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Recent improvements in the experimental determination of properties of the isovector giant quadrupole
resonance (IVGQR), as demonstrated in the A = 208 mass region, may be instrumental for characterizing
the isovector channel of the effective nuclear interaction. We analyze properties of the IVGQR in 208Pb, using
both macroscopic and microscopic approaches. The microscopic method is based on families of nonrelativistic
and covariant energy density functionals (EDF), characterized by a systematic variation of isoscalar and isovector
properties of the corresponding nuclear matter equations of state. The macroscopic approach yields an explicit
dependence of the nuclear symmetry energy at some subsaturation density, for instance S(ρ = 0.1 fm−3), or the
neutron skin thickness �rnp of a heavy nucleus, on the excitation energies of isoscalar and isovector GQRs.
Using available data it is found that S(ρ = 0.1 fm−3) = 23.3 ± 0.6 MeV. Results obtained with the microscopic
framework confirm the correlation of the �rnp to the isoscalar and isovector GQR energies, as predicted by the
macroscopic model. By exploiting this correlation together with the experimental values for the isoscalar and
isovector GQR energies, we estimate �rnp = 0.14 ± 0.03 fm for 208Pb, and the slope parameter of the symmetry
energy: L = 37 ± 18 MeV.
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I. INTRODUCTION

The isoscalar giant quadrupole resonance (ISGQR) was
discovered in the 1970s in inelastic electron and proton
scattering experiments [1–3]. (For an experimental review
we refer the reader to [4].) Whereas the features of the
low-lying quadrupole excitations depend on the number of
particles outside closed shells [5]—similarly to what occurs
for the low-energy peak appearing in the isoscalar dipole
response of neutron-rich nuclei [6]—the high-energy modes
are expected to vary smoothly with the mass number A.
In the case of the ISGQR, the excitation energy EIS

x can
be estimated—considering the nucleus a quantal harmonic
oscillator (QHO)—to be proportional to the shell energy-gap
h̄ω0 and, if the nuclear effective interaction is also velocity-
dependent, to the nucleon effective mass, namely

√
m/m∗

(cf. Ref. [7]). Because of this proportionality, the comparison
of microscopic self-consistent calculations with experiments
on the ISGQR has provided valuable information on the value
of m∗ [8], one of the most important quantities that characterize
nucleons embedded in the nuclear medium [9].

At variance with the ISGQR, its isovector counterpart has
remained elusive for quite a long time because of lack of selec-
tive experimental probes that can excite this resonance. The
accuracy in the experimental determination of the isovector
giant quadrupole resonance (IVGQR) has been considerably
improved only recently [10]. This important achievement will
enable future measurements in different mass regions. The
excitation energy of the IVGQR, EIV

x , is expected to vary
smoothly with A. Opposite to the ISGQR case, in the IVGQR
neutrons and protons oscillate out of phase. Within the QHO
assumption, the excitation energy of the high energy isovector
mode should be correlated both with the shell gap (h̄ω0) and

with the symmetry energy, as discussed below. Even though
the symmetry energy S(ρ) is a basic component of the nuclear
matter equation of state, it is still significantly undetermined
[11–14]. At saturation density the symmetry energy is usually
expressed in terms of its value, J = S(ρ∞), and density slope,
L = 3ρ∞∂ρS(ρ)|ρ∞ . Also in the IVGQR case, for velocity de-
pendent potentials parametrized in terms of an effective mass,
the shell gap is modified as follows: h̄ω0 → √

m/m∗h̄ω0.
In Sec. II the theoretical basis of the nonrelativistic Skyrme

and covariant energy density functionals (EDFs) is briefly
presented. The formalism used in the present calculations
is also outlined: mainly the random phase approximation
(RPA), and to some extent the features of the particle vibration
coupling (PVC) approach. Section III is divided into two parts.
In Sec. III A we analyze the strength functions and transition
densities of the ISGQR and IVGQR in 208Pb. In addition, the
width of the IVGQR is evaluated using the PVC method. In
Sec. III B we derive a macroscopic model for the dynamics of
the IVGQR. A detailed analysis of excitation energies of the
ISGQR and IVGQR is performed employing two families of
EDFs. Section IV summarizes the results and conclusions.

II. FORMALISM

A. Mean field

Self-consistent mean-field (SCMF) approaches to nuclear
structure have become increasingly complex and accurate.
They represent an approximate realization of density func-
tional theory (DFT) for atomic nuclei. This theory has
been extensively applied to electronic systems, based on
the self-consistent Kohn-Sham scheme [15–17]. In nuclear
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physics different kinds of functionals are used, either local
or nonlocal, based on a nonrelativistic (Skyrme, Gogny) or
covariant representation. A review of modern SCMF models
can be found in Ref. [18]. A common feature of these
methods is their relatively simple structure. They are usually
parametrized with about ten constants adjusted to reproduce a
selected set of ground state data. SCMF models yield accurate
results for basic nuclear properties such as masses, radii and
deformations, extending over the entire chart of nuclides.

Among the nonrelativistic functionals, we employ here a
set based on the Skyrme interaction [19,20]. This interaction
is of zero-range and density-dependent. One of the advantages
of Skyrme functionals lies in the fact that the exchange terms
(Fock terms) are simply proportional to the direct terms.

Covariant SCMF, or relativistic mean-field (RMF) models,
have become another useful tool for the study of nuclear
matter and finite nuclei [21–24]. Nucleons are considered
as Dirac particles coupled to effective mesons. The theory
is Lorentz invariant and therefore preserves causality and
provides a self-consistent description of the spin-orbit term of
the nuclear effective force. Three effective mesons comprise
the minimal set necessary for a quantitative description
of nuclear properties: σ , ω, and ρ—in some cases the δ
meson has also been included (e.g., see Ref. [25]). Different
types of effective Lagrangians have been considered. Well
known examples are the Walecka-type models with linear
and nonlinear σ -meson self-interactions [21], such as the
NL3 model [26] and, more recently, models based on density
dependent finite-range meson-nucleon vertices [27,28], or
zero-range (point-coupling) interactions [29].

B. Random phase approximation

The introduction of a dynamical content into DFT-based
models, leading to a time-dependent theory, is formally
straightforward. In the realm of electronic density functionals,
this scheme is called time-dependent density-functional theory
[30]. Nuclear physics implementations exist, such as the time-
dependent Hartree-Fock or time-dependent RMF. The lin-
earization of the corresponding equations leads to the random
phase approximation (RPA), in which collective nuclear exci-
tations correspond to coherent superpositions of one particle-
one hole (1p-1h) configurations. In particular, RPA is one of
the most successful methods for the description of nuclear
excitations in the energy region of giant resonances (GRs).

We briefly outline the basics of the discrete RPA formalism
[31,32]. The RPA ground state is denoted |0̃〉, and |ν〉 stands
for a generic RPA excited state. For a given multipole operator
F̂JM , the reduced transition probability is defined as

B(EJ : 0̃ → ν) = |〈ν‖F̂J ‖0̃〉|2

=
∣∣∣∣∣∣
∑

ph

(
Xν

ph + Y ν
ph

)〈p‖F̂J ‖h〉
∣∣∣∣∣∣
2

, (1)

where 〈p‖F̂J ‖h〉 is the reduced matrix element of the operator
F̂JM , and Xν

ph and Y ν
ph are the RPA amplitudes. The strength

function is defined by the relation

S(E) =
∑

ν

|〈ν‖F̂J ‖0̃〉|2δ(E − Eν), (2)

where Eν is the eigenenergy associated to the RPA eigenstate
|ν〉. The k moment of the strength function can be evaluated
as follows:

mk =
∫

dEEkS(E) =
∑

ν

|〈ν‖F̂J ‖0̃〉|2Ek
ν . (3)

A useful quantity that provides information on the spatial
features of the excited state is the transition density. Its
integral with the radial part of a multipole operator yields
the corresponding reduced transition amplitude for the given
operator. For an RPA state |ν〉 the radial part of the transition
density, defined by δρν(r) ≡ 〈ν|ρ̂(r)|0̃〉 = δρν(r)Y ∗

JM (r̂), is
calculated using the expression:

δρν(r) = 1√
2J + 1

∑
ph

(
Xν

ph + Y ν
ph

)〈p‖YJ ‖h〉upuh

r2
, (4)

where uα(r) is the HF reduced radial wave function for the
single-particle state α. The summation can run over proton
and neutron states separately, thus defining the isoscalar (IS)
and isovector (IV) transition densities:

δρIS
ν (r) = δρn

ν (r) + δρp
ν (r), δρIV

ν (r) = δρn
ν (r) − δρp

ν (r).

(5)

More details on our implementation of the nonrelativistic and
relativistic RPA models can be found in Refs. [33,34].

The isoscalar and isovector quadrupole operators are
defined by the following relations:

F̂ IS
2M =

A∑
i=1

r2
i Y2M (r̂i), (6)

F̂ IV
2M =

A∑
i=1

r2
i Y2M (r̂i)τz(i). (7)

C. Particle-vibration coupling

The SCMF approach to nuclear structure presents well-
known limitations. For instance, it tends to underestimate
the density of states around the Fermi energy. Moreover,
SCMF models cannot account for spectroscopic factors of
single-particle states, GR widths, and decay properties. The
nuclear field theory [35,36], based on the particle-vibration
coupling (PVC), and introduced already in Ref. [7], provides
a consistent framework for the treatment of beyond mean-field
correlations. This framework allows for correlations between
the static (single particles) and the dynamic (phonons) parts of
the mean field.

Recently, a completely self-consistent approach to the PVC
has been developed within the Skyrme framework [37]. In
this work, we analyze within the same approach the strength
functions of the IVGQR. The coupling to low-lying vibrations
is the principal source of the GR width (the so-called spreading
width) [38–40]. More information on the formalism that is
used for the calculation of strength functions can be found in
Refs. [41,42]. Here we just note the two main contributions to
the spreading width: the self-energy of the particle (hole) that
forms the resonance, i.e., the process in which a particle (hole)
excites and reabsorbs a vibration, and the vertex correction
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that results from the exchange of a phonon between a particle
and a hole (see below).

Finally, it is important to note that the effective mass in the
SCMF approach does not depend on the energy, and represents
an average value for the whole nucleus as a function of the
baryon density. It has been shown [9,43] that taking into
account the dynamical aspects of the nuclear mean-field is
crucial for explaining the enhancement of the effective mass
near the Fermi energy.

III. RESULTS

A. GQRs: Strength functions and transition densities

In this subsection we analyze the main features of the
strength functions associated with the isoscalar and isovector
quadrupole response. Three Skyrme-type functionals, namely
SAMi [44], KDE [45], SkI3 [46], and two relativistic function-
als, NL3 [26] and DD-ME2 [27] are considered. The Skyrme
interactions have different effective masses m∗/m (0.68, 0.76,
0.58, respectively) and yield different values for the neutron
skin thickness �rnp in 208Pb (0.147 fm, 0.155 fm, 0.227 fm,
respectively). The two covariant functionals are based on
(i) finite-range meson exchange with nonlinear self-interaction
terms (NL3) and (ii) density-dependent meson-nucleon ver-
tex functions (DD-ME2). Relativistic mean-field models are
known to yield rather low values for the nonrelativistic equiv-
alent, or Schrödinger effective mass, typically around 0.6m at
saturation density [28,47]. The NL3 functional predicts values
of the neutron skin that are considerably larger compared
to nonrelativistic functionals, e.g., 0.279 fm for 208Pb. The
DD-ME2 functional yields the neutron skin thickness of 208Pb:
0.193 fm.

Figure 1 displays the isoscalar and isovector quadrupole
transition strength functions, obtained by convoluting the RPA
results with Lorentzian functions. The widths are taken in such
a way that the total experimental ISGQR and IVGQR widths
are reproduced in the corresponding medium and high energy
regions, respectively (see Table I).

We start by analyzing the isoscalar quadrupole channel in
Fig. 1(a). All models considered in the present study yield the
ISGQR peak at excitation energies that are higher than the
experimental value indicated by the arrow. It is well known [8]
that the energy of the isoscalar quadrupole resonance is closely
related to the effective nucleon mass m∗/m. Empirical ISGQR
energies in heavy nuclei favor an effective mass close to 1.
The effect of beyond mean-field correlations on the isoscalar
quadrupole strength functions were recently investigated in
Ref. [42] where, by using the SLy5 interaction [48], a spreading
width of the order of 2 MeV and a centroid energy of 10.9 MeV
were found, in very good agreement with data.

The isovector spectrum shown in Fig. 1(b) consists of three
distinct structures. The first one is the well known low-energy
2+ state at about 5 MeV, that we do not analyze in the present
study. The second is the ISGQR that appears in the energy
range between 10 and 15 MeV and, finally, the IVGQR located
in the region above 20 MeV. The two lower structures arise
because of isospin mixing in the RPA states and, therefore,
these could be excited both by isoscalar and isovector probes.
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FIG. 1. (Color online) Isoscalar (a) and isovector (b) quadrupole
strength functions. The strengths are calculated within the RPA for
SAMi, KDE, SkI3, NL3, and DD-ME2. The experimental energies
for the ISGQR (10.9 ± 0.1 MeV), and the IVGQR (22.7 ± 0.2 MeV)
(weighted averages) listed in Table I are indicated by arrows.

In the high-energy region all interactions predict the existence
of a collective IVGQR peak. Our results are in good agreement
with experimental findings, both for the excitation energy
of the IVGQR and the percentage of the energy-weighted
sum rule (EWSR). The measured fraction for the latter is
56% [10], whereas theoretical predictions range from 50%
to 65%. Note that the EWSR fraction reported in Ref. [10]
refers to the classical version of the sum rule, that is, without
the multiplicative factor (1 + κQ), where κQ is the isovector
quadrupole enhancement factor [33].

More details about the structure of the IVGQR are provided
by transition densities associated with the main peak of the
isovector response. Figure 2(a) displays the neutron and proton
transition densities, and in Fig. 2(b) we plot the corresponding
isoscalar and isovector transition densities calculated with
the functionals SAMi and DD-ME2. The other functionals
considered in this work yield similar transition densities and
we do not show their results. The positions of the proton (rp)
and neutron (rn) root mean square (rms) radii correspond to
the edges of the shaded region that, in this way, denotes the
neutron skin thickness calculated with a given functional. For
all functionals and, in particular for those used in Fig. 2, one
notices that protons and neutrons yield similar contributions
but with opposite signs to the transition densities in the
surface region. This shows that the excitation is predominantly
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TABLE I. Data for the IVGQR and ISGQR in 208Pb.

Ex � EWSR Reference
(MeV) (MeV) (%)

IVGQR 24.3 ± 0.4 4.5 ± 0.5 140 [49]
22.5 9 100 [50]

20.2 ± 0.5 5.5 ± 0.5 140 ± 30 [51]
23.0 ± 0.2 3.9 ± 0.9 56 ± 6 [10]a

Weighted
Averageb 22.7 ± 0.2 4.8 ± 0.3
ISGQR 10.60 ± 0.25 2.8 ± 0.25 100 [52]

11 ± 0.2 2.7 ± 0.3 105 ± 25 [53]
10.9 ± 0.3 3.1 ± 0.3 120 − 170 [54]
11.0 ± 0.3 3.3 ± 0.3 100 − 150 [54]
10.9 ± 0.3 3.0 ± 0.3 100 ± 13 [55]

Weighted
Average 10.9 ± 0.1 3.0 ± 0.1

aThese experimental values are for 209Bi, and the EWSR corresponds
to the classical value (see text).
bWeighted average of O is defined in the standard way as Ō =∑n

i=1 ωiOi∑n
i=1 ωi

where ωi is defined as the inverse of the one standard
deviation corresponding to the data point Oi . The standard deviation
associated to Ō is calculated as σŌ = (

∑n
i=1 ω2

i )−1/2.

isovector. In the bulk of the nucleus one finds a non-negligible
isoscalar component, even when the state is mainly isovector.
This is, in particular, the case for the relativistic DD-ME2
functional.

Although the aim of this work is the study of global
properties, and in particular the energy of the IVGQR
using relativistic and nonrelativistic EDFs, we complete the
theoretical analysis by calculating the width of this important
resonance. The model is described in Sec. II C and takes
into account beyond mean-field correlations. In Fig. 3(a),
we display in a diagrammatic way the processes in which
a particle (hole) excites and reabsorbs a vibration (left), and
the vertex correction in which a particle and a hole exchange
a phonon (right). In Fig. 3(b) the probability of finding
the isovector quadrupole resonance state per unit energy is
plotted, calculated with the SAMi functional. Phonons with
multipolarity L = 0, 1, 2, 3 and natural parity are included in
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FIG. 3. (Color online) (a) Diagrams contributing to the strength
function of the GR. (b) Probability P to find the IVGQR state at an
energy E. Different curves are obtained when the phonons listed in the
legend are used as intermediate states. The label RPA [black-dashed
line in (b)] refers to the curve calculated in the RPA with a Lorentzian
width of 1 MeV.

the model space. The RPA model space in this calculations
is taken as in Ref. [42]. With this choice, the EWSRs are
satisfied up to about the 99%. As in Ref. [42], we impose
a lower cutoff on the collectivity of the intermediate RPA
states for two reasons: firstly the RPA does not provide a good
description of noncollective states and, secondly, phonons
with low collectivity would necessitate taking into account
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FIG. 2. (Color online) Neutron and proton (a) and isoscalar and isovector (b) transition densities for the main peak of the isovector response,
as a function of the radial distance. The predictions, calculated within the RPA, for the SAMi and DD-ME2 functionals are shown. The proton
(rp) and neutron (rn) rms radii are indicated by the edges of the shaded region.
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corrections that arise from the Pauli principle. For these
reasons only phonons with energy lower than 30 MeV and a
fraction of EWSR larger than 5% are included as intermediate
states. The single RPA state splits into two components: the
peak at higher energy is barely affected by increasing the
number of intermediate phonons, whereas the one at lower
energy broadens and is shifted downwards as the number of
phonons increases. The energy centroid is shifted by 1 MeV,
from 22 MeV for the RPA to 21 MeV for the PVC model. The
spreading width is 3.8 MeV. Both results are in reasonable
agreement with the experimental results listed in Table I.

B. Sensitivity of the GQRs to the symmetry energy
and the nucleon effective mass

Based on the QHO approach [7], in the Introduction we
have discussed the main characteristics of excitation energies
of isoscalar and isovector GQRs. In the ISGQR case the
excitation energy can be estimated from the QHO formula,

EIS
x =

√
2m/m∗h̄ω0, (8)

where the last factor is the shell gap ∼41A−1/3. Such a semiem-
pirical approach reproduces the average trend and predicts
the correlation between the ISGQR excitation energy and the
nucleon effective mass that is also confirmed by microscopic
calculations [8]. For the IVGQR the QHO is expected to
provide a direct relation between the excitation energy and
the isovector properties of a nuclear effective interaction.

To show this relation we derive a macroscopic formula for
the excitation energy of the IVGQR that explicitly exhibits
the connection to both the effective mass and the symmetry
energy at some subsaturation density S(ρ = 0.1 fm−3). In a
first step we bypass the dependence on the effective mass
and replace it with the ISGQR energy. In this way the value
for S(ρ = 0.1 fm−3) will be determined from experimental
results only. Subsequently a quantitative investigation of this
correlation is performed for the case of 208Pb by employing
families of EDFs.

We use available data on ISGQR and IVGQR in the A =
208 mass region (Table I) to estimate the value of the symmetry
energy at 0.1 fm−1. Although the IVGQR in Ref. [10] was
measured in 209Bi, calculations are carried out for 208Pb. The
difference in energy of the nuclear response of 209Bi and 208Pb
should scale with A−1/3 [7], that is, it should be smaller than
a few �. Another important reason for limiting the study to
208Pb is that it is a spherical double magic nucleus, and thus
the dependence on the effective mass or the symmetry energy
will not be screened by deformation or paring effects.

The EDFs we employ in this study are based on different
theoretical frameworks. One is the nonrelativistic Skyrme-
Hartree-Fock approach (SAMi [44]), and the other is the
relativistic mean-field with density dependent meson-nucleon
vertices (DD-ME [56]). We have considered families of func-
tionals with systematically varied properties in the isoscalar
and isovector channels. For SAMi, using the fitting protocol
described in the original reference [44], we have first fixed
the values of the nuclear incompressibility (K∞ = 245 MeV)
and the effective mass (m∗/m = 0.675), whereas the values of

the symmetry energy at saturation (J ) have been varied from
27 MeV (SAMi-J27) to 31 MeV (SAMi-J31) in steps of 1 MeV.
Then, by fixing the values of K∞ = 245 MeV, J = 28 MeV,
and L = 44 MeV, we have varied the effective mass from
m∗/m = 0.65 (SAMi-m65) to 0.85 (SAMi-m85) in steps of
0.05. In the case of the relativistic functionals DD-ME, we
have adopted the set of interactions introduced in Ref. [56], in
which J was systematically varied from 30 MeV to 38 MeV
in steps of 2 MeV (sets from DD-MEa to DD-MEe). This kind
of analysis allows to identify possible correlations.

1. Macroscopic model for the excitation energy
of the isovector giant quadrupole resonance

In the QHO model (see Eqs. (6-379) and (6-381) in
Ref. [7]) the excitation energy of the isovector giant quadrupole
excitation mode can be written in the following form:

EIV
x = 2h̄ω0

√
1 + 5

4

h̄2

2m

Vsym〈r2〉
(h̄ω0)2〈r4〉 , (9)

where Vsym is the symmetry potential proportional to the
liquid drop model (LDM) parameter b

pot
sym: Vsym = 4b

pot
sym (see

Eq. (2-28) in Ref. [7]). b
pot
sym can be written as b

pot
sym = bsym −

bkin
sym ≈ bsym − 2Skin(ρ∞). In the nonrelativistic approximation

the kinetic contribution to the symmetry energy at nuclear
saturation is Skin(ρ∞) ≈ εF∞/3 (see Eq. (2-13) in Ref. [7]),
where εF∞ = h̄2k2

F∞/2m ∼ 37 MeV is the Fermi energy for
symmetric nuclear matter at saturation density. The relation
that connects bsym with the “standard” liquid drop parameter
aLDM

sym reads bsym ≈ 2aLDM
sym (see Eq. (2-12) from Ref. [7]). Since

giant resonances in finite nuclei are not pure volume modes,
it is important to take into account surface corrections and,
therefore, one may identify aLDM

sym with the droplet model (DM)
parameter that contains surface corrections aDM

sym(A) [57,58].
The connection of the latter quantity with the parameters
characterizing the nuclear symmetry energy S(ρ) can be found,
within the SCMF approach, by using the empirical law of
Ref. [12], where it has been demonstrated that the symmetry
energy of a finite nucleus aDM

sym(A) equals the symmetry energy
S(ρ) of the infinite system at some subsaturation density
ρA—approximately 0.1 fm−3 for the case of heavy nuclei such
as 208Pb. Hence, one can rewrite Eq. (9) as

EIV
x ≈ 2

{
(h̄ω0)2 + 6

εF∞

A2/3
[S(ρA) − Skin(ρ∞)]

}1/2

≈ 2

{
(h̄ω0)2 + 6

εF∞

A2/3

[
S(ρA) − εF∞

3

]}1/2

, (10)

where we have approximated the factor 14
3 ( 8

9π
)2/3 = 2.0113 by

2 on the right-hand side, and considered 〈rn〉 = 3rn
0 An/3/(n +

3) where r0 = [3/(4πρ∞)]1/3. As in the case of the ISGQR,
for velocity dependent potentials parametrized in terms of an
effective mass, the shell gap is modified as follows:

EIV
x ≈ 2

[
m

m∗ (h̄ω0)2 + 2
ε2

F∞

A2/3

(
3S(ρA)

εF∞
− 1

)]1/2

(11)
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or, equivalently, by using Eq. (8)

EIV
x ≈ 2

[(
EIS

x

)2

2
+ 2

ε2
F∞

A2/3

(
3S(ρA)

εF∞
− 1

)]1/2

. (12)

From Eq. (11) and approximating h̄ω0 ≈ 41A−1/3, we note
some interesting features:

(i) EIV
x depends, as its isoscalar counterpart, on the

effective mass at saturation and, in addition, on
the symmetry energy at some subsaturation density
ρA (the Fermi energy at saturation can be considered
as constant compared with the variation of other
quantities). EIV

x increases for decreasing values of m∗,
and increasing values of S(ρA).

(ii) The larger the neutron skin thickness in a heavy nucleus
such as 208Pb, the lower the excitation energy of the
IVGQR. This characteristic can be understood as fol-
lows. If one expands S(ρ) around the nuclear saturation
density as S(ρ) ≈ J − Lε, where ε ≡ (ρ∞ − ρ)/ρ, it
can explicitly be shown that at the subsaturation density
ρA, fixing EIS

x to the experimental value and for small
variations of J , EIV

x decreases for increasing values of
L. The latter is linearly correlated with the neutron skin
thickness [11–14], which increases with L (see below).

One of the most important consequences of our approach
is that from Eq. (12) one can find a relation that expresses
S(ρA) in terms of EIV

x , EIS
x , and the Fermi energy at nuclear

saturation εF∞ , that is,

S̃(ρA) = A2/3

24εF∞

[(
EIV

x

)2 − 2
(
EIS

x

)2] + Skin(ρ∞) (13a)

= εF∞

3

{
A2/3

8ε2
F∞

[(
EIV

x

)2 − 2
(
EIS

x

)2] + 1

}
. (13b)

By inserting the weighted averages of the experimental
values for EIV

x = 22.7 ± 0.2 MeV and EIS
x = 10.9 ± 0.1 MeV

(see Table I), and by using ρA=208 = 0.1 fm−3, we find
S̃(0.1 fm−3) = 23.3 ± 0.6 MeV, in very good agreement with
the estimate reported in Ref. [59]: 23.3 MeV � S(0.1 fm−3) �
24.9 MeV. Note that the quoted error does not include an
estimate of the theoretical uncertainty.

Since we are also interested in determining correlations
between observable quantities, we elaborate on Eq. (13) in
order to explicitly relate the excitation energies of the isoscalar
and isovector GQRs with the neutron skin thickness of a heavy
nucleus. For that, we use the DM expression for the neutron
skin thickness that can be written as follows [12]:

�rnp − �rsurf
np

〈r2〉1/2
= 2

3

[
1 − S(ρA)

J

]
(I − IC) − 2

7
IC, (14)

where I = (N − Z)/A is the relative neutron excess, IC =
e2Z/(20JR) and �rsurf

np is the surface contribution to the
neutron skin thickness.1 The latter, for the case of 208Pb, has a

1�r surf
np = √

3/5[5(b2
n − b2

p)/(2R)], where bn and bp are the surface
widths of the neutron and proton density profiles, respectively.

SAMi-m65
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SAMi-m85

1.05 1.1 1.15 1.2 1.25
(m/m*)1/2

11
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12

12.5

E x
IS
 (M

eV
)

Weighted Average
r = 0.9998
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m*/m

11

11.5
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12.5

E x
IS
 (M

eV
)

SAMi-J30
SAMi-J31

SAMi-J27
SAMi-J28
SAMi-J29

FIG. 4. (Color online) Excitation energy of the ISGQR in 208Pb
as a function of

√
m/m∗, calculated with the SAMi-m and SAMi-

J family of functionals. On the horizontal upper axis we display
the corresponding values for m∗/m. The data from Table I are also
included (square and shaded band).

value of ≈0.09 fm [60], if calculated with a large set of EDFs.
Combining Eqs. (13) and (14) one finds

�rnp − �rsurf
np

〈r2〉1/2
= 2

3
(I − IC)

{
1 − εF∞

3J
− 3

7

IC

I − IC

− A2/3

24εF∞

[(
EIV

x

)2 − 2
(
EIS

x

)2

J

]}
. (15)

This expression explicitly relates the neutron skin thickness
of a heavy nucleus with the corresponding GQRs energies,
and these can directly be determined in experiment. Within
our approach, only the parameter J and �rsurf

np contain a
non-negligible uncertainty. The appropriate value of J to
be used in the expression above can be deduced from the
systematic analysis carried out in Refs. [14,61]. The weighted
average of the constraints considered in [14] yields J =
32.4 ± 0.4 MeV, but in the following we adopt a somewhat
larger uncertainty J = 32 ± 1 MeV. For the case of 208Pb,
�rsurf

np = 0.09 ± 0.01 fm is consistent with the microscopic
calculations of Ref. [60]. Using Eq. (15) and the data for the
GQRs energies, we find �rnp = 0.22 ± 0.02 fm. This value
is close to the upper limit derived from available estimates
�rnp = 0.18 ± 0.03 fm [14].

2. The SAMi and DD-ME families of functionals

In Fig. 4 we display the excitation energy of the ISGQR in
208Pb as a function of

√
m/m∗, calculated with the SAMi-m

and SAMi-J families of functionals. The plot nicely illustrates
the well known correlation between EIS

x and
√

m/m∗. It also
shows that the variation of EIS

x for the SAMi-J family—for
which J ranges from 27 to 31 MeV, with a fixed value of m∗,
is small.2

2The neutron radius increases with J [62], and a larger size of the
nucleus implies a lower ISGQR excitation energy.
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FIG. 5. (Color online) Square of the excitation energy of the
IVGQR in 208Pb as a function of the effective mass (a), and the
neutron skin thickness (b),(c), predicted by the SAMi-m and SAMi-J
[(a) and (b)], and DD-ME (c) families of energy density functionals.

Figure 5 displays the predictions of the SAMi-m and
SAMi-J families of functionals for the excitation energy of the
IVGQR in 208Pb as a function of the effective mass [Fig. 5(a)]

and neutron skin thickness [Fig. 5(b)], and those of the DD-ME
family for the excitation energy of the IVGQR as a function of
the neutron skin thickness [Fig. 5(c)]. Based on the discussion
above, we expect a linear correlation between (EIV

x )2 and either
m/m∗ or �rnp. These two correlations are clearly displayed by
the linear fits in Figs. 5(a) and 5(b) for the SAMi functionals. In
Fig. 5(c), consistent with the macroscopic model of Sec. III B1
and with the non-relativistic results, a linear correlation is
found between the square of the excitation energy of the
IVGQR in 208Pb and the neutron skin thickness predicted by
the DD-ME family of functionals.

These results, as well as the macroscopic model of
Sec. III B1, show that a measurement of the excitation energy
of the IVGQR in 208Pb determines only a combination of the
excitation energy of the ISGQR, [see Eqs. (11) and (12)] and
�rnp (or the value of the slope of the symmetry energy at
saturation L, see Sec. III B1 and cf. Refs. [11–14]), but not
their individual values.

In Table II we also compare the values for the symmetry
energy at 0.1 fm−3 S(ρA) obtained in asymmetric nuclear
matter with the SAMi-J and DD-ME families of EDFs, to
the corresponding values S̃(ρA) calculated using Eq. (13a).
As explained in Sec. III B1, the expression for S̃(ρA) is based
on a nonrelativistic QHO approximation and depends on the
excitation energies of the GQRs and the kinetic contribution
to the nuclear symmetry energy at saturation. We find that the
difference—calculated as the rms deviation—between S(ρA)
and S̃(ρA) is less than 1 MeV for the SAMi-J family, whereas
it is around 3 MeV for the DD-ME functionals.

Equation (15) shows that [(EIV
x )2 − 2(EIS

x )2]/J is linearly
correlated with �rnp. This correlation is illustrated in Fig. 6
where we plot the �rnp calculated with the SAMi-J and
DD-ME functionals, as functions of [(EIV

x )2 − 2(EIS
x )2]/J .

Both families show a high linear correlation (r = 0.98)
between these two quantities, but predict different slopes.

TABLE II. Theoretical values for the neutron skin thickness �rnp of 208Pb, the symmetry energy S(ρ) at ρ = 0.1 fm−3 and at ρ∞ (J ), the
kinetic contribution to the symmetry energy, Skin(ρ∞)a, and the isoscalar and isovector GQR excitation energies EIS

x and EIV
x , respectively. We

also display S(0.1 fm−3) as predicted by Eq. (13a) [S̃(0.1 fm−3)]. The values of �rnp are in units of fm and all other quantities are in units
of MeV.

Force �rnp S(0.1 fm−3) S̃(0.1 fm−3) J L Skin(ρ∞) EIS
x EIV

x

SAMi-m65 0.144 21.74 22.24 28.13 43.56 12.23 12.46 23.70
SAMi-m70 0.149 21.69 20.85 28.13 43.56 12.22 12.04 22.50
SAMi-m75 0.153 21.68 20.16 28.13 43.56 12.14 11.72 21.78
SAMi-m80 0.156 21.69 20.10 28.13 43.56 12.10 11.39 21.40
SAMi-m85 0.160 21.73 19.38 28.13 43.56 12.04 11.08 20.66
SAMi-J27 0.128 21.86 21.94 27.00 30.00 12.26 12.35 23.42
SAMi-J28 0.131 22.62 21.86 28.00 32.06 12.23 12.33 23.36
SAMi-J29 0.161 21.82 21.29 29.00 51.61 12.17 12.22 22.94
SAMi-J30 0.181 21.76 21.05 30.00 63.18 12.13 12.15 22.74
SAMi-J31 0.199 21.74 19.92 31.00 74.36 12.09 12.13 22.10
DDMEa 0.132 26.10 29.73 30.00 29.94 18.64 13.01 24.65
DDMEb 0.181 25.90 29.35 32.00 46.50 18.53 12.84 24.28
DDMEc 0.217 26.07 28.67 34.00 62.07 18.55 12.75 23.84
DDMEd 0.255 25.74 28.39 36.00 85.47 18.55 12.67 23.61
DDMEe 0.286 25.62 28.87 38.00 110.6 18.45 12.59 23.39

aFor the relativistic functionals Skin(ρ∞) = k2
F∞/(6

√
k2

F∞ + m∗
D

2) [25], where m∗
D is the Dirac effective mass at saturation.

034301-7



X. ROCA-MAZA et al. PHYSICAL REVIEW C 87, 034301 (2013)

SAMi-J28

SAMi-J29

SAMi-J30

SAMi-J31

DDMEa

DDMEb

DDMEc

DDMEd

DDMEe

6 7 8 9 10
[(Ex

IV)2−2(Ex
IS)2] / J  (MeV)

0.1

0.15

0.2

0.25

0.3

Δr
np

  (
fm

)

Exp.

SAMi-J27

FIG. 6. (Color online) Values of �rnp in 208Pb as functions of
[(EIV

x )2 − 2(EIS
x )2]/J , calculated with the SAMi-J and DD-ME func-

tionals. The dashed line and shaded band indicate the experimental
value and corresponding uncertainty (see text).

The slope obtained in the macroscopic model is: 〈r2〉1/2

(I − IC)A2/3/(36εF∞ ) [cf. Eq. (15)], independent of Skin(ρ∞).
For 208Pb this yields 0.025 MeV−1 fm, in very good agreement
with the value 0.027 MeV−1 fm found for the SAMi family.
The macroscopic formula obviously does not apply to the
relativistic case since the slope for the DD-ME family of
functionals is 0.057 MeV−1 fm.

Using the linear correlations shown in Fig. 6, the ex-
perimental values for EIV

x = 22.7 ± 0.2 MeV and EIS
x =

10.9 ± 0.1 MeV from Table I, and the value J = 32 ±
1 MeV that yields [(EIV

x )2 − 2(EIS
x )2]/J = 8.7 ± 0.4 MeV,

one finds �rnp = 0.14 ± 0.03 fm for the DDME family of
functionals, and from the analysis of the SAMi-J functionals
�rnp = 0.14 ± 0.02 fm. The total range of allowed values
0.11 fm � �rnp � 0.17 fm is rather broad but in reasonable
agreement with previous studies: �rnp = 0.18 ± 0.03 fm [14],
and �rnp = 0.188 ± 0.014 fm [63]. Finally, this result for the
neutron skin thickness of 208Pb allows us to estimate the value
of the slope of the symmetry energy at saturation for the DDME
and SAMi-J families. Figure 7 shows that this value is in the

SAMi-J27
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SAMi-J30

SAMi-J31

DDMEa

DDMEb

DDMEc

DDMEd

DDMEe

20 40 60 80 100 120
L (MeV)
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Δ
r n
p (
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)

SAMi-J28
r = 0.96

FIG. 7. (Color online) Neutron skin thickness �rnp of 208Pb as a
function of the slope parameter of the symmetry energy at saturation
density, for the two families of functionals: SAMi-J and DDME.

interval: 19 MeV � L � 55 MeV. We note that the correlation
coefficient is rather high and in agreement with those obtained
in Refs. [11–14]. Our constraint on L is also in agreement with
previous estimates (see Fig. 1 in Refs. [14,61,64]).

IV. SUMMARY AND CONCLUSIONS

Motivated by recent experimental developments [10], in
the first part of this work we have investigated the excitation
energy of the IVGQR in 208Pb using a set of nonrelativistic and
covariant EDFs. The theoretical results are in good agreement
with the experimental findings for the excitation energy and
the EWSR. We have also analyzed the transition densities
associated to the principal RPA states that correspond to this
resonance. It has been found that the isovector character is
dominant in the surface region of the nucleus, whereas the
interior part displays a non-negligible isoscalar component.
The spreading width of the resonance has been calculated using
the particle vibration coupling approach, and the resulting
value is in good agreement with the data.

In the second part we have focused on the relation
between the excitation energy of the GQRs and the isovector
properties of effective nuclear interactions. For this purpose
a macroscopic formula has been derived, based on the
quantal harmonic oscillator model [7] and the approach of
Ref. [12]. Despite its simplicity, this formula provides a
connection between the macroscopic picture of the IVGQR
and microscopic calculations based on accurately calibrated
families of EDFs.

Using the analytic expression we have been able to deduce,
from the measured excitation energies of the ISGQR and
IVGQR, the symmetry energy at a subsaturation density
0.1 fm−3 (or the neutron skin thickness �rnp of the considered
nucleus). The estimated value S(0.1 fm−3) = 23.3 ± 0.6 MeV,
is in very good agreement with previous findings [59]. A strong
correlation between [(EIV

x )2 − 2(EIS
x )2]/J and �rnp has been

found for the two families of EDFs considered in this work.
This means that data on the excitation energy of the ISGQR and
the IVGQR can be used to determine the neutron skin thickness
of a heavy nucleus and the slope of the symmetry energy at
saturation. With this approach we have obtained for the neutron
skin thickness of 208Pb: �rnp = 0.14 ± 0.03 fm, and the slope
parameter of the symmetry energy L = 37 ± 18 MeV. These
values are compatible with previous estimates.
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