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Elliptic flow (v2) values for identified particles at midrapidity in Auþ Au collisions, measured by the

STAR experiment in the beam energy scan at RHIC at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7–62:4 GeV, are presented. A beam-

energy-dependent difference of the values of v2 between particles and corresponding antiparticles was

observed. The difference increases with decreasing beam energy and is larger for baryons compared to

mesons. This implies that, at lower energies, particles and antiparticles are not consistent with the

universal number-of-constituent-quark scaling of v2 that was observed at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV.

DOI: 10.1103/PhysRevLett.110.142301 PACS numbers: 25.75.Ld, 25.75.Nq

Lattice quantum chromodynamics (QCD) predicts that,
at sufficiently high temperatures T and/or high baryonic
chemical potentials �B, normal nuclear matter will
undergo a phase transition to a state of matter where quarks
and gluons are deconfined, called the quark-gluon plasma
(QGP) [1]. This transition is important for understanding
the early evolution of the Universe [2]. A beam energy scan
(BES) program [3] has been carried out at the Relativistic
Heavy Ion Collider (RHIC) facility to study the QCD
phase structure over a large range in T and �B.

Particle production in heavy ion collisions with respect
to the event plane (EP) can be characterized by the follow-
ing Fourier expansion:

dN

dð���Þ / 1þ 2
X

n�1

vobs
n cos½nð���Þ�; (1)

where � is the azimuthal angle of the particles, n the
harmonic number, vobs

n the observed Fourier coefficient
that has to be corrected for the EP resolution to get vn,
and � the reconstructed EP azimuthal angle [4,5].
The second harmonic coefficient is denoted as elliptic
flow v2 [4].

Elliptic flow measurements have been used to conclude
that strongly interacting partonic matter is produced in
Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV and that v2 devel-

ops in the early, partonic, stage. This conclusion is based
in part on the observed scaling of v2 versus the transverse
momentum pT , with the number of constituent quarks
(NCQ) [6–9] for hadrons at intermediate pT (2 to
5 GeV=c). Deviations from such a scaling for identified
hadron v2ðpTÞ at lower beam energies is thus an indication
for the absence of a deconfined phase [3].

In a hydrodynamic picture, v2 arises in noncentral heavy
ion collisions due to an initial pressure gradient, which is
directly connected to the eccentricity. This leads to particle
emission predominantly in the direction of the maximum
of the pressure gradient. During the expansion of the
system the pressure gradient decreases, which means that
elliptic flow primarily probes the early stage of a heavy
ion collision.

For Auþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV, a mass

ordering in v2ðpTÞ between the different particle species

was observed at low transverse momenta (pT < 2 GeV=c)
[6,10,11]. This behavior can be described by nonviscous
hydrodynamic calculations [12–17]. The relative mass
ordering can be suppressed by using the reduced transverse

kinetic energy (mT �m0) instead of pT , with mT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p2
T þm2

0

q

and m0 being the mass of the particle. At large

(mT �m0), a splitting in v2ðmT �m0Þ between baryons
and mesons was observed that cannot be described by
hydrodynamic calculations. This splitting can be expla-
ined, in part, by assuming that the particle production
occurs via coalescence of constituent quarks [18].

The v2 values for �
�, K�, K0

S, p, �p, �, �, ��, ��, ��þ,
��, ��þ measured at midrapidity in minimum bias Auþ
Au collisions will be reported. The data were recorded by
STAR, the Solenoidal Tracker at RHIC, for

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7,

11.5, 19.6, 27, 39, and 62.4 GeV in the years 2010 and 2011
as part of the BES program [3].
STAR is a multipurpose experiment at RHIC with a

complete azimuthal coverage. The main detectors used
for the data analysis were the time-projection chamber
(TPC) [19] for tracking and particle identification at pseu-
dorapidities j�j< 1:0, and the time-of-flight (TOF) detec-
tor, which was especially important to identify charged
particles at intermediate momenta. A minimum bias trigger
was defined using a coincidence of hits in the zero degree
calorimeters, vertex position detectors, or beam-beam
counters [20,21]. To suppress events from collisions with
the beam pipe (radius 3.95 cm), an upper limit cut on the
radial position of the reconstructed primary vertex of 2 cm
was applied. In addition, the z position of the vertices was
limited to values less than �70 cm. Collisions within a
0%–80% centrality range of the total reaction cross section
were selected for the analysis. The centrality definition
is based on a comparison between the measured track
multiplicity within j�j< 0:5 and a Glauber Monte Carlo
simulation [20].
The particle identification and yield extraction for long-

lived charged hadrons (p, �p, ��, K�) was based on a
combination of the ionization energy loss dE=dx in the
TPC, the reconstructed momentum (p), and the squared
mass m2 from the TOF detector [21]. Short-lived particles
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that decay within the detector acceptance, such as�,�, ��,

��, ��þ, ��, ��þ, and K0
s , were identified using the

invariant mass technique. The combinatorial background
to the weakly decaying particles like� and� was reduced
by topological reconstruction. The remaining combinato-
rial background was fit and subtracted with the mixed event
technique [21].

The event plane was reconstructed using the procedure
described in Ref. [4]. In order to reduce the effects of non-
flow contributions arising mainly from Hanbury-Brown
Twiss correlations and Coulomb interactions, the event
plane angles were estimated for two subevents separated
by an additional � gap instead of using the full TPC event
planemethod [21]. For such an ‘‘�-sub-EP’’ reconstruction,
one uses only the particles from the opposite � hemisphere
with respect to the particle of interest and outside of an
additional � gap of j�j> 0:05. The nonflow contributions
were studied for the six beam energies by comparing differ-
ent methods of extracting v2 for inclusive charged hadrons
[20]. The four particle cumulant v2f4g strongly suppresses
nonflow contributions. It has been shown that the difference
between v2 (�-sub) and v2f4g is 10%–20% for 19.2, 27, and
39 GeVand decreases with decreasing energy. All observed
values (vobs

2 ) were corrected on an event-by-event basis

using the EP resolution [22] that was calculated by compar-
ing the two �-sub-EP angles [20].

For each particle species, the cuts used for particle
identification and background suppression were varied to
estimate the systematic uncertainties. The errors were also
estimated by varying the methods used to flatten the EP,
to obtain the yields, and to extract the v2 values. A more
detailed description of the detector setup and the analysis
can be found in Ref. [21].

In Fig. 1, the pT dependence of the proton and anti-
proton v2 is shown for Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7,

11.5, 27, and 39 GeV. At all energies, the v2 values
increase with increasing pT . At pT ¼ 2 GeV=c, the mag-
nitude of v2 for protons increases with energy from about
0.10 at 7.7 GeV to 0.15 at 39 GeV. Lower values of v2ðpTÞ

are observed for antiprotons compared to protons at all
energies. The difference in the v2 values for protons and
antiprotons increases with decreasing beam energy. The
lower panels of Fig. 1 show the pT dependence of the
difference in v2 for protons and antiprotons. No significant
pT dependence is observed, as characterized by the hori-
zontal line fits. The negative values of the antiproton v2

at low pT at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 GeV could be influenced by

absorption in the medium [23]. Suppressed or negative v2

values are also observed at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7 GeV for different

centralities [21].

The v2ðpTÞ behavior for �ðudsÞ, ��ð �u �d �sÞ and��ðdssÞ,
��þð �d �s �sÞ is similar to that for protons (uud) and antipro-
tons ( �u �u �d ). In all cases, the baryon antiparticle v2 is lower
than the corresponding particle v2. The v2ðpTÞ difference
for � and �� is in agreement with previous STAR results at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 62:4 GeV [7]. For the mesons �þðu �dÞ, ��ð �udÞ,
andKþðu�sÞ, K�ð �usÞ, the differences are smaller than those
for the baryons (the antiparticle convention from Ref. [24]
is used for mesons). At

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7 GeV, the v2ðpTÞ

difference between Kþ and K� is a factor 5–6 smaller as
compared to the baryons, with Kþ having a systematically
larger v2ðpTÞ thanK�. On the other hand, the v2ðpTÞ of the
�� is larger than the v2ðpTÞ of the �þ. However, the
magnitude of the difference for pions as a function of
energy is similar to that for the kaons. The details of the
pT dependence of the difference in v2 between particles
and corresponding antiparticles can be found in Ref. [21].
Figure 2 summarizes the variation of the pT independent

difference in v2 between particles and corresponding anti-
particles with

ffiffiffiffiffiffiffiffi

sNN
p

. Here, v2ðXÞ � v2ð �XÞ denotes the

horizontal line fit values of the difference in v2ðpTÞ
between particles X (p, �, ��, �þ, Kþ) and correspond-

ing antiparticles �X ( �p, ��, ��þ, ��, K�). Larger v2 values
are found for particles than for antiparticles, except for
pions, for which the opposite ordering is observed. A
monotonic increase of the magnitude of �v2 ¼ v2ðXÞ �
v2ð �XÞ with decreasing beam energy is observed. The data
can be described by a power-law function.

FIG. 1 (color online). The elliptic flow v2 of protons and antiprotons as a function of the transverse momentum pT for 0%–80%
central Auþ Au collisions. The lower panels show the difference in v2ðpTÞ between the particles and antiparticles. The solid curves
are fits with a horizontal line. The shaded areas depict the magnitude of the systematic errors.
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While in Auþ Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV a

single NCQ scaling can be observed for particles and
antiparticles, the observed difference in v2 at lower beam
energies demonstrates that this common NCQ scaling of
particles and antiparticles splits. Such a breaking of the
NCQ scaling could indicate increased contributions from
hadronic interactions in the system evolution with decreas-
ing beam energy. The energy dependence of v2ðXÞ �
v2ð �XÞ could also be accounted for by considering an
increase in nuclear stopping power with decreasing

ffiffiffiffiffiffiffiffi

sNN
p

if the v2 of transported quarks (quarks coming from the
incident nucleons) is larger than the v2 of produced quarks
[25,26]. Theoretical calculations [27] suggest that the
difference between particles and antiparticles could be
accounted for by mean field potentials where the K� and
�p feel an attractive force while the Kþ and p feel a
repulsive force.

Most of the published theoretical calculations can repro-
duce the basic pattern but fail to quantitatively reproduce
the measured v2 difference [25–28]. So far, none of the
theory calculations describes the observed ordering of
the particles. Therefore, more accurate calculations from
theory are needed to distinguish between the different
possibilities. Other possible reasons for the observation
that the �� v2ðpTÞ is larger than the �þ v2ðpTÞ is the
Coulomb repulsion of �þ by the midrapidity net protons
(only at low pT) and the chiral magnetic effect in finite
baryon-density matter [29]. Simulations have to be carried
out to quantify if those effects can explain our
observations.
In Ref. [21], the study of the centrality dependence of

�v2 for protons and antiprotons is extended to investigate
if different production rates for protons and antiprotons as
a function of centrality could cause the observed differ-
ences. It was observed that the differences, �v2, are
significant at all centralities.
The v2ðmT �m0Þ and possible NCQ scaling was also

investigated for particles and antiparticles separately.
Figure 3 shows v2 as a function of the reduced transverse
mass, (mT �m0), for various particles and antiparticles at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 and 62.4 GeV. The baryons and mesons are

clearly separated for
ffiffiffiffiffiffiffiffi

sNN
p ¼ 62:4 GeV at ðmT �m0Þ>

1 GeV=c2. While the effect is present for particles at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 GeV, no such separation is observed for

the antiparticles at this energy in the measured (mt �m0)
range up to 2 GeV=c2. The lower panels of Fig. 3 depict
the difference of the baryon v2 relative to a fit to the meson
v2 data with the pions excluded from the fit. The antipar-
ticles at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 GeV show a smaller difference

compared to the particles. At
ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 GeV the

difference becomes negative for the antiparticles at
(mT �m0)<1 GeV=c2 but the overall trend is still similar
to the one of the particles and to

ffiffiffiffiffiffiffiffi

sNN
p ¼ 62:4 GeV.
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FIG. 3 (color online). The upper panels depict the elliptic flow v2 as a function of reduced transverse mass (mT �m0) for particles,
(a) and (b), and antiparticles, (c) and (d), in 0%–80% central Auþ Au collisions at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 and 62.4 GeV. Simultaneous fits to

the mesons except the pions are shown as the dashed lines. The difference of the baryon v2 and the meson fits are shown in the lower
panels.

  (GeV)NNs
0 20 40 60

)
X( 2

(X
)-

v
2v

0

0.02

0.04

0.06 Au+Au,  0%-80%
-sub EPη

+
Ξ--Ξ

pp-
Λ-Λ

-
-K+K

-π-+π

FIG. 2 (color online). The difference in v2 between particles
(X) and their corresponding antiparticles ( �X) (see legend) as a
function of

ffiffiffiffiffiffiffiffi

sNN
p

for 0%–80% central Auþ Au collisions. The

dashed lines in the plot are fits with a power-law function. The
error bars depict the combined statistical and systematic errors.

PRL 110, 142301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending
5 APRIL 2013

142301-5



In Fig. 4, the v2ðmT �m0Þ values scaled on both axes
with the number of constituent quarks are presented for
ffiffiffiffiffiffiffiffi

sNN
p ¼ 11:5 and 62.4 GeV. A simultaneous fit [30] to p,

�p, �, and �� at a given energy is shown as the dashed line.
The differences between data and corresponding fits are
shown in the lower panels. The general scaling holds,
except for the � mesons, for the various particles, as shown
in Figs. 4(a) and 4(b) with deviations of �10% at a
ðmT �m0Þ=nq value of 0:7 GeV=c2. A significant change

in the scaling behavior can be observed between baryon
and antibaryon v2 from

ffiffiffiffiffiffiffiffi

sNN
p ¼ 62:4 to 11.5 GeV, as

shown in Figs. 4(c) and 4(d). The � mesons are also an
exception to the trend of other hadrons. At the highest
ðmT �m0Þ=nq values, the � meson data point for

ffiffiffiffiffiffiffiffi

sNN
p ¼

11:5 GeV (pT ¼ 1:9 GeV=c) is 2:3� lower than those of
the other hadrons. This is comparable to the observed
deviation at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7 GeV (pT ¼ 1:7 GeV=c) by

1:8� [21]. The smaller v2 values of the �ðs�sÞ meson,
which has a smaller hadronic interaction cross section
[31], may indicate that hadronic interactions become
more important than partonic effects for the systems
formed at collision energies & 11:5 GeV [32,33].

In summary, the first observation of a beam-energy-
dependent difference in v2ðpTÞ between particles and
corresponding antiparticles for minimum bias

ffiffiffiffiffiffiffiffi

sNN
p ¼

7:7–62:4 GeV Auþ Au collisions at midrapidity is
reported. The difference increases with decreasing beam
energy. Baryons show a larger difference compared to
mesons. The relative values of v2 for charged pions have
the opposite trend to the values of charged kaons. It is
concluded that, at the lower energies, particles and anti-
particles are no longer consistent with the single NCQ
scaling that was observed for

ffiffiffiffiffiffiffiffi

sNN
p ¼200GeV. However,

for the group of particles the NCQ scaling holds within
�10% while for the group of antiparticles the difference
between baryon and meson v2 continues to decrease to

lower energies. We further observed that the�meson v2 at
the highest measured mT �m0 value is low compared to
other hadrons at

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7:7 and 11.5 GeV with 1:8� and

2:3�, respectively.
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