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We compute electron-capture rates for 54,56Fe and Ge isotopes using a self-consistent microscopic approach.
The single-nucleon basis and the occupation factors in the target nucleus are calculated in the finite-temperature
Skyrme Hartree-Fock model, and the J π = 0±, 1±, 2± charge-exchange transitions are determined in the finite-
temperature random-phase approximation (RPA). The scheme is self-consistent; i.e., both the Hartree-Fock
and the RPA equations are based on the same Skyrme functional. Several interactions are used in order to
provide a theoretical uncertainty on the electron-capture rates for different astrophysical conditions. Comparing
electron-capture rates obtained either with different Skyrme sets or with different available models indicates that
differences up to one to two orders of magnitude can arise.
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I. INTRODUCTION

Weak interaction processes play a pivotal role in the life
of a star, especially during the late stages of the evolution
of massive stars [1,2]. During the pre-supernova stage, the
competition between β decay,

(Z,N ) −→ (Z + 1, N − 1) + e− + ν̄e, (1)

and electron capture,

(Z,N ) + e− −→ (Z − 1, N + 1) + νe, (2)

determines the core entropy and the electron fraction Ye, which
defines the mass of the inner core. Such a core, at the end of
the hydrostatic chain of nuclear burning, is stabilized by the
electron degeneracy pressure, until its mass does not exceed the
Chandrasekhar mass MCh ∝ Y 2

e (MCh ≈ 1.4M�). If this mass
limit is exceeded, the electron pressure is no longer able to
sustain the core, which collapses under the gravitational force,
starting the so-called core-collapse supernova. During the
supernova core collapse, electron capture on free protons and
on exotic nuclei controls the neutronization phase, until the for-
mation of an almost deleptonized central compact object, the
neutron star. For matter densities ρ � 1011 g cm−3, neutrinos
escape from the star, carrying away energy and contributing
toward a decrease in the lepton number, thus accelerating the
collapse. The rising density increases the neutrino diffusion
time scale and, for densities �1012 g cm−3, neutrinos become
trapped, driving the system toward β equilibrium.

Electron capture and β decays are dominated by Gamow-
Teller (GT) and Fermi transitions. While the cross section for
the electron capture on free protons is well known, computing
that on nuclei is not a straightforward task in nuclear structure.
For initial Ye ≈ 0.5, electron capture dominates over β decay,
since the degenerate gas of electrons blocks the phase space
available for decay, but the two processes become competitive
as the matter becomes more neutron rich [2,3]. Moreover,
because of finite-temperature effects, excited states can be
thermally populated and their connection to the low-lying

states in the daughter nucleus by the GT transitions can
contribute to the β-decay rates. In the early stage of
the collapse, for densities below a few 1010 g cm−3 and
temperatures between 300 and 800 keV, electron capture
mainly occurs on nuclei with mass number A � 60. Therefore,
the electron chemical potential μe is of the same order of
magnitude as the nuclear Q value, and electron-capture
cross sections are sensitive to the details of the GT strength
distribution. With increasing density and temperature during
collapse, the electron capture occurs on nuclei with A > 65,
and the electron chemical potential is higher than the nuclear
Q value. Thus, the capture rates are mainly determined by
the centroid and the total GT strength. Around neutrino
trapping, the electron chemical potential reaches values of
around 30 MeV, and the forbidden transitions can no longer
be neglected [2,3].

Because of the great importance of the weak interaction
rates in astrophysical applications, they were extensively
investigated within various approaches. For about fifteen years,
the reference rates for electron and positron capture, β decay,
and positron emission for nuclei in 21 � A � 60 were those
computed by Fuller, Fowler, and Newman [4]. They were
based on the independent-particle model (IPM) using exper-
imental information whenever available. New experimental
data carried out in the iron mass region (see, e.g., Ref. [5])
showed that the GT transitions are quenched with respect to the
calculations based on the IPM and fragmented over many states
in the daughter nucleus, because of the effect of the residual
interaction which is neglected in the IPM. Then, Caurier et al.
[6] performed shell-model (SM) calculations for iron group
nuclei. Their results agreed quite well with the data, showing
that the SM was a good tool to calculate electron-capture rates.
Evaluation of electron-capture rates has been improved for Ni
isotopes with the use of the new SM Hamiltonian, GXPF1J [7].
The calculations performed in Ref. [7] reproduce quite well
the observed GT+ strengths and the capture rates obtained by
experimental B(GT+) values, especially in 60Ni, as well as
the experimental energy position of the GT strength in 62Ni
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and the experimental GT strength of the transition 64Ni →
64Co. The large-scale shell model Monte Carlo (SMMC)
method was applied to compute β+ and β− decay rates for
stellar conditions for more than 100 nuclei in the mass range
A = 45–65 [8–10]. Using the improved rates, pre-supernova
models were recomputed by Heger et al. [11], who found
changes in the core Ye and entropy, which, in turn, can have
important consequences for the supernova and nucleosynthesis
evolution. However, the SM diagonalization cannot be applied
for nuclei beyond the pf shell, if configuration mixing and
finite-temperature effects are included, because of the huge
dimension of the model space involved. To overcome this
problem, Langanke et al. [12] proposed the so-called hybrid
model. In this approach, the calculation of the capture rates is
performed in two steps: (i) the nucleus is described by a Slater
determinant with temperature-dependent occupation numbers,
determined within the SMMC framework; (ii) the capture rates
are calculated from the GT strength distribution computed
with the random-phase approximation (RPA) built on top
of the Slater determinant. Using the SMMC + RPA hybrid
model, electron-capture rates for about 200 nuclei in the mass
range A = 65–112 were computed, for typical densities and
temperatures encountered in supernova collapse [13]. Even
if the electron-capture rates on free protons are larger than
those on nuclei, the free protons abundance is low during
collapse. Therefore, it has been found that the electron capture
on nuclei dominates over the capture on free protons during the
collapse phase, leading to significant changes in the supernova
dynamics and collapse trajectories (see, e.g., Refs. [2,3]).

The SMMC + RPA hybrid model has been more recently
applied to compute electron-capture rates for 170 additional
nuclei, up to A = 120 [14]. Furthermore, in Ref. [14], the
calculation of the electron-capture rates for stellar conditions
has been extended to an additional 2200 nuclei in the range
Z = 28–70 and N = 40–160. Because of the prohibitive com-
putation time required by the SMMC calculations, Juodagalvis
et al. [14] proposed a Fermi-Dirac parametrization to compute
the fractional occupation number of the various shells in the
ground state of the parent nucleus.

Recently, mean-field-based models have been used for
the prediction of electron-capture cross sections and rates.
A finite-temperature charge-exchange RPA model based on
Skyrme functionals has been applied in Ref. [15] to predict
electron-capture cross sections using several interactions. A
similar approach, extended to the relativistic framework, has
been employed in Ref. [16]. In the latter work, electron-capture
rates for astrophysical conditions have also been computed,
and similar trends for both cross sections and rates have been
observed with respect to previous calculations. However, in
Ref. [16], only one functional, the DD-ME2 parametriza-
tion, has been used. A thermal quasi-particle RPA approach
(TQRPA), based on the Woods-Saxon potential and separable
multipole and spin-multipole particle-hole interactions, has
been applied in Ref. [17]. The finite-temperature effects are
taken into account using the thermofield dynamics formalism.
Although not as consistent as the one in Refs. [15] and [16],
this approach allows one to account for effects beyond the
RPA level. In this family of models, the prediction of electron-
capture rates using Skyrme interactions remains to be done.

In the present work we use the self-consistent model
introduced in Ref. [15], based on finite-temperature charge-
exchange RPA, to predict electron-capture rates. The single-
nucleon basis and the occupation factors in the target nucleus
are calculated in the finite-temperature Skyrme Hartree-Fock
(FTSHF) model, and the charge-exchange transitions are de-
termined in the finite-temperature RPA (FTRPA) framework.
The specificity and the advantage of this approach is that
a FTSHF + FTRPA model is completely determined by the
choice of the nuclear interaction employed; i.e., both the
single-nucleon Hartree-Fock equations and the RPA matrix
equations are based on the same Skyrme functional. Therefore,
the calculation can be extended over arbitrary mass regions of
the nuclide chart without additional assumptions or adjustment
of the parameters. This represents a step forward toward a
universal description of the electron-capture rates. The use
of several Skyrme functionals with various properties also
allows one to estimate the theoretical uncertainty on the
electron-capture cross section and rates, which is of relevant
importance for astrophysical application. In this work, we also
aim at estimating this uncertainty.

The paper is organized as follows: in Sec. II the framework
and the formalism of the FTSHF + charge-exchange FTRPA
to calculate cross sections for electron capture will be recalled.
In Sec. III and IV the cross sections and the rates for electron
capture on 54,56Fe and on neutron-rich germanium isotopes
will be investigated. Finally, in Sec. V, we will give our
conclusions and outlook.

II. FORMALISM

The formalism for the electron-capture cross section calcu-
lation with the Skyrme FTRPA approach has been detailed in
Ref. [15]. Therefore, here, we only recall the main points, and
we shall focus on the calculation of the electron-capture rates.

For the purposes of the present study, the Hartree-Fock (HF)
model based on Skyrme functionals at finite temperature [18]
is used to determine the single-nucleon spectra, occupation
probabilities, and wave functions of the initial state of target
nuclei. The occupation numbers are introduced by Fermi
distributions, and the chemical potential is calculated using
the particle conservation equation. For the description of
the transitions relevant in electron capture on nuclei, the
charge-exchange FTRPA is used. The effective interactions
in the FTSHF + FTRPA are included in a consistent way; i.e.,
both in the ground-state calculations and in the equations of
FTRPA the same Skyrme functional has been employed. The
FTRPA equations are derived in the matrix form adopted from
Ref. [19].

The nuclei that will be considered in this work contribute to
stellar electron-capture rates in the temperature interval 0.5 <

T < 2 MeV. The expression for the total cross section for
electron capture on a nucleus (Z,N) at temperature T reads

σ (Ee, T ) = G2
F

2π

∑
i

F (Z,Ee)
(2Ji + 1)e−Ei/(kT )

G(Z,A, T )

×
∑
f,J

(Ee − Q + Ei − Ef )2 |〈i|ÔJ |f 〉|2
(2Ji + 1)

, (3)
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where GF = GF /(h̄c)2 is the Fermi coupling constant, Ee

is the energy of the incoming electron, Q is the Q value
of the reaction, J is the total angular momentum, and ÔJ

is the generic notation for the charge M̂J , longitudinal
L̂J , transverse electric T̂ EL

J , and transverse magnetic T̂ MAG
J

multipole operators. Detailed expressions for these operators
are given in Refs. [20–22]. The sum over initial states includes
a thermal average of levels, with the corresponding partition
function G(Z,A, T ). The Fermi function F (Z,Ee) corrects
the cross section for the distortion of the electron wave
function by the Coulomb field of the nucleus [23]. The finite
temperature induces the thermal population of excited states
in the parent nucleus (labeled as “i”), which are connected by
the multipole operators to many levels in the daughter nucleus
(labeled as “f ”). The calculation of all possible transitions is
computationally prohibitive; therefore, the evaluation of the
total cross section for electron capture is usually simplified
[4,8,12] by adopting the Brink hypothesis, that is, by assuming
that the strength distribution of the multipole operators in the
daughter nucleus is the same for all initial states and shifted
by the excitation energy of the initial state. By using this
approximation, the sum over final states becomes independent
of the initial state and the sum over the Boltzmann weights
cancels the partition function. The Brink hypothesis is a valid
approximation when the temperature and the density are high
enough so that many states contribute and variations in the
low-energy transition strength cancel out. As was previously
done in the calculation of stellar electron capture [12,15], we
apply the Brink hypothesis to the initial state, which represents
the thermal average of many-body states in the parent nucleus
at temperature T . With this approximation, the final expression
for the total electron-capture cross section at T reads [15]

σ (Ee, T ) = G2
F

2π
F (Z,Ee)

∑
f

(Ee − Q − ωf )2
∑

J

SJ (ωf , T ),

(4)

where ωf is the excitation energy in the daughter nucleus,
and SJ is the discrete finite-temperature RPA response for
the multipole operator ÔJ . In order to evaluate the electron-
capture cross sections of Eq. (4), for each transition operator
ÔJ the matrix elements between the initial state of the
even-even (N,Z) target nucleus and the final state in the
corresponding (N + 1, Z − 1) nucleus are expressed in terms
of single-particle matrix elements between the single-particle
states and the corresponding FTRPA amplitudes (see Eq. (30)
and Sec. II A in Ref. [15]):

〈Jf ‖ÔJ ‖Ji〉 =
∑
αβ

〈α‖ÔJ ‖β〉(δρ(+)J
αβ − δρ

(−)J
αβ

)
, (5)

where the finite-temperature forward- and backward-going
amplitudes δρ

(±)
αβ are related to the corresponding zero-

temperature amplitudes X and Y through

δρ
(+)
αβ = Xαβfβ(1 − fα) + Yβαfα(1 − fβ), (6)

δρ
(−)
αβ = Yαβfβ(1 − fα) + Xβαfα(1 − fβ). (7)

The nucleon Fermi-Dirac function,

fα = 1

1 + e
εα−μ

kB T

, (8)

where εα are the single-nucleon energies and μ is the chemical
potential, satisfies

∑
α fα = A.

It should be noted that the condition whether electron
capture on a specific target nucleus releases energy (Q > 0) or
requires additional external input of energy (Q < 0) constrains
the energy available to reach various excited states. In order
to minimize uncertainties coming from the calculations of the
Q value, we compute it from the experimental masses [24]:
Q = Mf − Mi (where Mi and Mf are the masses of the parent
and daughter nucleus, respectively), as in Ref. [15].

The electron-capture rate is then computed from the
electron-capture cross section [12],

λec(T ) [s−1] = V 2
ud g2

V c

π2(h̄c)3

∫ ∞

Emin

σ (Ee, T ) Ee pec fe(Ee) dEe,

(9)

where Vud is the up-down element in the Cabibbo-Kobayashi-
Maskawa (CKM) quark mixing matrix, gV = 1 is the weak
vector coupling constant, Emin is the threshold energy for
electron capture, and pec = (E2

e − m2
ec

4)1/2 is the electron
momentum. Under stellar conditions encountered in core-
collapse supernova, the electron distribution function fe is
well represented by a Fermi-Dirac distribution,

fe = 1

1 + e
Ee−μe
kB T

, (10)

where the electron chemical potential μe is determined from
the baryon density ρ by inverting the relation:

ρYe = 1

π2NA

1

(h̄c)3

∫ ∞

0
[fe(Ee) − fe+ (Ee)] (pec)2 d(pec),

(11)

where NA is Avogadro’s number. The positron distribution
function, fe+ , is given by the Fermi-Dirac distribution,
Eq. (10), as for the electrons, with μe+ = −μe. We assume
that the phase space is not blocked by neutrinos, i.e., we set
fν = 0, since neutrinos are expected to escape from the star at
least in the first stage of core collapse.

III. ELECTRON-CAPTURE CROSS SECTIONS

In this section we present the results for the electron-capture
cross sections on 54,56Fe and A = 70–80 Ge isotopes, obtained
in the FTSHF + FTRPA model. We compare our results with
those calculated from other approaches. In this paper, the
analysis is performed for a representative set of Skyrme
functionals: SLy4 [25], SGII [26], SkM* [27], and BSk17 [28].
Starting from the original Skyrme functional [29], more than
100 different Skyrme parametrizations have been proposed,
often with different subsets of terms accounting for additional
density or momentum dependencies of the interaction. Since
in the present approach both the Hartree-Fock equations and
the RPA matrix equations are based on the same Skyrme
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functional, the model is completely determined by the choice
of the functional. However, since low-lying states are quite
sensitive to the details of the single-particle spectra around
the Fermi surface and those details cannot be easily attributed
to a single feature of the Skyrme functional, it is difficult to
determine which Skyrme force is preferable. Therefore, we
have singled out a few parameter sets, among those which
have been widely used, in order to provide an estimate of the
theoretical uncertainty inherent in the method. To be more
precise, SkM* is a typical example of first-generation Skyrme
sets, SGII is its descendant and it is supposed to give a better
description of spin modes, SLy4 is one of the well-known
last-generation Lyon sets, and BSk17 is the functional which
reproduces so far at best the empirical masses. We have also
checked that the energy of the peak of the GT+ for 56Fe
obtained with the selected Skyrme forces lies within or rather
close to the experimental range [5].

In Ref. [15], electron-capture cross sections for selected
nuclei in the iron mass region and for neutron-rich Ge isotopes
were already computed for different Skyrme interactions.
Here, in addition, we perform a more systematic comparison
with other calculations in the literature regarding the depen-
dence of the cross sections on the temperature and the neutron
excess in Fe and Ge nuclei.

A. Iron isotopes

In Fig. 1 the electron-capture cross sections for 54,56Fe
for T = 0.5, 1.0, and 2.0 MeV are displayed as a function
of the incident electron energy. The results for the Skyrme
forces SLy4, SGII, SkM*, and BSk17 are shown together
with those obtained by the SMMC [30] and the FTRRPA [16]
calculations. We first notice that the threshold for the electron
capture is slightly shifted toward lower electron energies when
the temperature increases. We also note the low electron energy
threshold in the case of 54Fe. This is due to the small Q value

10
-3

10
-2

10
-1

10
0

10
1

10
2

10
3

σ 
 [

10
-4

2  c
m

-2
]

SLy4
SGII
SkM*
BSk17
SMMC
FTRRPA

0 5 10 15 20 2510
-3

10
-2

10
-1

10
0

10
1

σ 
 [

10
-4

2  c
m

-2
]

0 5 10 15 20 25
E

e
  [MeV]

0 5 10 15 20 25 30

T = 0.5 MeV T = 1.0 MeV T = 2.0 MeV

54
Fe

56
Fe

FIG. 1. (Color online) Electron-capture cross sections for 54,56Fe
for various temperatures as a function of the incident electron
energy, for the Skyrme forces SLy4, SGII, SkM*, and BSk17. The
FTSHF + RPA results are compared with cross sections obtained by
the SMMC [30] and the FTRRPA [16] calculations.

of the reaction 54Fe (e−, νe)54Mn: Q = −0.697 MeV, while
for 56Fe (e−, νe)56Mn the nuclear Q value of the reaction is
Q = −3.696 MeV. In all the calculations for the cross sections
presented here, all multipole transitions Jπ = 0±, 1±, and 2±
have been considered, while the SMMC calculations include
only the GT operator. However, it has been noticed (see,
e.g., Fig. 7 in Ref. [15] or Fig. 3 in Ref. [16]) that in the
case of 56Fe, up to 30 MeV, the cross section is completely
dominated by the 1+ transition. Note also that in Ref. [30]
only the 0h̄ω GT transition strength is taken into account
and not the total strength in the 1+ channel. Moreover, the
quenching of the total GT strength, experimentally observed,
has been reproduced in Ref. [30] by renormalizing the GT
matrix elements by a factor 0.8. This is equivalent to reducing
the axial-vector coupling constant from its free-nucleon value
gA = 1.262 to gA = 1.0, as has been done in Ref. [15] and
in the present work. As already pointed out in Ref. [15], the
cross sections in Fig. 1 exhibit a sharp increase of several
orders of magnitude within the first few MeV above threshold,
reflecting the trend of the GT+ distribution, while for electron
energy larger than 10 MeV the increase becomes more gradual.
Even if the general behavior of the cross sections as a function
of the electron energy is in agreement with the SMMC and
FTRRPA calculations, the absolute values differ by up to
one order of magnitude. Specifically, in the case of 54Fe, the
cross sections calculated in the FTSHF + FTRPA model tend
to be larger than those calculated by the SMMC method for
electron energies Ee � 5 MeV. On the other hand, our results
are quite close to those computed in the FTRRPA framework.
The smaller discrepancy at high electron energy might come
from the fact that also in Ref. [16] all the multipole transitions
up to the 2± transitions are included. In the case of 56Fe,
the cross sections calculated in the FTSHF + FTRPA model
are generally smaller than those computed by the SMMC
model at low electron energy, while at high electron energy
(Ee � 10 MeV), the SMMC cross sections are smaller. This
may be due to the contribution of higher multipoles, which
become important at high electron energy. It has to be noticed
that since at low electron energies the cross sections are
sensitive to the details of the GT distributions, one expects
the SMMC results to be more accurate. Our calculations at
T =1 and 2 MeV are generally smaller than those obtained in
the FTRRPA framework for Ee � 15 MeV.

B. Germanium isotopes

While the electron capture on iron-group nuclei is important
in the pre-supernova phase and in the first phase of collapse,
at higher densities and temperatures, electron capture also
occurs on heavier and neutron-rich nuclei. In the IPM picture,
the GT transitions are forbidden for nuclei with Z < 40 and
N � 40 [31]. However, it has been shown that GT transitions
for these nuclei are unblocked by finite-temperature effects. In
Ref. [32], a detailed investigation within the RPA approach
was performed, showing that GT transitions are thermally
unblocked at T ∼ 1.5 MeV. Thermal excitations can indeed
promote protons into the g9/2 orbital or remove neutrons from
the pf shells, reallowing GT transitions. Another unblocking
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FIG. 2. (Color online) Electron-capture cross sections for
76,78,80Ge for various temperatures as a function of the incident
electron energy, for the Skyrme forces SLy4, SGII, SkM*, and BSk17.
For comparison, the cross sections obtained by the SMMC + RPA
[12] and the TQRPA [17] calculations are also shown.

effect, already present at lower temperatures (T ∼ 0.5 MeV),
is due to configuration mixing between the sdg shell with the
pf shell induced by the residual interaction. Within the hybrid
model, Langanke et al. [12] showed that GT transitions can
be unblocked by the configuration mixing in the temperature
range T ∼ 0.5–1.3 MeV, which is relevant for supernova
collapse.

In Fig. 2, the electron-capture cross sections for 76,78,80Ge
are displayed for T = 0.5, 0.9, and 1.3 MeV as a function of
the electron energy, together with the results from the hybrid
model [12] for 76Ge and T = 0.5 and 1.3 MeV, and from
the TQRPA [17] calculations. In Fig. 3 the FTSHF + FTRPA
results for 76,78Ge are compared with those obtained in
the FTRRPA [16] calculations, for T = 1 and 2 MeV. In
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FIG. 3. (Color online) Electron-capture crosssections for 76,78Ge
for T = 1 and 2 MeV, as a function of the incident electron energy, for
the Skyrme forces SLy4, SGII, SkM*, and BSk17. For comparison,
the cross sections obtained by the FTRRPA [16] calculations are also
shown.
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FIG. 4. (Color online) Occupation numbers in 76Ge as a function
of temperature for the (a) 1f7/2 and the (b) 1g9/2 proton orbitals and
for the (c) 1f5/2 and the (d) 1g7/2 neutron orbitals. The occupation
numbers for the Skyrme forces SLy4, SGII, SkM*, and BSk17 are
compared with those obtained by the SMMC and TQRPA models.

both Figs. 2 and 3, the FTSHF + FTRPA cross sections are
computed by employing the SLy4, SGII, SkM*, and BSk17
functionals. All the models include the multipole transitions
Jπ = 0±, 1±, and 2±. The spread of the values obtained with
the Skyrme parametrizations differs within an order of magni-
tude. In both Figs. 2 and 3, we note that the FTSHF + FTRPA
results are generally smaller than those calculated by other
models. The discrepancy is reduced at high electron energies,
since at those energies the cross sections are less sensitive to
the details of the GT distributions. The strong dependence of
the cross sections on the temperature for low incident electron
energies corresponds to the thermal unblocking (see, e.g.,
Figs. 1 and 2 of Ref. [15]). To investigate the differences
pointed out by Fig. 2, we consider the single-particle states
calculated in the following three models: FTSHF + FTRPA,
SMMC + RPA, and TQRPA. In Fig. 4 the occupation numbers
in the illustrative case of 76Ge are displayed as a function of
temperature for the 1f7/2 [panel (a)] and the 1g9/2 [panel
(b)] proton orbitals and for the 1f5/2 [panel (c)] and the
1g7/2 [panel(d)] neutron orbitals. We compare the occupation
numbers for the Skyrme forces SLy4, SGII, SkM*, and BSk17
with those obtained by the SMMC and TQRPA models.
We notice that, at very low temperatures, the transition from
the 1g

p

9/2 to the 1gn
7/2 orbital is possible in the SMMC and in

the TQRPA models, while it does not give a contribution in the
HF case because of Pauli blocking. Indeed, the 1g

p

9/2 orbital
is located about 5 MeV above the Fermi level: with SLy4,
at T = 0, the proton Fermi energy (i.e., the proton chemical
potential) is −9.4 MeV while the energy of the 1g

p

9/2 state
is −5 MeV. Therefore, we expect it not to be populated at
low temperatures and thus to give a small contribution to the
total transition probability. On the other hand, SM calculations
include correlations beyond particle-hole excitation and can
predict a population of the 1g

p

9/2 state at zero temperature.
This behavior can therefore explain the smaller cross sections
observed in Fig. 2 for the FTSHF + FTRPA calculations with
respect to the SMMC and the TQRPA calculations.
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FIG. 5. (Color online) Electron-capture cross sections for Ge
A = 70–80 isotopes for various temperatures as a function of the
incident electron energy, for the Skyrme forces SLy4, SGII, SkM*,
and BSk17. The dotted lines correspond to A = 70, while the solid
lines correspond to A = 80, and the other isotopes are between these
boundaries.

In Fig. 5 we illustrate the isotopic dependence of the
electron-capture cross section for Ge isotopes. Cross sections
for even-even Ge nuclei with A = 70–80 are calculated in
the FTSHF + FTRPA model and displayed as functions of the
incident electron energy, for T = 0.5, 1.0, and 2.0 MeV and for
the functionals SLy4, SGII, SkM*, and BSk17. The systematic
decrease with A of the cross section at given electron energy
reflects the increase (in absolute value) of the Q value of the
reaction: from Q = −1.66 MeV, corresponding to the reaction
70Ge (e−, νe)70Ga, to Q = −9.99 MeV, corresponding to
the reaction 80Ge (e−, νe)80Ga. Indeed, more-neutron-rich
isotopes require more energetic electrons to allow the capture
reaction. This implies that, with increasing A, the threshold
for the electron-capture increases, and the cross sections are
smaller at a given electron energy. The same trend has been
observed in Fig. 8 of Ref. [15] for Ni isotopes and in Fig. 4 of
Ref. [30] for iron group isotopes.

We notice the different behavior of the cross sections in
70–74Ge in the case of the SGII force. Indeed, the curves
in Fig. 5 corresponding to 70Ge and 72Ge cross each other,
breaking the trend observed for all other forces. This can be
explained by considering the transition from the 2p

p

3/2 state
to the 2pn

1/2 state. In Fig. 6, the occupation numbers in the
isotopes 70,72,74Ge are shown as a function of temperature, for
the Skyrme forces SLy4 (left panels) and SGII (right panels),
for the 2p3/2 proton orbitals [panels (a) and (b)], and for the
2p1/2 neutron orbitals [panels (c) and (d)]. We observe that,
in the case of SGII, the 2p

p

3/2 orbitals are less populated at
a given temperature with respect to those obtained with the
SLy4 force. The 2p

p

3/2 → 2pn
1/2 transition, therefore, might

give a smaller contribution to the cross sections in the case
of SGII than in the case of SLy4. Moreover, the difference
in the occupation numbers between the isotopes 70Ge and
72Ge is larger in the case of SGII. This may justify a drop in
the cross section for 70Ge with respect to 72Ge and 74Ge for
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FIG. 6. (Color online) Occupation numbers in 70,72,74Ge as a
function of temperature, for the Skyrme forces SLy4 (left panels)
and SGII (right panels), for the [(a) and (b)] 2p3/2 proton orbitals and
for the [(c) and (d)] 2p1/2 neutron orbitals.

T � 1 MeV and, as a consequence, a possible crossing among
the curves. In the case of SLy4, instead, the difference between
the occupation numbers for different isotopes is smaller, and
thus the noncrossing of the results can be preserved.

IV. ELECTRON-CAPTURE RATES

In this section we calculate the electron-capture rates for
Fe and Ge for typical conditions found in the initial phase of
core-collapse supernova. The rates are computed by folding
the FTSHF + FTRPA cross sections with the electron Fermi-
Dirac distribution, according to Eq. (9). The electron chemical
potential entering in Eq. (10) is derived from the matter density
by inverting Eq. (11).

A. Iron isotopes

In Fig. 7 the electron-capture rates for 54,56Fe for different
stellar conditions as functions of temperature are displayed
for the Skyrme forces SLy4, SGII, SkM*, and BSk17. For
comparison, the SMMC [9], the FTRRPA [16], and the TQRPA
[17] calculations are shown. Overall, even if the rates are com-
puted within rather different models, the results have similar
trends. The electron-capture rates increase with temperature
and electron density in all the models shown. While at low
electron densities (ρYe = 107 g cm−3) the increase of the rates
with temperature is up to three orders of magnitude, going
from 0.1 to 1.0 MeV, at higher electron densities the rates
increase more slowly. At ρYe = 1010 g cm−3, the rates are
almost independent of the temperature. Going from 54Fe to
56Fe, the rates decrease, which corresponds to the behavior
of the cross sections (see Fig. 1). In the case of 56Fe, the
FTSHF + FTRPA rates are generally smaller than the FTRRPA
and TQRPA results, reflecting the trend of the cross section.
We also point out that in the SMMC calculations only the 1+
transitions are included.

035805-6



STELLAR ELECTRON-CAPTURE RATES ON NUCLEI . . . PHYSICAL REVIEW C 86, 035805 (2012)

-12

-9

-6

-3

0

lo
g 10

λ ec
  [

s-1
]

SLy4

SGII
SkM*
BSk17
SMMC
FTRRPA
TQRPA -6

-3

0

-1

0

1

2

2

2.5

3

3.5

0 0.5 1 1.5 2
-12

-9

-6

-3

0

0 0.5 1 1.5 2

T  [MeV]

-12

-9

-6

-3

0

0 0.5 1 1.5 2

-9

-6

-3

0

0 0.5 1 1.5 2
1.5

2

2.5

3

log
10

 (ρY
e
) = 7 log

10
 (ρY

e
) = 8 log

10
 (ρY

e
) = 9

54
Fe

56
Fe

log
10

 (ρY
e
) = 10

FIG. 7. (Color online) Electron-capture rates for 54,56Fe for
different stellar conditions as a function of temperature, for the
Skyrme forces SLy4, SGII, SkM*, and BSk17. The FTSHF + RPA
results are compared with the rates obtained with the SMMC [9], the
FTRRPA [16], and the TQRPA [17] calculations.

B. Germanium isotopes

In Fig. 8 we compare, as a function of temperature,
the electron-capture rates for 76,78,80Ge, for different stellar
conditions. In all the calculations, the multipole transitions
Jπ = 0±, 1±, and 2± have been included. We notice the
increasing trend of the rates with increasing temperature and
electron density, as for iron isotopes. At high electron density,
the rates are almost independent of the temperature. Generally
speaking, the FTSHF + FTRPA rates are smaller than the rates
calculated within other approaches, reflecting the behavior of
the cross sections. The discrepancy among the results obtained
in this work and those from other models is reduced with
increasing temperature. In the case of 76Ge, the FTRRPA
results are in good agreement with the FTSHF + FTRPA
results obtained by employing the SGII and the SkM*
functional for ρYe = 1010 g cm−3 and with those obtained
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FIG. 8. (Color online) Same as in Fig. 7, but for 76,78,80Ge.

by employing the BSk17 functional for ρYe = 5 × 1010 and
1011 g cm−3 after 1.2 MeV. The TQRPA results agree very well
with the SkM* ones for ρYe = 5 × 1010 g cm−3. In the case of
78Ge, the FTRRPA rates are very close to those obtained with
the SkM* functional for ρYe = 5 × 1010 and 1011 g cm−3.

It should be noted that with decreasing temperature, the
behavior of the electron-capture rates can be in principle
nonmonotonic: the cross section drops, because of the closure
of the neutron output channels, but the electron density
increases and can favor electron capture. There are therefore
two opposing effects to be balanced in the integral of Eq. (9):
the decrease of the cross section σ with decreasing temperature
and electron energy and the slight increase of the electron
chemical potential μe with decreasing T [see Eq. (11)], which
tends to shift the Fermi function fe to higher electron energy
where the cross section is larger.

The results on Fig. 8 allow us to estimate the uncertainties
generated by the various microscopic models employed.
Within the present Skyrme FTRPA predictions, the spreading
of the capture rate is about one order of magnitude. When
different approaches such as FTRRPA and TQRPA are also
considered, the global uncertainty on the rates is about two
orders of magnitude. The one to two order of magnitude
differences between the Skyrme interaction results and the
TQRPA results may partly arise from the Brink hypothesis.
This hypothesis may not be accurate for the individual
transitions to states at a low excitation energy (on an absolute
scale) in the daughter nucleus, as discussed, e.g., in Ref. [33].
The TQRPA approach avoids this approximation, whereas it
is used in the present work.

In Fig. 9 the electron-capture rates for the A = 70–80
Ge isotopes are displayed as a function of temperature for
the Skyrme functionals SLy4, SGII, SkM*, and BSk17.
The rates increase with increasing temperature, but they are
almost temperature independent at high electron densities.
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and the other isotopes are between these boundaries.
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In accordance with the corresponding cross sections (see
Fig. 5), at a given temperature and electron density, the rates
decrease with increasing A (except in the case of 70–74Ge with
the SGII functional).

V. CONCLUSIONS

Electron-capture rates for stellar conditions have been
calculated within a fully self-consistent approach based on
Skyrme interactions. The method employed is the finite-
temperature Skyrme Hartree-Fock plus finite-temperature
charge-exchange RPA. The only input is the Skyrme inter-
action employed; i.e., both the Skyrme Hartree-Fock and the
RPA equations are based on the same functional. Therefore,
the scheme is self-consistent. Electron-capture cross section
and rate calculations are performed for 54,56Fe and even-even
Ge isotopes in the mass range A = 70–80.

Our results show a similar trend with respect to other
calculations such as the SMMC + RPA, FTRRPA, or TQRPA
models, for both the cross sections and the rates. Generally
speaking, the present method tends to predict rates that are
smaller than those computed from the other approaches. The
variety of Skyrme interactions employed and the comparison
with previous results obtained within different models allow
us to deduce about two orders of magnitude uncertainty
on the electron-capture rates. The spread seems to increase
with the neutron excess and the electron density. It would
be very interesting to compare the capture rates derived
in this framework with those inferred from experimental
measurements of the GT strength (see, e.g., Refs. [34–36]).
This will be considered in a future work.

These results are particularly relevant for astrophysical
applications such as core-collapse supernovae theory. Indeed,
as demonstrated by several numerical simulations [3,11,37],
the evolution of the electron fraction is crucial in supernova
dynamics and energetics. As an example, in Refs. [3,37] it
has been shown that an increase (reduction) of the electron
capture in the denser (outer) regions of the core observed when
implementing the SMMC + RPA rates [12] with respect to the
IPM model ones leads to a shift of the position of the shock
formation inward of about 16% in the core mass and to a 10%
smaller velocity across the shock. Moreover, the parameter
study of Ref. [38] shows that each increase of the rate of
capture by one order of magnitude corresponds roughly to the
same decrease (∼0.1M�) of the mass of the homologous core.

This corroborates the importance of pursuing this study
and generating tables for astrophysical applications, in order
to be able to include the FTSHF + FTRPA rates in a numerical
simulation. The present work paves the way to more systematic
calculations of stellar electron-capture rates. We aim at
providing tables for electron-capture rates for a wide range
of nuclei of astrophysical interest.
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