be a DM particle, despite its tree-level coupling to the Z boson. Similar to the inert doublet model, the λ_5 term in the scalar potential in Eq. (4) splits the real and imaginary parts of the Φ^0 field. If the mass splitting is large enough, the inelastic scattering through the Z boson exchange is kinematically forbidden in direct detection experiments. In this case the new states could be within reach of the LHC. To ensure a large enough mass splitting, the coupling λ_5 cannot be too small. Accordingly, from Eq. (17), it follows that the Yukawa couplings have to be smaller, suppressing the lepton flavor violating effects.

VII. CONCLUSION

In this account we propose a TeV-scale model for neutrino masses based only on the gauge symmetry and the renormalizability of the SM. The model employs fermion quintuplets with zero hypercharge, which in isolation correspond to cosmological minimal dark matter candidate. Such TeV-scale fermions in conjunction with the scalar quadruplet can generate neutrino masses both by the tree-level contributions in Fig. 1 and the loop-level contributions in Fig. 2. Also, such states are expected to be abundantly produced at the LHC, and the distinctive signatures could come from doubly-charged components of the fermionic quintuplets. For 5 fb^{-1} of already accumulated integrated luminosity at the LHC ($\sqrt{s} = 7$ TeV), there could be ~ 500 produced doubly-charged Σ^{++} or $\Sigma^{+\pm}$ fermions, with mass $M_\Sigma = 400$ GeV. The decays of these states to SM charged

| Table II. Decays of exotic leptons to SM charged leptons, including multilepton and same-sign dilepton events, together with their branching ratios (restricted to $l = e, \mu$) and for $M_\Sigma = 400$ GeV. |
|--|--|--|--|---|--|--|
| $\Sigma^{++} \rightarrow \ell^+ W^-$ | (0.66) | $\ell^- W^{-}$ | (0.06) | $\ell^+ W^+ Z^0$ | (0.30) | $\ell^- W^-$ | (0.30) |
| $\Sigma^- \rightarrow \ell^- W^+$ | (0.66) | $\ell^+ W^- Z^0$ | (0.06) | $\ell^- Z^0 W^-$ | (0.04) | $\ell^+ Z^0 W^-$ | (0.02) |
| $\Sigma^0 \rightarrow \ell^- W^+$ | (0.06) | $\ell^+ W^- Z^0$ | (0.04) | $\ell^- Z^0 W^-$ | (0.04) | $\ell^+ Z^0 W^-$ | (0.02) |
| $\Sigma^0 \rightarrow \ell^+ W^-$ | (0.30) | $\ell^- W^- Z^0$ | (0.02) | $\ell^+ Z^0 W^-$ | (0.02) | $\ell^- Z^0 W^+$ | (0.02) |
leptons have an interesting multilepton signature. There are, in addition, same-sign dilepton events displayed in Table II. These events have a negligible SM background, as demonstrated [18,19] in generic new physics scenario with lepton number violation. In particular, the detailed studies of fermionic triplets from type III seesaw scenario [17,20] apply to our case of fermionic quintuplets. The multilepton events listed in our Table II are in direct correspondence with the items from the type III seesaw given in Table 13 of Ref. [20], to which also the analysis in [17] refers. The signals that are good for the discovery correspond to a relatively high signal rate and small SM background, which is calculated by MADGRAPH [21]. In order to compare the signal and SM background cross sections, we assume a particular choice of

\[\frac{c}{m} \]

restricted to

\[KUMERIČKI, PICEK, AND RADOVČIĆ PHYSICAL REVIEW D 86, 013006 (2012) \]

\[(i) \, pp \rightarrow \Sigma^+ \Sigma^+ \rightarrow (\ell^+ W^+)(\ell^- Z^0), \]

having a relatively high signal rate (1.1 fb with respect to the SM background of 0.8 fb). The classes (iii) and (iv) lead to signals elaborately detailed in [17,20], which can be rescaled to infer on the LHC discovery reach.

The model of neutrino mass generation presented here represents a generalization of the fermion triplet seesaw mediator from the type III seesaw model to a hypercharge-zero quintuplet, which we postponed at the time of elaborating first its nonzero hypercharge variant in [6]. The hypercharge-zero quintuplet has been proposed subsequently in [22]. One can question the possibility to distinguish between the present hypercharge-zero quintuplet with a doubly-charged component and previously considered nonzero hypercharge states [6,7], which provide spectacular falsifiable triply-charged signatures. Consequently, a nonobservation of the latter would put in a forefront the hypercharge-zero quintuplets, which provide their neutral components as potential MDM candidates. However, a blow to the stability of such DM comes from the presence of additional fields needed to generate the described small neutrino masses. As usual, the stability can be restored by introducing the discrete symmetry under which the new states are odd, in which case neutrinos get mass only from radiative contributions.

ACKNOWLEDGMENTS

This work is supported by the Croatian Ministry of Science, Education, and Sports under Contract No. 119-0982930-1016.
