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The 1S0 pairing gap in isospin-symmetric nuclear matter and finite nuclei is investigated using the chiral
nucleon-nucleon potential at the next-to-next-to-next-to-leading order (N3LO) order in the two-body sector and
the next-to-next-to-leading order (N2LO) order in the three-body sector. To include realistic nuclear forces in the
relativistic Hartree-Bogoliubov (RHB) framework, we employ a separable form of the pairing interaction that
is adjusted to the nuclear matter pairing gap computed with a bare nuclear force. The separable pairing force is
applied to the analysis of pairing properties for several isotopic and isotonic chains of spherical nuclei.
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I. INTRODUCTION

Nuclear energy density functionals (EDF) provide a mi-
croscopic, globally accurate, and yet economic description
of ground-state properties and collective excitations over the
whole nuclide chart. Even though it originates in the effective
interaction between nucleons, a generic density functional is
not necessarily related to any given nucleon-nucleon (NN )
potential and, in fact, some of the most successful modern
functionals are entirely empirical [1]. Of course, it is very
desirable to have a fully microscopic foundation for a universal
density functional, and this is certainly one of the major
challenges in low-energy nuclear structure physics [2].

The EDF approach to nuclear structure is analogous to
Kohn-Sham density functional theory (DFT) and, because it
includes correlations, goes beyond the Hartree-Fock approx-
imation. Kohn-Sham DFT has the advantage of being a local
scheme, but its usefulness crucially depends on our ability to
construct accurate approximations for the most important part
of the functional, that is, the universal exchange-correlation
functional [3].

In a series of recent articles [4–6] concepts of effective
field theory and DFT have been used to derive a microscopic
relativistic EDF-based model of nuclear many-body dynamics
constrained by in-medium QCD sum rules and chiral symme-
try. The density dependence of the effective nucleon-nucleon
couplings in this model (called FKVW in the following) is
determined from the long- and intermediate-range interactions
generated by one- and two-pion exchange processes. They
are computed using in-medium chiral perturbation theory,
explicitly including �(1232) degrees of freedom [7].
Divergent contributions to the nuclear matter energy density,
calculated at the three-loop level, are absorbed by a few contact
terms. These constants are understood to encode unresolved
short-distance dynamics.

The relativistic FKVW model has been employed in studies
of ground-state properties of spherical and deformed nuclei
using the relativistic Hartree-Bogoliubov framework (RHB
[8]). In the description of open-shell nuclei, in particular, a
hybrid model has been used with the FKVW Kohn-Sham
potential in the particle-hole (ph) channel and, like in most

applications of RHB-based models, the pairing part of the
empirical Gogny force [9] in the particle-particle (pp) channel.

Even though this approach has been very successful,
it is not theoretically consistent because of the choice of
the empirical effective interaction in the pp channel. As an
important part of a larger program to develop a framework of
fully microscopic nuclear energy density functionals, much
effort has recently been devoted to designing nonempirical
pairing functionals [10–14].

The aim of this work is to formulate a consistent micro-
scopic framework for open-shell nuclei, in which both the ph
and the pp channels of the effective internucleon interaction
are determined by chiral pion-nucleon dynamics. Thus we con-
sider a separable pp interaction based on a microscopic pairing
interaction constrained by chiral dynamics (see Ref. [15]
for previous calculations involving the next-to-next-to-leading
order [N2LO] chiral potential), combine it with the FKVW
functional in the ph channel, and, employing the corresponding
RHB model, present a study of pairing gaps in isotopic and
isotonic chains of spherical open-shell nuclei.

We use the realistic NN potential developed by the Idaho
group at next-to-next-to-next-to-leading order (N3LO) in the
chiral expansion [16] (see also Ref. [17]), and a two-body
density-dependent potential derived from the relevant dia-
grams at the N2LO order in the three-body sector [18] (see also
Refs. [14,19–22] for similar approaches and pertinent details).

The paper is organized as follows. In Sec. II we discuss
results for the pairing gap of nuclear matter in the BCS ap-
proximation. Section III briefly reviews the method introduced
by Duguet [10,23], and later by Tian et al. [24,25], to apply
realistic pairing interactions to calculations of finite nuclei.
In Sec. IV we analyze pairing gaps in spherical nuclei for
several isotopic and isotonic chains. Section V summarizes
the principal results.

II. PAIRING GAP IN A HOMOGENEOUS
INFINITE SYSTEM

The momentum and density-dependent pairing field
�(k, kF ) in infinite matter is determined by the solution of
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the BCS gap equation

�(k, kF )

= − 1

4π2

∫ ∞

0

p2V (p, k)�(p, kF )√
[E(p, kF ) − E(kF , kF )]2 + �(p, kF )2

dp,

(1)

where V (p, k) represents the off-shell pairing potential in
momentum space, E(p, kF ) is the in-medium single-particle
energy, and E(kF , kF ) is the Fermi energy.

The effective force in the pairing channel is, in principle,
generated by the sum of all particle-particle irreducible
Feynman diagrams [26]. In most application to nuclear
and neutron matter, however, only the lowest-order term,
which corresponds to the bare nucleon-nucleon interaction,
is retained [27]. Terms of higher order in the effective pairing
interaction represent screening corrections to the bare force,
caused by medium polarization effects (see Refs. [28,29] and
references therein). In the present analysis we consider only
the bare interaction, while a study of polarization effects will
be carried out in a forthcoming paper.

For the pairing potential V (p, k) we employ the simple
ansatz

V (p, k) = V2B(p, k) + V3B(p, k,m)

� V2B(p, k) + V̄2B(kF , p, k), (2)

where the three-body potential is approximated by an effective
two-body density-dependent potential V̄2B derived by Holt
et al. in Ref. [18]. These authors showed that in the singlet
channel (1S0) the overall effect of V̄2B(kF , p, k) is to reduce the
strong S-wave attraction (cf. Fig. 6 of Ref. [18]). As suggested
in Ref. [18], here we neglect a possible isotopic dependence
that, in any case, is expected to be rather small for the nuclei
considered in the present analysis (see also Ref. [14]). For
both terms in Eq. (2) we follow standard procedures for the
regulator functions and refer the reader to the original papers
for details.

For the single-particle spectrum that appears in the denom-
inator of the gap equation (1) we employ the simple quadratic
form

E(p, kF ) − E(kF , kF ) = p2 − k2
F

2M∗(kF )
. (3)

This approximation should suffice because the momenta p

around kF give the dominant contribution to the integral in
Eq. (1). The effective nucleon mass M∗(kF ) was obtained in
a very recent calculation (Fig. 9 of Ref. [30]), in which the
nuclear energy density functional was derived to first order in
the two- and three-nucleon interactions using a density matrix
expansion.1

Figure 1 displays the pairing gap �(kF , kF ) in symmetric

1In Ref. [30] the two-body interaction comprises long-range one-
and two-pion exchange contributions and a set of contact terms
contributing up to fourth power in momenta (N3LOW potential
developed lowering the cutoff scale to � = 414 MeV). In addition,
the authors employ the leading order chiral three-nucleon interaction
with the corresponding parameters cE , cD , and c1,3,4 adjusted in
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FIG. 1. Pairing gaps in symmetric nuclear matter in the 1S0

channel as functions of the Fermi momentum. The dashed curve
is obtained by including only the two-body (V2B ) chiral interaction,
whereas the solid curve also includes the contribution of three-body
(V3B ) forces. The gaps are compared to those obtained in Ref. [34]
using the Vlowk potential.

nuclear matter as function of the Fermi momentum kF . We
plot results of the complete calculation that include two and
three-body forces (solid curve) and the pairing gap obtained
with only the two-body NN potential at N3LO (dashed curve).
Our results are shown in comparison with those obtained
in Ref. [34] using the Vlowk potential (with single-particle
energies computed in Brueckner-Hartree-Fock theory).

III. MAPPING PROCEDURE

To implement the chiral NN potential at N3LO in the
pairing channel of the RHB framework for finite nuclei,
we adopt the approach introduced by Duguet [23] and later
adopted by Tian et al. [24,25]. In nuclear matter the matrix
element of the pairing force is approximated by an expression
separable in momentum space:

〈k|V 1S0 |k′〉 = −Gp(k)p(k′), (4)

where k and k′ are the relative momenta of the pair. By
assuming a simple Gaussian ansatz p(k) = e−a2k2

, in Ref. [23]
the two parameters G and a were adjusted to reproduce
the density dependence of the pairing gap in infinite matter
at the Fermi surface, as calculated with the AV18 NN

interaction [33]. The same fitting procedure was adopted in
Ref. [24] to adjust the parameters of the Gaussian function
to the pairing gap in nuclear matter computed with a Gogny
force. For the D1S parameterization [9] of the Gogny force,
G = 728 MeV fm3 and a = 0.644 fm. Here we apply the same
procedure to the chiral NN potential at the N3LO order. For
finite nuclei, when the pairing force Eq. (4) is transformed

calculations of few-body systems. Even though the results are in
good agreement with previous calculations [31], one should note that
higher order corrections could have non-negligible effects [32].
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from momentum to coordinate space, it takes the form

V (r1, r2, r ′
1, r ′

2) = Gδ(R − R′)P (r)P (r ′) 1
2 (1 − P σ ),

(5)

where R = 1
2 (r1 + r2) and r = r1 − r2 denote the center of

mass and the relative coordinates, P (r) is the Fourier transform
of p(k),

P (r) = 1

(4πa2)3/2
e−r2/4a2

, (6)

and the factor 1/2(1 − P σ ) projects on the 1S0 channel.
The pairing force has a finite range and, because of the
presence of the factor δ(R − R′), it preserves translational
invariance. Even though δ(R − R′) implies that this force is not
completely separable in coordinate space, the corresponding
antisymmetrized pp matrix elements can be represented as a
sum of a finite number of separable terms, using a method
developed by Talmi and Moshinsky. Using a Moshinsky-type
expansion, the pairing interaction separable in momentum
space was first employed in systematic nonrelativistic HFB
calculations of pairing gaps in semimagic nuclei across the
nuclear chart in Refs. [10,11]. When the nucleon wave
functions are expanded in a harmonic oscillator basis [24,25],
spherical or deformed, the sum converges relatively quickly.
A relatively small number of separable terms reproduces with
high accuracy the result of a calculation performed in the
complete basis.

The parameters of the separable pairing force take the
values G = 892.0 MeV fm3 and a = 0.74 fm for the N3LO
potential and G = 1045.0 MeV fm3 and a = 0.86 fm for
the complete potential V (p, k). Recently a similar approach
was employed in Refs. [11,14], where a low-rank separable
representation was used to reproduce directly Vlowk and V3N

in the 1S0 channel (for V3N the density dependence was
parametrized by a polynomial in the Fermi momentum).
We note that in our case a single-Gaussian ansatz without
explicit density dependence cannot perfectly reproduce the
higher density behavior of the V2B(N3LO) + V3B pairing gap
in symmetric nuclear matter. A slightly better agreement can
be obtained by using a linear combination of three Gaussians
with different widths and amplitudes for p(k), as suggested in
Ref. [24]. In Sec. IV we discuss the relevance of this issue,
showing an explicit comparison between calculations employ-
ing respectively a single-Gaussian or a three-Gaussians ansatz.

IV. RESULTS FOR FINITE NUCLEI

The first study of pairing in finite nuclei with 3N forces was
recently reported in Ref. [14]. Systematic calculations were
performed for the odd-even mass staggering generated using a
microscopic pairing interaction at first order in chiral low-
momentum interactions. Significant repulsive contributions
from the leading chiral 3N forces were found, and it was shown
that combined two- and three-nucleon interactions account for
approximately 70% of the empirical pairing gaps.

In the present analysis, employing the RHB model with
the FKVW functional in the ph channel and the separable
pairing force Eq. (5) in the pp channel, we have calculated the
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FIG. 2. (Color online) Theoretical average neutron pairing gaps
(7) of the even-even isotopes of nickel Z = 28, tin Z = 50, and
lead Z = 82, compared to the empirical values calculated from
experimental masses using Eq. (8) (upper panel). Absolute deviations
of the calculated binding energies from the experimental values [35]
(lower panel).

self-consistent ground-state solutions for several sequences of
isotopes (nickel, tin, and lead) and isotones (N = 28, N = 50
and N = 82). The total binding energies and average pairing
gaps are compared to available data in Figs. 2 and 3. The
experimental masses are from Ref. [35], and the average proton
and neutron gaps [36]

�̄ =
∑

k �kukvk∑
k vkuk

(7)

are compared to empirical values determined using the five-
point formula [37] for even-even nuclei:

�(5)(N0) = − 1
8 [E(N0 + 2) − 4E(N0 + 1) + 6E(N0)

− 4E(N0 − 1) + E(N0 − 2)]. (8)

E(N0) denotes the experimental binding energy of a nucleus
with N0 neutrons (Z0 for protons). In Eq. (7) the sum is over
proton or neutron canonical states, �k is the diagonal matrix
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FIG. 3. (Color online) Same as described in the caption to Fig. 3
but for the chains of isotones N = 28, N = 50, and N = 82.
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FIG. 4. M∗/M as function of the baryon density ρ employed
in the FKVW functional (solid) [6], and the effective mass derived
by Holt et al. [30] from microscopic chiral two- and three-nucleon
interactions using a density-matrix expansion.

element of the pairing field in the canonical state k, and vk

denotes the corresponding eigenvalue of the one-body density
matrix (occupation factor).2

The theoretical gaps shown in Figs. 2 and 3 have been
calculated using the values of the parameters G and a that
correspond to the nuclear matter pairing gaps in Fig. 1.
The gaps calculated by including only the interaction V2B

(blue diamonds) reproduce on a quantitative level the isotopic
and isotonic trends of the empirical gaps. Including the
three-nucleon interaction V3B induces a sizable reduction of
the calculated gaps (green diamonds), in agreement with the
results reported in Ref. [14]. The calculated gaps for the
isotopic chains Z = 28, Z = 50, and Z = 82 indicate that
missing higher order contributions (e.g., particle-vibration
coupling) could play an important role [38,39]. Figure 3
displays similar results for the proton pairing gaps of the
isotonic chains N = 28, N = 50, and N = 82 (we note that
here the contribution of the Coulomb interaction in the pairing
channel is neglected). The subshell closures that appear at
N = 40 in the nickel chain [40], and at Z = 58 in the N = 82
chain [41], lead to a strong reduction of pairing correlations in
the corresponding ground states.

A quantitative interpretation of the results of this work must
take into account at least two additional effects. First, the
effective mass employed in Eq. (3) is not exactly identical to
the one that is used in the ph functional (at leading order in
the nonrelativistic expansion). In the latter case the dominant
contribution is generated by the condensates (solid curve in
Fig. 4), and this leads to a nearly linear density dependence of
the effective mass. The same contribution is present in Holt’s

2This choice for the pairing gaps is, of course, not unique. In
Ref. [12], for instance, the theoretical gap �LCS (lowest canonical
state) corresponds to the diagonal pairing matrix element �i in the
canonical single-particle state φi whose quasiparticle energy is the
lowest, whereas empirical gaps are computed from binding energies
using three-point mass differences centered on odd-mass nuclei.
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FIG. 5. (Color online) Right panel: High-density behavior of the
1S0 pairing gap in symmetric nuclear matter obtained from V2B and
V3B forces (black circles), in comparison with gaps calculated using
a single-Gaussian (green [light gray] diamonds) ansatz and a linear
combination of three Gaussians (orange [drak gray] diamonds) for the
separable pairing interaction introduced in Sec. III. For smaller values
of the Fermi momentum the differences are negligible. Left panel:
Average neutron pairing gaps Eq. (7) for the even-even isotopes of
nickel, tin, and lead, calculated with a single-Gaussian ansatz (green
[light gray] diamonds) and a three-Gaussians ansatz (orange [dark
gray] diamonds) for the separable pairing force, in comparison with
empirical values (red squares).

calculation [30] but within a more consistent framework that,
at present, is not applicable to finite nuclei. In this case the
behavior of the effective mass as function of the baryon density
is slightly different (dashed cure in Fig. 4). In the future this
inconsistency can be cured by improving the FKVW density
functional for finite nuclei.

The second issue is that the simple choice of a single-
Gaussian ansatz introduced in Sec. III cannot perfectly repro-
duce the high-density behavior of the pairing gap �(kF , kF ).
By using a more complex ansatz, that is, a linear combination
of three Gaussians as suggested in Ref. [24], the agreement
with the V2B(N3LO) + V3B pairing gap in nuclear matter can
be improved, and in finite nuclei this leads to an increase of the
pairing gaps by 20% to 30% (cf. Fig. 5 for the isotopic chains).

The exact values of the pairing gaps, of course, are also
affected by the choice of the functional in the ph channel, as it
determines the spectrum of single-nucleon states. In Ref. [42]
we tested the separable pairing interaction Eq. (4) in calcula-
tions of pairing gaps, using different relativistic point-coupling
functionals. The sizable reduction produced by V3B is, of
course, preserved even if in some cases one finds an unrealistic
collapse of pairing correlations caused by large gaps in the
single-particle spectra. The present results are in qualitative
agreement with those obtained in Ref. [14]. On the quantitative
level it is difficult to disentangle the differences that arise from
the different choice of EDFs in the ph channel from effects
caused by the different treatment of the density dependence of
the averaged NNN interaction. A more detailed comparison of
the two approaches is planned for a forthcoming publication.
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The influence of three-body forces on the total binding
energy is much less pronounced, as shown in the lower panels
of Figs. 2 and 3, where we display the absolute deviations of
the calculated binding energies from the experimental values.
On the one hand this is because pairing correlations contribute
much less than the mean-field self-energies to the total binding.
On the other hand this is a well-known characteristic of
a self-consistent calculation in that, for a given nucleus, a
reduction of pairing results in an effective enhancement of the
mean-field contribution to the total energy and vice versa. In
general, the combination of the FKVW ph effective interaction
and the separable pairing force Eq. (5) produces results
for the total binding energies that are comparable to those
obtained with the best empirical nonrelativistic and relativistic
energy density functionals. For the nickel isotopes the largest
deviations are in the region Z ≈ N , where one expects
additional contributions from proton-neutron correlations that
are not included explicitly in the FKVW functional. In the
tin isotopes the calculated masses start deviating from data in
neutron-rich nuclei beyond the major shell closure at N = 82,
whereas for lead nuclei the deviations are most pronounced in
the lightest, neutron-deficient isotopes that are characterized
by soft potentials and shape coexistence.

V. CONCLUSIONS

A consistent microscopic approach to the structure of
open-shell nuclei has been introduced, in which both the ph
and the pp channels of the effective nuclear interaction are fully

determined by chiral pion-nucleon dynamics. By employing
an ansatz for the pairing force that is separable in momentum
space, we have performed an efficient mapping of the chiral
potential in the pairing channel (at the N3LO and N2LO orders
in the two-body and three-body sectors, respectively) to an
effective pp interaction for finite nuclei. The two parameters
of the separable pairing force are adjusted to reproduce the
density dependence of the pairing gaps in symmetric nuclear
matter. The resulting effective pairing interaction thus enables,
on the one hand, the treatment of pairing correlations in
finite nuclei using pairing functionals constrained by chiral
dynamics and, on the other hand, calculations in the pp channel
with a finite-range interaction. The significant advantage is that
the computational cost is greatly reduced when compared to
nonlocal finite-range forces like, for instance, the empirical
Gogny force. A noteworthy result of the present investigation
is that it confirms the important role of three-body forces in
determining pairing gaps in finite nuclei. Additional effects
that could play a role in determining pairing gaps in finite
nuclei need to be further explored.
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