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34KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan
35Korea University, Seoul 136-701, Korea

36Russian Research Center ‘‘Kurchatov Institute,’’ Moscow, 123098 Russia
37Kyoto University, Kyoto 606-8502, Japan

38Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3, Route de Saclay, F-91128 Palaiseau, France
39Physics Department, Lahore University of Management Sciences, Lahore 54792, Pakistan

40Lawrence Livermore National Laboratory, Livermore, California 94550, USA
41Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
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The jet fragmentation function is measured with direct photon-hadron correlations in pþ p and

Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The pT of the photon is an excellent approximation to the initial

pT of the jet and the ratio zT ¼ ph
T=p

�
T is used as a proxy for the jet fragmentation function. A statistical

subtraction is used to extract the direct photon-hadron yields in Auþ Au collisions while a photon

isolation cut is applied in pþ p. IAA, the ratio of hadron yield opposite the photon in Auþ Au to that in
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pþ p, indicates modification of the jet fragmentation function. Suppression, most likely due to energy

loss in the medium, is seen at high zT . The associated hadron yield at low zT is enhanced at large angles.

Such a trend is expected from redistribution of the lost energy into increased production of low-

momentum particles.

DOI: 10.1103/PhysRevLett.111.032301 PACS numbers: 25.75.Dw

Experiments at the Relativistic Heavy Ion Collider have
observed the formation of a quark-gluon plasma, reported
as a fundamentally new state of matter [1–4]. High mo-
mentum quarks and gluons (partons) lose energy as they
traverse this matter, resulting in the observed suppression
of high transverse momentum (high pT) hadrons in central
heavy-ion collisions [5–10].

Direct photons, however, escape the medium unmodi-
fied [11], since they do not interact via the strong force.
This makes them an ideal probe with which to calibrate the
energy of an initial hard scattering. At leading order, direct
photons are predominantly produced via the quantum-
chromodynamics analog of Compton scattering, qþ g !
qþ �. In the limit of negligible initial transverse momen-
tum, the final state quark and photon are emitted back to
back in azimuth with the photon balancing the transverse
momentum of the jet arising from the quark. Determining
the initial momentum of the parton is key to measuring the
fragmentation function of the quark jet. This initial
momentum is provided by the measured energy of the
unmodified direct photon, via direct photon-hadron corre-
lations [12]. A study of direct photon-hadron correlations
in pþ p collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV has provided a

measurement of the quark fragmentation function in
agreement with measurements from eþe� collisions [13].
In Auþ Au collisions, the contributions from next-to-
leading-order processes, such as fragmentation photons
and medium induced photon production, are expected to
be small (�10%) at high pT [14].

Parton energy loss in the medium can be observed as a
modification to the jet fragmentation function in heavy ion
collisions. The fragmentation function is defined asDðzÞ ¼
ð1=NjetÞðdNðzÞ=dzÞ, where z ¼ ph=pjet; pjet is the initial

jet momentum, and ph is the momentum of a hadronic jet
fragment. Experimentally, this is accessible using direct

photon-hadron correlations, where p�
T � p

jet
T . This balance

is only approximate due to the transverse momentum, kT ,
of the colliding partons inside nucleons, which on average
introduces a transverse momentum imbalance and acopla-
narity to the photon and its opposing jet. The measured
value of kT is �3 GeV=c in both pþ p and dþ Au
collisions with no measured difference in kT smearing
[15,16]. Furthermore, the good agreement between pþ p
and eþe� measurements indicates that any difference seen
between pþ p and Auþ Au is not due to kT smearing.

Several energy loss models [14,17] predicting direct
photon-hadron correlations only track the medium induced
parton splitting of the leading parton. Other models follow

the lost energy, leading to an increase in low momentum
(soft) particle production. In particular, Borghini and
Weidemann [18] use the modified leading log approxima-
tion (BW-MLLA) and local parton hadron duality to first
reproduce the measured fragmentation function in eþe�
data. Modeling the energy loss in the medium as an
increased parton splitting probability, they calculate the
suppression of high pT jet fragments, as well as the redis-
tribution of energy to lower pT fragments and resulting
enhancement at low z. The resulting RAA reproduces the
PHENIX �0 measurement for 0%–10% central events.
The yet-another-jet-energy-loss model (YaJEM) [19]
traces the energy lost via gluon radiation and redistribution
to soft particle production, predicting a suppression of
particles at high z and an enhancement at low z. This
calculation has been done specifically for �dir-h, making
it directly comparable to this data. The predicted low-zT
enhancement has not yet been observed within the statis-
tical and systematic limitations of previously published
data [20,21].
In this Letter, we report fragmentation functions mea-

sured in Auþ Au and pþ p collisions determined from
the yield of hadrons recoiling opposite to direct photons
(i.e., the ‘‘away side’’). The extraction of a purely direct-
photon sample is complicated by the presence of photons
frommeson decays (dominantly�0 ! ��), which must be
removed from the inclusive photon-hadron correlations.
PHENIX has previously established the extraction of direct
photon-hadron correlations via a statistical subtraction
procedure in Auþ Au collisions [20] and via an isolation
cut in pþ p collisions [13], wherein higher-order sources
of photons were shown to be negligible.
This analysis includes 3.9 billion minimum bias

Auþ Au events collected by PHENIX in 2007 and 2.9
billion in 2010, after quality cuts. The pþ p data set
comprises 0.5 billion photon-triggered events collected in
2005 and 2006, corresponding to total recorded integrated
luminosities of 3.8 (2005) and 10.7 (2006) pb�1, respec-
tively. Details on the pþ p measurement were previously
presented in [13]. The kinematic reach and improved sta-
tistical precision of both data sets allow us to extend
previous measurements [20,21], reaching a low momen-
tum fraction, z � 0:1, where interplay between the me-
dium and the deposited energy may be important [9].
The Auþ Au minimum bias events are triggered by

particles firing the beam-beam counters, which are arrays
of Čerenkov counters covering 3:1< j�j< 3:9 and 2� in
azimuth. The beam-beam counters are also used to
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determine the collision centrality and the collision vertex
position along the beam direction. The 0%–40% most
central collisions are presented here. Photons and hadrons
are measured in two central spectrometers spanning�=2 in
azimuth and �0:35 units of pseudorapidity each [22].
The photons are measured in one of two electromagnetic
calorimeters [23] and charged hadrons are measured by
reconstructing tracks in the drift chambers and pad
chambers [24].

Inclusive photon-hadron correlations are determined
from the distribution of photon-hadron pairs as a function
of their azimuthal angular separation,��. The distribution
of real pairs is divided by photon-hadron pairs in mixed
events to correct for the PHENIX acceptance.

The conditional, or per trigger, associated yield is
extracted after subtraction of photon-hadron pairs from
the bulk underlying event [15]. In heavy-ion collisions,
such particles are expected to be correlated to one another
through the bulk anisotropy of the event, which is conven-
tionally characterized by the Fourier coefficients vn.
Neglecting higher order terms, and using previously mea-
sured v2 [25] for associated hadrons, inclusive and decay
photons, this bulk is removed from the per-trigger yields
according to:

1

Nt

dNpair

d��
¼ 1

Nt

Npair
real

�a
R
d��

�
dNpair

real=d��

dNpair
mix=d��

� b0½1þ 2hvt
2v

a
2i cosð2��Þ�

�
; (1)

where the subscripts t and a refer to trigger and associated
particle, �a is the detection efficiency for the associated
particle, and b0 indicates the level of background pairs. An
absolute background normalization is used to fix the back-
ground level, b0, as described in [26], which makes up
more than 95% of the total yield at low pair pT , and�25%
at high pT . The hvt

2v
a
2i term modulates the background rate

by less than 1% as a function of ��, to account for
correlations arising from flow of the bulk. In pþ p colli-
sions, the underlying event is subtracted assuming the yield
of photon-hadron coincidences is zero at the minimum
point in the correlation as a function of ��. The lowest
three points outside the isolation cut region are averaged;
as there is no flow in pþ p collisions, the background is
assumed to be flat in ��. A GEANT simulation of the
detector determined the acceptance and efficiency for the
measured charged hadrons, �a, starting at�35% at low pT

and plateauing at�45%. The uncertainty on �a leads to an
8.8% overall and 8.0% normalization uncertainty on the
yields for the Auþ Au and pþ p data, respectively.

The potential effect of ignoring v3 in the background
subtraction in Auþ Au is studied by extrapolating the
PHENIX hadron v3 measurements [25]. Including a modu-
lation of the background by this v3 in addition to the v2

results in a change in the away-side yield on the order of a
few percent, depending on �� and pT . The resulting

background shape uncertainty is minimal for the highest
hadron pT selections used here due to the low level of
combinatorial background. The v3 effect is included as an
additional systematic uncertainty on the background
subtraction.
In Auþ Au, a statistical subtraction determines the

direct (i.e., nondecay) photon-hadron correlations from
the measured inclusive photon-hadron correlations. Using
the measured associated hadron yield per inclusive photon,
Yinc ¼ 1=NincdN

h��inc=d��, and per decay photon, Ydec,
the associated yield per direct photon, Ydir, is determined
by [20]:

Ydir ¼
R�Yinc � Ydec

R� � 1
; (2)

where R� is the ratio of inclusive photons to decay photons,

which was reported by PHENIX in [11]. R� ranges from

�1:4 to�2:3, as the photon pT increases, for the centrality
and momentum ranges used here.
To measure the decay photon contribution, �0-h corre-

lations are constructed following the same method as
above using �0s as the trigger. The �0s are reconstructed
from photon pairs whose invariant mass is within the
window of 0:12–0:16 GeV=c2. The �0-h correlations are
translated into decay photon-hadron correlations according
to a Monte Carlo study of the probability that a �0 with a
given pT produces a decay photon within a certain pT bin.
This procedure is explained in detail in [20].
In pþ p collisions, �dir-h yields were measured using

an isolation cut, and removing decay photons from the
inclusive sample on an event-by-event basis [13]. In the
analysis, photons which combine with another photon in
the event to produce a mass within the �0 or � mass
windows were rejected. Next, an isolation cut was applied,
requiring that the transverse electromagnetic energy and
charged track momentum within a cone of 0.3 rad around
the photon be less than 10% of the photon energy. Finally, a
statistical subtraction similar to that in the Auþ Au analy-
sis eliminated contributions from decay photons, which
appeared isolated or whose decay partner was lost due to
finite detector acceptance or efficiency. By first eliminating
photons from other sources event by event, the signal to
background ratio is improved and final uncertainties are
reduced. The pþ p results using the isolation cut agree
with a statistical subtraction analysis in pþ p, but have
smaller uncertainties.
In order to study the jet fragmentation function, DðzÞ,

associated hadron yields are determined as a function of
zT ¼ ph

T=p
�
T , the ratio of the associated hadron transverse

momentum, ph
T , to the trigger photon transverse momen-

tum, p�
T . Here zT � z, since direct photon triggers balance

the opposing jet. To focus on the low zT region, one can
express the fragmentation function as a function of the
variable, � ¼ lnð1=zTÞ. To extend the accessible zT range,
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hadrons from 0:5< pT < 7:0 GeV=c are used in combi-
nation with a single 5< p�

T < 9 GeV=c photon bin.
Figure 1 shows azimuthal pair angle distributions for the

extracted direct �-h correlations in 0%–40% central
Auþ Au collisions as well as comparison with the direct
�-h correlations in pþ p. The systematic uncertainties
arise from the absolute normalization procedure, v2 esti-
mation, and R�. The estimated uncertainty from higher

flow moments is shown separately and is only significant
for the highest � pairs.

Unlike on the away side, on the trigger side (j��j<
�=2) the direct �-h correlations in Auþ Au show an
integrated yield consistent with zero when considering
systematic uncertainties, which are dominated by the low-
est �� point, indicating that the statistical subtraction
method indeed yields direct photons and that the yield of
fragmentation photons in Auþ Au is negligible within
uncertainties.

On the away side the associated particle yield is visible,
and there is significant variation when comparing the
correlations in Auþ Au to pþ p. To further quantify
this variation, the yields are integrated over �� for
j����j<�=2, as a function of �, to obtain the effective
fragmentation function. Figure 2(a) shows the integrated
away-side yields in Auþ Au and pþ p as circles and
squares, respectively. The statistical error bars include

the point-to-point uncorrelated systematic uncertainty
from the background subtraction, while the boxes around
the points show the correlated uncertainties. For reference,
the dependence on zT is also indicated as the upper scale
axis label.
To study medium modification of the jet fragmentation

function, we take a ratio of the � distribution inAuþ Au to
pþ p. This ratio, known as IAA, is shown in Fig. 2(b) and
can be written as IAA ¼ YAuþAu=Ypþp. Much of the global
scale uncertainty cancels in this ratio, but there is a remain-
ing 6% uncertainty. In the absence of modification, IAA
would equal 1. The data instead indicate suppression at low
� and enhancement at higher �. Including all systematic
uncertainties the �2=DOF value for the highest four points
compared to the hypothesis that IAA ¼ 1 is 17:6=4, corre-
sponding to a probability that IAA is 1.0 for � > 0:8 of less
than 0.1%.
The dashed curve in Fig. 2(b) shows IAA calculated at

Ejet ¼ 7 GeV using the BW-MLLA model in medium and

in vacuum. The vacuum calculation agrees well with the
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FIG. 2 (color online). Panel (a) shows per trigger yield as a
function of � for pþ p collisions (squares) and 0%–40% most
central Auþ Au collisions (circles). The points are shifted for
clarity. For reference, the dependence on zT is also indicated.
Panel (b) shows IAA, the ratio of Auþ Au to pþ p fragmenta-
tion functions. Also shown are predictions from BW-MLLA [18]
(dashed line), calculated at Ejet ¼ 7 GeV with fmed ¼ 0:8

selected for 0%–10% central Auþ Au and from YaJEM-DE
[27,28] (dot-dashed curve) for 0%–40% centrality and trigger
photons from 9–12 GeV=c, both for the full away side
(j��� �j<�=2).
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measured � distribution in eþe�, and the in-medium con-
ditions reproduce the measured �0 RAA at high-pT for
0%–10% central Auþ Au events [18]. The dot-dashed
curve shows IAA predicted by YaJEM-DE [27] for trigger
photons from 9–12 GeV=c for the same centrality range
(0%–40%) as the present data [28]. Both models, which
include all away-side jet fragments, show suppression at
low � due to parton energy loss in Auþ Au collisions and
increasing IAA with increasing �, as observed in the data.
In both cases, this is due to the lost energy being redis-
tributed into enhanced production of lower momentum
particles. We note that the energies in the available calcu-
lations do not exactly match the momentum range of the
trigger photons in the data. However, large deviations in
the trend of these calculations as a function of jet energy
are not expected.

The large uncertainties and clear modification to the��
distributions in Auþ Au make it difficult to choose an
away-side integration range that unambiguously encom-
passes the opposing jet. As shown in Fig. 3(a), IAA was
determined in three integration ranges in order to better
understand the �� dependence of the observed modifica-
tion and the angular distribution of particles on the away
side. Reducing the integration range from j��� �j<
�=2 reduces the observed enhancement and shifts the
effect to higher �. If the integration range is restricted to
j��� �j<�=6, the enhancement for � > 1:0 becomes
negligible, while still showing significant suppression
for � < 0:8.

The systematic and statistical uncertainties shown in
Fig. 3(a) are partially correlated due to the overlap in
integration ranges. Therefore, to better quantify the signifi-
cance of the angular range of the enhancement, we can
look at the ratio of IAA’s, where such correlations cancel.
Figure 3(b) shows the ratio of the full away-side integration
range to the j��� �j<�=6 case. From this ratio it is
clear that there is a significant variation in observed IAA as
a function of the integration range. The average ratio for
� > 0:8 is 1:9� 0:3ðstatÞ � 0:3ðsystÞ, indicating that the
enhancement in IAA seen at large � is predominantly at
large angles (j��� �j>�=6). Related measurements
using full jet reconstruction at the Large Hadron Collider
at much higher jet energies, do not show a broadening in
the angular distribution of jets with respect to trigger
photons [29], but do show evidence for the broadening of
the jets themselves [30], which would result in a modifi-
cation to the observed fragmentation function in the
present analysis.
In summary, we have presented evidence for medium

modification of jet fragmentation, measured via compari-
son of direct photon-hadron correlations in

ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV Auþ Au and pþ p collisions. The ratio of
Auþ Au to pþ p yields indicates that particles are de-
pleted at low � or high momentum fraction, zT , due to the
energy loss of quarks traversing the medium. The ratio
exhibits an increasing trend toward high �, exceeding one
at � � 1:0. Restricting the away-side azimuthal integration
range reduces the enhancement at high � significantly. This
suggests that the medium enhances production of soft
particles in parton fragmentation, relative to pþ p, pref-
erentially at large angles.
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