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This study investigates university students’ understanding of graphs in three different domains:

mathematics, physics (kinematics), and contexts other than physics. Eight sets of parallel mathematics,

physics, and other context questions about graphs were developed. A test consisting of these eight sets of

questions (24 questions in all) was administered to 385 first year students at University of Zagreb who

were either prospective physics or mathematics teachers or prospective physicists or mathematicians.

Rasch analysis of data was conducted and linear measures for item difficulties were obtained. Average

difficulties of items in three domains (mathematics, physics, and other contexts) and over two concepts

(graph slope, area under the graph) were computed and compared. Analysis suggests that the variation of

average difficulty among the three domains is much smaller for the concept of graph slope than for the

concept of area under the graph. Most of the slope items are very close in difficulty, suggesting that

students who have developed sufficient understanding of graph slope in mathematics are generally able to

transfer it almost equally successfully to other contexts. A large difference was found between the

difficulty of the concept of area under the graph in physics and other contexts on one side and mathematics

on the other side. Comparison of average difficulty of the three domains suggests that mathematics

without context is the easiest domain for students. Adding either physics or other context to mathematical

items generally seems to increase item difficulty. No significant difference was found between the average

item difficulty in physics and contexts other than physics, suggesting that physics (kinematics) remains a

difficult context for most students despite the received instruction on kinematics in high school.

DOI: 10.1103/PhysRevSTPER.9.020103 PACS numbers: 01.40.Fk

I. INTRODUCTION

Scientific data are very often communicated through
graphs, because they allow the skilled user to quickly
recognize and extract important features of the data set
under analysis, such as trends, rates of change, etc. This is
usually done through analyses of graph slopes and areas
under the graph. Students in Croatia are introduced to
graphs through different school subjects, but mostly
through mathematics and physics. However, students also
encounter graphs in contexts other than those of mathe-
matics and physics, such as biology, chemistry, everyday
life, economy, etc. This study attempts to investigate and
compare student ability to interpret graphs in mathematics,
physics, and contexts other than physics. It attempts to
answer the following research question: How does student
ability to interpret graph slopes and areas under the graph
change across three different domains: mathematics

without context1 (M domain), physics or kinematics
(P domain), and mathematics in contexts other than phys-
ics (C domain)?
The ability to interpret graphs is considered one of the

important outcomes of high school mathematics, physics,
and other science courses, and is often assumed by uni-
versity faculty to be fully developed by the time that
students enroll at university. It was shown in several phys-
ics education research studies (e.g., [2–6]) that this as-
sumption does not hold, and that students still have many
difficulties with graph interpretation at university level
which are similar to those found at earlier levels [7–10],
as well as to those identified through mathematics educa-
tion research (e.g., [11–16]).
The main student difficulties can be classified as

interval-point confusions, where students focus on a single
point instead of on an interval; slope-height confusions,
where students mistake height of the graph for the slope;
and iconic confusions, where students incorrectly interpret
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1Mathematics can also be regarded as a specific context for
students [1], but we regard it as context-free only in the sense
that the problems in this domain are posed directly, without
additional context which could mask the mathematical essence
of the problem.
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graphs as pictures [12]. Overall, the findings of both phys-
ics and mathematics education research are rather similar
and point to the presence of similar student difficulties in
both domains. However, the prevalence or relative
strengths of different difficulties in both domains were
rarely investigated or compared. The issue of transfer of
knowledge between mathematics and physics (usually
from mathematics to physics) is very important for physics
education. It was tackled in several studies on graphs
[1,17–19] with mostly negative results. It was suggested
in one of the studies that most secondary students, even
those who do well in mathematics and physics, do not
make substantial links between the two domains, and that
some students even think that it is not appropriate to trans-
fer concepts from mathematics to physics [17]. For transfer
to occur it is necessary that students possess the required
mathematical knowledge, but this is not always the case,
especially when advanced concepts such as derivative or
integral are concerned [1,18].

However, students’ problems with mathematics may not
be the only or even the main reason for students’ difficul-
ties with graphs in physics. In our previous study we made
an attempt to compare high school students’ understanding
of the line graph slope in the domains of physics and
mathematics [19]. It was found that, contrary to the prev-
alent belief of physics teachers, the main source of student
difficulties with the concept of the line graph slope in
physics was not their lack of mathematical knowledge,
but rather their lack of ability to interpret the meaning of
the line graph slope in physics context. Many students
successfully solved the mathematical questions but were
unable to solve parallel physics questions, or used different
strategies for solving analogous mathematics and physics
problems. It was observed that the transfer of knowledge to
a different domain, such as physics, did not always occur,
even though many students possessed the needed mathe-
matical knowledge. (Interestingly, besides the expected
transfer from mathematics to physics, which was relatively
weak, some occasional cases of transfer from physics to
mathematics were also observed.) Also, the same student
difficulty known as slope-height confusion was detected in
both domains, but it occurred far more frequently in phys-
ics than in mathematics (about twice as often). It was
natural to pose the question about the reason for the
observed higher difficulty of physics questions relative to
parallel mathematics questions: Is the higher difficulty of
physics questions the consequence of students’ lack of
relevant physics knowledge, or would the same effect be
observed to the same extent also in parallel questions
situated in different contexts, which did not require addi-
tional content knowledge? This study attempts to inves-
tigate this issue further through the analysis and
comparison of student answers to parallel questions from
mathematics without context, physics (which requires
some physics content knowledge), and other contexts

which do not require additional content knowledge (this
area can be described as mathematics in context). We are
not aware of any studies that tried to compare student
understanding of graphs across the different domains,
and this comparison could be helpful to both physics and
mathematics teachers, not only to identify student difficul-
ties, but also to try to understand their origin and their
relative importance.

II. THEORETICAL BACKGROUND

Transfer of learning is usually defined as the ability to
extend what has been learned in one context to new con-
texts [20], and is sometimes regarded as one of the ultimate
goals of education. Hammer et al. [21] suggest that it
would generally be more appropriate to speak of activation
of cognitive resources than of transfer, since knowledge
and reasoning abilities are composed of many resources
that may or may not be activated in a particular context.
They oppose the view of knowledge and abilities as objects
which are acquired, manipulated, and transferred as intact
units, with the exception of locally coherent sets of resour-
ces which activate together and possess internal structural
stability. Such cognitive units whose mechanism of stabil-
ity is structural rather than contextual can be viewed as
transferable [21]. In our opinion, students’ concepts of the
graph slope and of the area under the graph can be ex-
amples of such transferable units in cases when they are
well formed and stable.
Whether or not transfer will happen depends not only on

the presence or absence of relevant resources, but also on
students’ framing of the situation [22]. Framing means that
students have to interpret what is going on in a certain
situation or in a certain problem and accordingly decide
what resources to use, or which epistemic game to play
[22]. In physics education we usually expect students to
transfer their mathematical knowledge from mathematics
to physics. There are several reasons why the expected
transfer could fail: either the required resource does not
exist, or the resource exists, but is not activated due to the
wrong framing of the problem, or the resource is activated,
but its mapping to the problem is not appropriate [23].
Research suggests that transfer is more likely to happen
when students have seen the given idea in at least two
separate contexts or when they receive metacognitive scaf-
folding [20].

III. DATA COLLECTION AND ANALYSIS

Eight sets of parallel mathematics, physics, and other
context questions about graphs were developed. The con-
struction of sets usually started from physics questions.
Some of the physics questions in this study had already
been used in other studies on graphs (e.g., [3,5,16,19]) to
probe important student difficulties related to graphs. After
the selection and modification of physics questions,
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analogous mathematics and other contexts questions were
constructed. Each set of questions referred to the same
concept and required the same mathematical procedure
in different contexts—one question was a direct mathe-
matical question, one was situated in the context of physics
(kinematics), and one was in some context other than
physics. Physics content knowledge that was required for
answering physics questions included definitions of and
relationships among basic kinematic concepts (such as
distance, velocity, acceleration, uniform and uniformly
accelerated linear motion) and the ability to interpret their
graphical representation. In other context problems no
specialized content knowledge, which is not common for
university students, was needed. For example, it was
assumed that students are familiar with terms such as price
growth, GDP, stocks, river water level, bus rentals, etc., but
knowledge of the definitions or laws concerning those
concepts was not required.

Five sets of questions referred to the concept of the graph
slope and three to the concept of the area under the graph.
Four sets of questions were in a multiple choice format and
four sets were open ended. In addition to choosing the
correct answer in multiple choice questions or providing
the answer in open-ended questions, students were asked to
provide explanations for their answers and/or necessary
calculations where appropriate, so that insight into the
underlying student reasoning could be obtained. In this
paper physics slope questions are labeled P-S1 through
P-S5, physics area questions P-A1 through P-A3, mathe-
matics slope questions M-S1 through M-S5, mathematics
area questions M-A1 through M-A3, other context slope
questions C-S1 through C-S5, and other context area ques-
tions C-A1 through C-A3. Questions with the same two last
labels are parallel in content (e.g., P-S1, M-S1, and C-S1).
An example of one set of slope items is given in Fig. 1, and
thewhole test is included in the SupplementalMaterial [24].

FIG. 1 (color online). Questions P-S2, M-S2, and C-S2: an example of a set of parallel slope items.
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A test consisting of these eight sets of questions (24
questions in all) was administered to 385 first year students
at Faculty of Science, University of Zagreb in Zagreb,
Croatia. Students were either prospective physics or
mathematics teachers or prospective physicists or mathe-
maticians. Students were tested at the beginning of the first
semester. They were told that the testing was part of the
research on student understanding of graphs and were later
informed of their score on the test. No incentives such as
grades were offered for taking the test, but students
received some credit points for writing explanations
(regardless of their correctness) and/or for required calcu-
lations. Students were generally willing to take the test
since they were told that the results of the test would be
informative both for them and for their physics and mathe-
matics teachers and that they would help them see the areas
in which their knowledge of graphs could be improved.
Students were not informed that the test contained parallel
questions in different contexts. Parallel questions did not
follow each other in the test but were separated by other
questions. They were also not labeled in the same way as in
this paper but were numbered 1–24. [Labels used in this
paper (e.g., P-S1) were added for the readers’ convenience
to the test questions included in the Supplemental Material
[24], but they were not present in the original test.] All
students had previously studied motion graphs and kine-
matics in high school physics courses (physics is a com-
pulsory subject in Croatian high schools) and linear
functions and linear graphs in high school mathematics.
The allocated time for taking the test was 60 minutes, and
students were able to finish the test in that period of time.

The tests were scored. On multiple choice questions, if a
correct answer was given with a correct explanation, the
student was awarded 2 points. In cases where the correct
answer was given with an incomplete explanation or with
no explanation at all, the student was awarded 1 point. If a
correct answer was given for wrong reasons, as could have
been deduced from the explanation accompanying the
answer, the answer was counted as incorrect and awarded
0 points. For incorrect answers with or without explanation
the student was awarded 0 points. On open-ended ques-
tions, for the correct answer with the correct work the
student was awarded 2 points. For partially correct
answers (correct idea with some minor mistake in calcu-
lation) students were awarded 1 point, and for incorrect
work or explanations, or completely missing presentations
of work or explanations, 0 points.

After scoring, data were analyzed with the WINSTEPS

[25] software for Rasch analysis [26] to obtain linear
measures for item difficulties. Percentages of correct
answers can reflect the correct ranking of persons or items,
but not the correct intervals between person abilities or
between item difficulties, meaning that percentages are not
linear in the variable which they represent [26]. The line-
arity of measures, on the other hand, is very important

because meaningful arithmetic operations can only be
performed with linear measures, thus enabling compari-
sons and statistical studies. WINSTEPS performs logistic
transformation on the raw scores of persons and items
(p values of students and items), and in this way transforms
the raw scores in linear measures of student ability and
item difficulty. For more detailed introduction in the Rasch
model see, for example, Ref. [26] or the short introductions
to Rasch modeling in our previous publication [27]. The
model defines the unit logit (short for ‘‘log-odds unit’’) in
which all measures are expressed. Each item and person
measure comes with its Rasch standard error which indi-
cates the uncertainty of the estimate. The estimates are
more precise if the number of persons and items is large,
and if there is good targeting of the test on the distribution
of students [26].
To evaluate the fit of data to the model Rasch analysis,

programs usually report two fit statistics: infit and outfit
mean square statistics (MNSQ) [26,28]. Outfit is based on
the conventional averaged sum of squared standardized
residuals, whereas infit is an information-weighted sum
which gives more value to on-target observation. A large
infit value on a particular item indicates that some persons
of the ability which is close to the difficulty of the item
have not responded in a way consistent with the model. A
large outfit value of an item indicates that persons who are
far in ability from the difficulty of the item have responded
in an unexpected way. Large infit values are generally
considered more problematic than large outfit values. The
expected value of both infit and outfit is 1. Items which are
sufficiently in accordance with the Rasch model to be
productive for measurement will have infit and outfit val-
ues between 0.5 and 1.5 [28].

IV. RESULTS

A. Analysis of item difficulties

The functioning of the test as a whole was satisfactory
with very high item reliability (0.99), which is of greatest
importance for this study, and somewhat lower, but satis-
factory, person reliability (0.85) and Cronbach alpha
(0.88). Overall, our data seem to fit the Rasch model.
The item-person map, which visually summarizes several
aspects of Rasch analysis, is shown in Fig. 2.
Distribution of items according to their difficulty and

distribution of persons according to their ability is shown
along the same axis with scale in logit. The most able
students and the most difficult items are at the top of the
figure. It can be noted that the targeting of the test on
the sample is very good. The width of the test is adequate
for most students—only 16 students have abilities outside
the range of item difficulties in the test. In the middle of the
distribution there are many items which are very close in
difficulty; for example, 10 of the total of 15 slope items are
found in the interval which is about 0.6 logit wide (M-S5 to
M-S2). Area items from P and C domains are found in the
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upper part of the difficulty distribution, whereas mathe-
matics area items are at the very bottom of the distribution.
Interestingly, parallel area questions (e.g., P-A3, C-A3, and
M-A3) usually differ quite significantly in difficulty.

The fit of the items with the model can be evaluated from
Table I in the Supplemental Material [29]. No items are
degrading for measurement (all have infit and outfit MNSQ
values within the range of 0.5–1.5). Items M-A3, M-S1,
and M-A2 have the largest outfit values. However, infit
values of all these items are smaller than their outfit values,
and infit is generally regarded as the more important indi-
cator of fit than outfit, since large outfit can be caused by
careless mistakes or lucky guessing of a small number of

students. From correlations listed in Table I, which are all
positive and greater than 0.3, it can be concluded that all
items worked together. The analysis of the test as a whole
suggests that the test succeeded in defining the underlying
variable (student understanding of graphs), and that a
reliable scale of item difficulties was obtained for the items
in the test, which allowed further analysis of difficulties of
different groups of items.
In order to compare the difficulties of items in each

investigated context, the average values of item difficulties
over three different domains (mathematics without con-
text, physics, mathematics in context) and two investigated
concepts (slope, area) were calculated and graphically
represented in Figs. 3 and 4. The average difficulty of all
items in the test is usually set to zero in Rasch analysis, so
positive item difficulties indicate items more difficult than
the average, and negative difficulties indicate items easier
than the average. From Fig. 3 it is visible that the concept
of slope in all three domains is close to the average
difficulty, or easier, and that the differences among the
domains are not very large. Error bars indicate the level
of dispersion of item difficulties from the average diffi-
culty. The results suggest that the concept of the graph
slope in the M domain is easier for students than the same
concept in the P domain, but difficulties of the concept of
slope in P andC domains, as well as of the same concept in
M and C domains, cannot be clearly distinguished from
one another due to large uncertainty of the average diffi-
culty in the C domain. Altogether, the concept of slope
appears rather homogenous in difficulty. This is also vis-
ible in Fig. 2, where 10 slope items are found in the 0.6
logit wide interval, indicating small differences in diffi-
culty levels for the majority of slope items in the test. The
slope items that are outside this group are C-S1 and P-S1

FIG. 3 (color online). Average difficulties of slope and area
items in three different domains (M stands for mathematics
without context, P for physics, C for other contexts). All values
are in logit. Error bars indicate the combined uncertainties of
each average value computed as CE ¼ ðSEM2 þ SE2Þ1=2, where
SEM is standard error of the mean and SE is the average Rasch
standard error.

FIG. 2. Item-person map. M denotes the mean of each distri-
bution; S denotes 1 standard deviation, and T 2 standard devia-
tions from the mean. Each ‘‘#’’ represents 3 students and each
‘‘.’’ less than 3 students.
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(the most difficult slope items), which required calculation
of the line graph slope in P and C domains, followed by
P-S5 and C-S5, which required interpretation of the slope
of a curved graph. On the other side of the distribution is
item C-S2, which was the easiest slope item (Fig. 1).

The differences among domains are much more pro-
nounced when the concept of the area under the graph is
analyzed. The concept of the area under the graph in theM
domain appears to be much easier than the same concept in
P and C domains, but also much easier than the concept of
slope in any of the domains. On the other hand, the concept
of the area under the graph appears to be of similar diffi-
culty in P and C domains, and of much higher difficulty
than the concept of slope in any of the domains.

When item difficulties are averaged over domains it
can be seen (Fig. 4) that mathematics without context
(M domain) was the easiest domain for students in this
test, whereas physics and other contexts were much more
difficult. Because of large uncertainties of average diffi-
culties of physics and other contexts, the difference in the
difficulties of these two domains cannot be resolved, and
they appear equally difficult.

B. Analysis of student explanations

In addition to analyzing mean item difficulties over
different domains and concepts, it was also important to
analyze student written explanations and calculations
which accompanied their answers to questions. Students
provided many explanations that gave us important insight
in their ways of reasoning on different items. Since it is
rather extensive, the full report on student explanations and
student difficulties with graphs, which were detected from
them, will be given in a subsequent paper. Here we will
give only an illustration of student reasoning through the
example of the set of parallel itemsM-S2, P-S2, and C-S2,

shown in Fig. 1. The following comments of two students
illustrate different reasoning strategies used by students in
different domains.

Student 1
M domain (correct answer): Line p is steeper, we can

also see that as tg� ¼ 2=1 ¼ 2 for p, and tg�¼1=1¼1
for q.
C domain (correct answer): ING t ¼ 3 months, from 100

to 300 ¼ 200, EXP t ¼ 3 months, from 300 to 450 ¼ 150
P domain (incorrect answer): a ¼ v=t ¼ 3=2 (B);

a ¼ v=t ¼ 2:25 (A)

Student 2
M domain (correct answer): Line p has a larger interval

on y-axis than line q for the given interval on the x-axis.
C domain (correct answer): In the period of 3 months

stock ING increased for 230 €, and stock EXP for 120 €.
P domain (incorrect answer): a ¼ v=t; since body A has

larger v at t ¼ 2 s, then its a is also larger

Both students answered questions M-S2 and C-S2 cor-
rectly but failed on physics question P-S2. The difference
in reasoning strategies in the three domains is obvious. In
the M and C domains student reasoning is based on the
concept of slope, either explicitly or implicitly (as rise over
run). Both students are obviously able to reason on the
graph slope, using it either explicitly or implicitly.
However, in the physics context, they both resort to a
different strategy (use of formulas, in these cases incorrect
ones), and do not activate their knowledge or reasoning
strategies about the slope. Not only in these two cases, but
generally, students’ preferable strategy in the P domain
seemed to be the use of formulas, and it often led them to
the wrong conclusions. On this set of questions, 44% of
students used a formula (either correctly or incorrectly) as
the basis for their reasoning in physics, compared to 21%
and 8% in mathematics and other contexts, respectively. At
the same time, many students displayed the ability to
reason on the basis of graph slope in mathematics, and
sometimes also in other contexts, but in physics this type of
reasoning seems to have been blocked in many cases by
students’ choice or habit to rely on formulas. Students
often used different strategies in different domains, and
that suggests that the activation of their cognitive resources
is largely context dependent. For example, explicit reason-
ing on the basis of rise over run, expressed in words, was
used by almost every fourth student on C-S2 (23%),
whereas on P-S2 and M-S2 it was almost negligible (5%
and 3%, respectively). In mathematics, one important
incorrect strategy was to identify the slope as the angle
between the straight line and the x axis, either explicitly
(18% of the students) or implicitly (10%), by reasoning on
the basis of the steepness of the line. The same was done
explicitly by 3% of the students in the P domain and 7% in
the C domain, with the possibility that many more students

FIG. 4 (color online). Average difficulties of items in different
domains (mathematics without context, physics, other contexts).
All values are in logit. Error bars indicate the combined un-
certainties of each average value computed as CE ¼ ðSEM2 þ
SE2Þ1=2 where SEM is standard error of the mean and SE is the
average Rasch standard error of items in the domain.
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used it implicitly through the word ‘‘slope’’ in those con-
texts. Large fractions of students used the word slope in P
and C domains (27% and 38%, respectively), but the
meaning of that concept may not be clear for many of
them. This is suggested by the fact that in the M domain,
where students actually had to explain what they meant by
slope if they wanted to explain which straight line had the
larger slope, about half of them (49%) gave incoherent or
irrelevant explanations or no explanations at all. Questions
M-S2, P-S2, C-S2 are convenient for illustrating differ-
ences in student reasoning strategies in different domains,
because C-S2 was the best solved question from the C
domain. Many explanations were provided by the students
on that question, more than on the other C domain ques-
tions, and we were therefore able to get a good insight into
students’ reasoning. It is possible, although not certain,
that C-S2 was solved better than the other questions in C
domain because of the context of the question. Comparing
prices and their growth (not necessarily of stocks, but also
of many other everyday items) may be something that
students are accustomed to in everyday life, so this prob-
lem may have activated some of the resources that they use
in everyday life. If that is really true, then this question
might be an example of how context in some cases may
help students in solving the problem, although in most
cases in this study it seemed to have presented an addi-
tional obstacle in that process.

V. CONCLUSIONS

In physics, as well as in other sciences, it is usually
expected that students posses necessary mathematical
knowledge on graphs, and also to transfer it readily to
new contexts which are more or less familiar to them. In
this study we have attempted to compare student perform-
ance on mathematically similar problems, which were
situated in different contexts: each problem was posed
once directly mathematically, once in the physics (kine-
matics) context, which required physics content knowl-
edge, and once in some other context, which did not
require additional content knowledge. The physics context
(kinematics) should have been rather familiar to students,
since they had encountered similar problems in high
school. Other context problems, presented in the test,
were expected to be less familiar for students—such prob-
lems are far less frequently given in Croatian high schools
than kinematics problems. It was expected that the M
domain would be the easiest and the C domain the most
difficult domain, with physics somewhere in between those
two domains. The results confirmed the prediction that
mathematics without context is the easiest domain in the
test, but contrary to expectations, C and P domains turned
out to be approximately equally difficult. The results sug-
gest that students do not solve kinematics problems better
than the presumably less familiar other contexts problems
and that kinematics is still a difficult context for students,

even though it was rather extensively covered in high
school. Student understanding of kinematics concepts
seems to still not be sufficiently developed. As was shown
in our previous study on graphs [19], many physics teach-
ers attribute student difficulties with graphs in physics to
student lack of mathematical knowledge. It was again
shown in this study that even if students have the needed
mathematical knowledge, which was generally the case in
this study (although some problems were noticed in that
area too), it does not guarantee their success on parallel
physics or other context problems. The added context
generally increased the difficulty of parallel problems
with regards to mathematics, because problems including
context required one more step in solving: interpretation
and translation of context into mathematical language.
However, there was one instance (item C-S2) where the
context seemed helpful and decreased the difficulty of the
problem even below the difficulty of the parallel mathe-
matical problem.
The results of the study reveal the differences between

student understanding of the concept of the graph slope and
the concept of the area under the graph. The concept of
slope, even though usually mathematically more demand-
ing, seems to be better understood than the concept of the
area under the graph. The interpretation of the meaning of
the area under the graph seemed to present the biggest
problem for students in our study. The reason for this could
be found in the fact that during teaching of kinematics the
interpretation of the slope is usually emphasized much
more than the interpretation of the area under the graph.
In this study, student reasoning about the graph slope
appears as a rather compact element, not so much influ-
enced by the presence of context or the lack of it, as can be
concluded from Figs. 2 and 3. This could suggest the
transfer of knowledge between the domains (mostly from
mathematics to the other two domains), and seems to be
consistent with our initial assumption that the concept of
the graph slope can be regarded as a transferable cognitive
unit. The analysis of explanations of student answers
showed that the student understanding of the concept of
the slope is often only partly correct. The slope items that
stand out in terms of difficulty are the items that ask for
computation of the slope (C-S1, P-S1) and the items that
ask for the reasoning about the slope of the curved graph
(C-S5, P-S5). Computation of the slope requires proce-
dural knowledge in addition to understanding, which
explains the higher difficulty. This agrees with the results
of some other studies [16], which found that slope compu-
tation seemed to be the most difficult aspect of the concept
of slope. Analysis of curved graphs is not so often tackled
in the high school curriculum, so this was something new
for most of the students.
The difficulty of the concept of the area under the graph

differs dramatically between mathematics on the one side
and physics and other contexts on the other, as shown in
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Fig. 3. This is consistent with the findings of Nguyen and
Rebello [18] that very few students are able to apply this
concept in physics problems. Here it is obvious that the
interpretation of the mathematical quantities in physics or
in other contexts is a crucial step which most students in
our sample were not able to perform. Some cases of trans-
fer of the approach to the problem solving from physics to
other contexts were found on the area items (e.g., dimen-
sional analysis).

Regarding the research question of the study it can be
concluded that context generally seems to increase the
difficulty of items. Context added to the mathematical
slope or the area problem will increase the cognitive
demand on the students, acting as an additional barrier in
the problem, and will therefore also increase the difficulty
of the item. The exception might be only very familiar
contexts to which students are very much accustomed, in
which case context can even reduce the difficulty of the
item with regards to the parallel mathematical problem.

The analysis of student explanations which accompa-
nied their answers revealed many interesting student diffi-
culties regarding concepts of the graph slope and the area
under the graph. They will be presented in a separate
paper. The examples of differences in student strategies
on parallel questions presented in this paper were chosen
to illustrate that students’ preferred strategy in solving
physics problems seems to be based on the use of formulas

(often incorrect ones). This strategy in some cases seems to

be blocking the use of potentially more successful reason-

ing strategies based on slope, which students do posses.

This is a difficulty that might be interpreted as a problem

of framing. Even though students possess certain resour-

ces, they do not activate them because different contexts of

problems lead them to choose different solving strategies.

Had this study been limited to only kinematics graphs, we

might have concluded that students have very limited

knowledge on graphs. However, in many instances this

would not have been true, since students have often dis-

played their ability to extract relevant information from

graphs in mathematics, and sometimes also in other

contexts, but did not use that ability on physics problems,

in spite of the received high school instruction on kinemat-

ics graphs. Why that happened and what the students’

most common reasoning difficulties concerning graphs

are remains to be further investigated by a careful analysis

of student written explanations and interviews with

selected students which are planned to be carried out

soon. The findings will be presented in a separate paper.
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