Diamagnetism of YBa$_2$Cu$_3$O$_{6+x}$ crystals above T_c: Evidence for Gaussian fluctuations

I. Kanović, 1, 2, 5 D. J. Hills, 1 M. L. Sutherland, 1 R. Liang, 3 and J. R. Cooper 1

1 Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom
2 Department of Physics, Faculty of Science, University of Zagreb, P.O. Box 331, Zagreb, Croatia
3 Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z1

(Received 27 March 2013; revised manuscript received 19 July 2013; published 9 August 2013)

The magnetization of three high-quality single crystals of YBa$_2$Cu$_3$O$_{6+x}$, from slightly overdoped to heavily underdoped, has been measured using torque magnetometry. Striking effects in the angular dependence of the torque for the two underdoped crystals, a few degrees above the superconducting transition temperature (T_c), are described well by the theory of Gaussian superconducting fluctuations using a single adjustable parameter. The data at higher temperatures (T) are consistent with a strong cutoff in the fluctuations for $T \gtrsim 1.1 T_c$. Numerical estimates suggest that inelastic scattering could be responsible for this cutoff.

DOI: 10.1103/PhysRevB.88.060505 PACS number(s): 74.72.Gh, 74.20.De, 74.25.Ha, 74.62.Dh

Cuprate superconductors show much stronger thermodynamic fluctuations than classical ones because of their higher transition temperatures (T_c), shorter Ginzburg-Landau (GL) coherence lengths, and quasi-two-dimensional layered structures with weakly interacting CuO$_2$ planes. 1, 2 Observations of diamagnetism 3 and large Nernst coefficients over a broad temperature (T) range well above T_c for several types of cuprate 4, 5 are intriguing. 6 They are often cited as evidence for preformed Cooper pairs without the long-range phase coherence needed for superconductivity. In contrast, in Ref. 7 it is argued that phase and amplitude fluctuations set in simultaneously. However, the fluctuations are still considered to be strong in that the mean-field transition temperature T_c^{MF}, obtained by applying entropy and free energy balance considerations to heat capacity data, is substantially larger than T_c, especially for underdoped cuprates. In standard GL theory the coefficient of the $|\psi|^2$ term in the free energy, where ψ is the order parameter, changes sign at T_c^{MF}, as explained in Ref. 8. If $|\psi|^4$ and higher order terms are neglected, T_c^{MF} can be obtained from a Gaussian fluctuation (GF) analysis of the magnetic susceptibility and other physical properties. 1

One difficulty in this area is separating the fluctuation (FL) contribution to a given property from the normal state (N) background. Recently this has been dealt with for the in-plane electrical conductivity $\sigma_{ab}(T)$ of YBa$_2$Cu$_3$O$_{6+x}$ crystals by applying very high magnetic fields (B) was found to cut off even more rapidly from Gaussian fluctuations (χ_D) of YBCO, strongly reduced at high B, and the fields needed to suppress $\sigma_{ab}(T)$ extrapolated to zero between 120 and 140 K depending on x, which tends to support a vortex or Kosterlitz-Thouless scenario. Therefore questions such as the applicability of GF theory versus a phase fluctuation or mobile vortex scenario and the extent to which T_c is suppressed below T_c^{MF} by strong critical fluctuations are still being discussed. They are of general interest because superconducting fluctuations could limit the maximum T_c that can be obtained in a given class of material, and, moreover, the fluctuation cutoff could be linked in some way to the pairing mechanism.

Here we report torque magnetometry data measured 12 from T_c to 300 K for tiny YBa$_2$Cu$_3$O$_{6+x}$ (YBCO) single crystals from overdoped (OD) to heavily underdoped (UD). These were grown in nonreactive BaZrO$_3$ crucibles from high-purity (5N) starting materials. Evidence for the quality of the UD crystals includes extremely sharp x-ray peaks, 13 and substantial mean free paths from quantum oscillation measurements. 14 The OD89 crystal is from another preparation batch which had narrow superconducting transitions and a maximum T_c of 93.8 K. 15 We analyze the results using GF theory which, unlike some other approaches, predicts the magnitude of the observed effects as well as their T dependence. We show that it gives excellent single-parameter fits to the striking angular dependence of the torque, which has previously been attributed to the presence of a very large magnetic field scale. They also show that inelastic scattering is a plausible mechanism for cutting off the fluctuations at higher T and a possible alternative to strong fluctuations for limiting T_c.

Although measurements of the London penetration depth below T_c and thermal expansion 17 above and below T_c for optimally doped (OP) YBCO crystals give evidence for critical fluctuations described by the three-dimensional (3D) XY model, up to ± 10 K from T_c, we argue later that these do not alter our overall picture.

A crystal with magnetization M in an applied magnetic field B attached to a piezoresistive cantilever causes a change in electrical resistance proportional to the torque density $\tau \equiv M \times B$. If B is parallel to the c axis of a cuprate crystal, then in the low-field limit the contribution to M in the c-axis direction from Gaussian fluctuations (M_{c}^{FL}) is given by

$$M_{c}^{FL}(T) = -\frac{\pi k_B T B}{3 \Phi_0} \frac{\xi_{ab}^2(T)}{s \sqrt{1 + (2 \xi_{ab}(T)/\gamma s)^2}} \tag{1}$$

Here $\gamma \equiv \xi_{ab}(T)/\xi_c(T)$ is the anisotropy, defined as the ratio of the T-dependent coherence lengths \parallel and \perp to the layers, i.e., $\xi_{ab,c}(T) = \xi_{ab,c}(0)e^{1/2}$ with $\epsilon = \ln(T/T_c^{MF})$. 2, 9 The distance between the CuO$_2$ bilayers is taken as $s = 1.17$ nm, and Φ_0 and k_B are the pair flux quantum and Boltzmann’s constant, respectively. For $B \perp c$ the fluctuation magnetization is negligibly small.

As the angle θ between the applied field and CuO$_2$ planes is altered, $\tau(\theta)$ will vary as $\tau(\theta) = \frac{1}{2} \chi_D(T) B^2 \sin 2\theta$, as long as $M \propto B$. Thus, fits to $\tau(\theta) \propto B^2 \sin 2\theta$ give $\chi_D(T) \equiv \chi_c(T) - \frac{1}{2} \chi_D(T)$.
The solid lines for OD89 and UD57 are fits up to 300 K and include single-parameter fits to the formula for 2D GF derived from Eq. (2) plus $\chi_B^0(T)$ shown in Fig. 2(a). Note the sin 2θ behavior at higher T.

$\chi_{ab}(T)$, which is the susceptibility anisotropy. Figure 1 shows torque data for UD57 up to 15 K above the low-field T_c of 57 K. Much of our data, including the two curves for UD57 in Fig. 1 at higher T, follow a sin 2θ dependence very closely, however, there are some deviations at lower T arising from nonlinearity in $M(B)$ that we discuss later.

Figure 2(a) shows $\chi_D(T)$ obtained from sin 2θ fits for three doping levels at high enough T so that M remains $\propto B$. The solid lines for OD89 and UD57 are fits up to 300 K that include $\chi_{FL}^*(T)$ from Eq. (1), with the strong cutoff described below, plus the normal state background anisotropy $\chi^0_B(T)$ which arises from the g-factor anisotropy of the Pauli paramagnetism.\(^{18}\) For UD crystals the T dependence of $\chi^0_B(T)$ is caused by the pseudogap (see Ref. 19), plus a smaller contribution from the electron pocket\(^{18}\) observed in high-field quantum oscillation studies.\(^{20}\) We used the same pseudogap energies (k_BT^*) and other parameters defining $\chi^0_B(T)$ as in our recent work on single crystals,\(^{18}\) e.g., $T^* = 435$ K for UD57. OD89 has no pseudogap and presumably no pockets, so we represent the weak variation of $\chi^0_B(T)$ with T by the second order polynomial shown in Fig. 2(a).

Figures 2(b)–2(d) show plots of $1/|\chi_{FL}^*(T)|$ vs T where $\chi_{FL}^*(T) \equiv \chi_D(T) - \chi_B^0(T)$. The short-dashed lines for UD22 and UD57 in Figs. 2(b) and 2(c) show the contribution from Eq. (1) in the 2D limit ($\gamma \to \infty$) with the two adjustable parameters T_c^{MF} and $\xi_{ab}(0)$ given in Table I. The solid lines show the effect of the same type of cutoff used in previous studies of the the conductivity $\sigma_{ab}(T,B)$, as summarized in Ref. 21. For OD89 we use the full 2D-3D form of Eq. (1) with $\xi_{ab}(0) = 1.06$ nm and $\gamma = 5$,\(^{22}\) shown by the short-dashed line, with the solid line again including the cutoff.\(^{21}\) The high quality of these fits could be somewhat fortuitous in view of our neglect of any charge density wave (CDW),\(^{19}\) but other subtraction procedures give similar values of $1/|\chi_{FL}^*(T)|$. Heat capacity studies give a very similar value $\xi_{ab}(0) = 1.12$ nm for OD88 YBCO (Ref. 24) while our values for UD57 and UD22 agree with previous work\(^{9,25}\) for the same T_c values. For UD57, setting $\gamma = 45$,\(^{26}\) rather than the 2D limit of Eq. (1) ($\gamma \to \infty$), has no significant effect.

As the critical region is approached from above T_c the exponent of $\xi_{ab}(T)$ is expected to change from the MF value of $-1/2$ to the 3D XY value of $-2/3$.\(^{1}\) It is very likely that this will also apply to strongly 2D materials, including UD57, since heat capacity data above and below T_c (Ref. 27) do show the $\ln|\epsilon|$ terms associated with the 3D XY model. We have

FIG. 1. (Color online) Angular dependence of the torque density for the UD57 YBa$_2$Cu$_3$O$_{6.5}$ crystal in 10 T at $T = 58.1, 60.3, 61.5, 66.9,$ and 72.2 K after correcting for a fixed instrumental offset of 10$^\circ$ and subtracting the gravitational term (Ref. 12). The solid lines show single-parameter fits to the formula for 2D GF derived from Eq. (2) plus $\chi_B^0(T)$ shown in Fig. 2(a).

FIG. 2. (Color online) (a) Main: $\chi_D(T)$ for the three crystals; solid lines show fits to $\chi_{FL}^*(T) + \chi_B^0(T)$ for OD89 and UD57, and dashed lines show $\chi_B^0(T)$. Inset: Symbols show M calculated for various values of ϵ, using Eq. (2), when the anisotropy parameter $r = \cos^2(\alpha_0)/\sin^2(\theta) = 0$. For $r = 0.13$ symbols show M given by the 2D-3D form of Eq. (2), which contains r and an extra integral (Ref. 2). The lines show formulas used (Ref. 23) to represent these values of M when fitting $\tau(\theta)$ data. (b)–(d) Plots of $1/|\chi_{FL}^*(T)|$ vs T for the three crystals. GF fits based on Eq. (1) are shown by short dashed lines, without a cutoff, and by solid lines, with a strong cutoff (Ref. 21). Red triangles for UD57 show $\xi_{ab}(0)^2/\epsilon$ obtained by fitting $\tau(\theta)$ to the full 2D GF formula when $M(B)$ is nonlinear, and converted to $1/|\chi_{FL}^*(T)|$ using Eq. (1). For UD22 the full GF formula was used for all the points shown in (b).
addressed this by repeating our GF fits in Figs. 2(b) and 2(c) with \(\epsilon \gtrsim 0.20 \) (UD22) or 0.15 (UD57) without altering the cutoff.\(^{21}\) The only significant change is that \(\xi_{ab}(0) \) becomes 15\% larger for UD57. For OD89, fits with \(T_{c}^{\text{MF}} = 90 \) K and \(\epsilon \gtrsim 0.05 \) do not alter \(\xi_{ab}(0) \) within the quoted error. This is expected since the width of the critical region for OD89 is much smaller than for OP YBCO (Refs. 16, 17) because of the extra 3D coupling from the highly conducting CuO chains.\(^{24}\)

Figure 3 shows plots of \(\tau / B \cos \theta \) vs \(B \sin \theta \) at fixed \(T \) for UD57. We use this representation of the data and mks units, \(\text{A/m} \), for comparison with Ref. 3. If \(\chi_{D}^{N}(T) \) is subtracted, which has not been done for Fig. 3, then since \(M_{c}^{\text{MF}} \) is small, this would be the same as plotting \(M_{c}^{\text{FL}} \) vs \(B \parallel c \). Near \(T_{c} \), there is clear nonlinearity which is remarkably consistent with GF in the 2D limit, for which the free energy density at all \(B \) is

\[
F = \frac{k_{B}T}{2\pi \xi_{ab}^{2}} \left\{ b \ln \left[\frac{1}{2} - \frac{\epsilon}{2b} \right] \left(\frac{\sqrt{2\pi}}{2} - \frac{\epsilon}{2} \ln(b) \right) \right\} \quad (2)
\]

using the standard \(\chi_{D}^{N} \) function, with \(b = B / B_{c2}(0) \), where \(B_{c2}(0) = \Phi_{0} / 2\pi \xi_{ab}(0)^{2} \), and as before, \(\epsilon = \ln(T/T_{c}^{\text{MF}}(B = 0)) \). The magnetization \(M = -\partial F / \partial B \) obtained by numerical differentiation of Eq. (2) for three typical values of \(\epsilon \) is shown in the inset to Fig. 2(a). \(M \) scales with \(b / \epsilon \) to within a few percent and for \(0.01 < \epsilon < 1 \) can be adequately represented by the simple formula \(-bk_{B}T/\Phi_{0}(3b + 6c)\), which has a single unknown parameter \(\xi_{ab}(0)^{2}/\epsilon \). We note that GF formulas will be approximately valid in the crossover region to 3D XY behavior,\(^{1}\) because to first order the main effect is the change in the exponent of \(\xi_{ab}(T) \).

Figures 1 and 3 show that this formula fits our data for UD57 very well and importantly, as shown by the red triangles in Fig. 2(c), the corresponding values of \(1 / \chi_{D}^{\text{FL}}(T) \) obtained via Eq. (1) agree well with points from sin2\(\theta \) fits at lower \(B \) or higher \(T \). For OD89 strong deviations from sin2\(\theta \) behavior only occur within \(\sim 1 \) K of \(T_{c} \) and these\(^{25}\) are not properly described by GF theory. For UD22 there were small jumps in \(\tau(\theta) \) at \(\theta = 0 \) between 35 and 26 K of size \(M_{c} = 0.01 - 0.03k_{B}T/(3\Phi_{0}) \) that were fitted by including an extra contribution from Eq. (2) in the \(\epsilon \ll b \) limit. This is ascribed to small regions, 1\%–3\% of the total volume, with higher \(T_{c} \) (Ref. 29) that are not detected in low-field measurements of \(T_{c} \) because they are much smaller than the London penetration depth. Figure 2(b) shows that the values of \(\xi_{ab}(0)^{2}/\epsilon \) (or equivalently \(1 / \chi_{D}^{\text{FL}}(T) \)) obtained from full GF fits to \(\tau(\theta) \) data at 2, 5, and 10 K are well fit, which supports this conclusion.

The good description of our data by this GF analysis suggests that the high critical fields proposed in Refs. 3–5 for \(0.01 < \epsilon \lesssim 0.2 \) are not associated with vortex-like excitations. In the present picture 2D GF give \(M_{c}^{\text{FL}} \approx -0.33k_{B}T/\Phi_{0} \approx -0.112 \text{ cm}^{2}/\text{m}^{2} \) or \(-112 \text{ A/m} \) at 60 K for \(B \approx \Phi_{0}/(2\pi \xi_{ab}(T))^{2} \). We expect this to be suppressed for \(B \gtrsim B_{c2}(0) \) where the magnetic length becomes smaller than \(\xi_{ab}(0) \) and the slow spatial variation approximation of GL theory breaks down. However, it may also fall when \(\epsilon \lesssim 0.1 \) because of the GF cutoff discussed below. So the first approximation the high fields are \(\approx B_{c2}(0) \). Precise analysis of these effects at very high fields might need to allow for small changes in \(\chi_{D}^{N}(T) \) with \(B \) that depend on the ratio of the Zeeman energy to the pseudogap. We note that the present results are consistent with a recent study of \(B_{c2} \) for YBCO (Ref. 30) and that recent torque magnetometry data\(^{31}\) for HgBa_{2}CuO_{4+\delta} and other single-layer cuprates show similar exponential attenuation factors to those for YBCO.\(^{32}\)

An intriguing question about the present results and those of Ref. 9 is the origin of the strong cutoff in the GF above \(\sim 1.17T_{c} \). If the weakly \(T \)-dependent \(\chi_{D}^{N}(T) \) behavior for OD89 shown in Fig. 2(a) is correct, then our \(\chi_{D}^{N}(T) \) (data and \(\sigma_{ab}^{\text{FL}}(T) \) (Ref. 9) both decay as \(\exp[-(T - 1.08T_{c})/T_{0}] \) above \(T \sim 1.08T_{c} \) with \(T_{0} \approx 9 \) K. If instead \(\chi_{D}^{N}(T) \) were constant below 200 K, then our \(\chi_{D}^{N}(T) \) data would give \(T_{0} \approx 25 \) K, a slower decay than Ref. 9. In either case the presence of this cutoff for OD YBCO rules out explanations connected with the mean distance between carriers. This is much less than \(\xi_{ab}(0) \) for hole concentrations of \(\sim 1.2 \) per CuO_{2} unit, the value found directly from quantum oscillation studies of OD \(\text{Tl}_{2}\text{Ba}_{2}\text{CuO}_{5+x} \) crystals.\(^{32}\)

Assuming there are no unsuppressed effects caused by \(d \)-wave pairing, one hypothesis is that the GF and possibly \(T_{c} \) itself are suppressed by inelastic scattering processes. In a quasi-2D Fermi liquid the inelastic mean free path \(l_{\text{m}} \) can be found from the \(T \) dependence of the electrical resistivity and the circumference of the Fermi surface. For OD YBCO the measured \(a \)-axis resistivity\(^{35}\) gives \(l_{\text{m}} = 2.5(100/T) \) nm, but values for UD samples are less certain because of the pseudogap. The BCS relation \(\xi_{ab}(0) = h\nu_{F}/(\pi\Delta(0)) \), where \(\Delta(0) \) is the superconducting energy gap at \(T = 0 \), implies that, irrespective of the value of the Fermi velocity \(v_{F} \), the usual pair-breaking condition for significant inelastic scattering,
$h/\tau_\mathrm{m} \gtrsim \Delta(0)$, is equivalent to $l_m \lesssim \pi \xi_{ab}(0)$. Taking $\xi_{ab}(0)$ from Table 1 and the above value of l_m, shows that this is satisfied at 100 K for OD YBCO. So some suppression of GF and indeed T_c by inelastic scattering is entirely plausible. If T_c is suppressed, then $\Delta(T)$ will fall more quickly than BCS theory as T_c is approached from below, which would affect the analysis of Ref. 7.

Another possibility\(^7\) which might account for the observations is that the pairing strength itself falls sharply outside the GL region, for example, when the in-plane coherence length becomes comparable to, or less than, the correlation length of GL region, for example, when the in-plane coherence length of 2η is just over six lattice constants. At these points of a from Table I and the above value of $\xi_{ab}(0)$, it corresponds to a correlation length\(^33,34\) of just over six lattice constants, much smaller than the ξ_{ab} much smaller than the $\xi_{ab}(0)$ but much smaller than the $\xi_{ab}(T)$ values for which χ^{MF}_{\perp} is reduced by a factor of 2. It remains to be seen whether theory could account for this.

In these two pictures the effective T_c describing the strength of the GF would fall for $T > 1.1T_c$ either because of inelastic scattering or because of a weakening of the pairing interaction. If it could be shown theoretically that $B_2(0)$ falls in a similar way, this would account naturally for the fact\(^9\) that the magnetic fields needed to destroy the GF fall to zero in the temperature range 120–140 K, where the fluctuations become very small. In summary, Gaussian superconducting fluctuations, plus a strong cutoff that seems to be linked to a reduction in the effective value of T_c, provide a good description of the diamagnetism of our superconducting cuprate crystals above T_c.

We are grateful to D. A. Bonn, A. Carrington, W. N. Hardy, G. G. Lonzarich, J. W. Loram, and L. Taillefer for several helpful comments. This work was supported by EPSRC (U.K.), Grant No. EP/C511778/1, and the Croatian Research Council, MZOS Project No.119-1191458-1008.

\(^1\)kivan@phy.hr

We use the notation T^{MF}_{\perp} because the standard proof (Ref. 36) that the GL equations follow from the microscopic Bardeen, Cooper, Schrieffer (BCS) superconductivity, uses a pairing interaction that is confined to energies within $k_B \Theta_D$ of the Fermi energy, where Θ_D is the Debye temperature. There is a corresponding spread in coordinate space of $h v_F/(k_B \Theta_D)$, where v_F is the electron velocity. In this case T^{MF}_{\perp} in GL theory and the GF formulas is the same as T_c from BCS theory (Ref. 2). These conditions may not be satisfied in the cuprates and other unconventional superconductors and could cause T^{MF}_{\perp} to be lower than the mean field T_c obtained from a microscopic theory such as the $t \sim J$ model (G. G. Lonzarich [private communication]). Critical superconducting fluctuations will suppress the measured value of T_c below T^{MF}_{\perp} by an amount related to the Ginzburg parameter, τ_ω (Ref. 2). For our UD57 crystal, taking the electronic specific heat coefficient to be 2 mJ/gm.at/K2, $\xi_{ab}(0)$ from Table 1 and using formulas in Refs. 1, 2 and 24, we find $\tau_\omega = 0.01$ in the 2D limit. Using the 2D formula $\Delta T_c/T_c = -2 \tau_\omega \ln(4/\tau_\omega)$ (Ref. 2) this gives $T^{MF}_{\perp} = T_c = 3.7 K$, in reasonable agreement with Table 1. This simple procedure ignores possible effects from the pseudogap and d-wave pairing.

certainly responsible for the pocket. However, an unpublished analysis by J. R. Cooper and J. W. Loram (2012) of heat capacity data for UD67YBCO shows that CDW order sets in when the pseudogap is already formed. It probably causes gradual changes $\pm 25\%$ of the pocket contribution to $\chi_D^2(T)$ (Ref. 18), or $\pm 0.035 \times 10^{-4}$ emu/mol over a T interval ~ 30 K.

We fitted the normalized $\sigma_B^{\text{th}}(T)$ data in Fig. 25 of Ref. 9 to an empirical formula $\exp[(T - \alpha T_c)/\beta] + 1$ which is ≈ 1 for $\epsilon \lesssim 0.1$ and $\exp[-(T - \alpha T_c)/10\beta]$ at higher T. This formula was used to cut off $\chi^2(T)$ with $\alpha = 1.078, 1.1$, and 1.12 and $\beta = 0.869, 1.234$, and 0.70 K for OD89, UD57, and UD22, respectively, and $T_c = T_c^{\text{MF}}$ shown in Table I. For OD89, α and β values correspond to OD92.5 in Ref. 9, and for UD57 we used UD85 data in Ref. 9, which are similar to UD57 but have less scatter.

The solid line for $r = 0$ shows our empirical 2D formula $b/(3b + 6\epsilon)$, where $b = 2\pi \xi_{ab}(0)^2 B/\Phi_0$. The dashed line shows the 2D limit of Eq. (1) with $\xi_{ab}(b)$ given by $\xi_{ab}(b)^{-4} = \xi_{ab}(T)^{-4} + l_B^{-4}$, where $l_B = (\hbar/eB)^{1/2}$, the formula used to analyze Nernst data for NbSi films (Ref. 39). For $r = 0.13$, $b < r$, and $\epsilon < r$, our empirical 3D formula is $\chi_D^{1/2} = (k g T/\Phi_0)0.68b^{1/2} (b + 1.94\epsilon)$.

Although the 2D-3D form of Eq. (2) (Ref. 2) with $r = 0.13$ describes the non-sin2θ shape of $\tau(\theta)$, the calculated values of $M \parallel c$ are a factor of 3 too small, and ϵ is far too small compared with the low-field transition width arising from inhomogeneity or strain. This non-GF behavior is ascribed to T_c being too close to T_c. A. Lascialfari, A. Rigamonti, L. Romano, P. Tedesco, A. Varlamov, and D. Embriaco, Phys. Rev. B 65, 144523 (2002).

Units: 1 J/m3 = 10 ergs/cm3 and using CGS units for $\tau(\theta) = \frac{1}{2} \chi_D B^2 \sin 2\theta$ with B in gauss gives χ_D in emu/cm3. Complete flux exclusion corresponds to $\tau = -1/4\pi$ emu/cm3, or $\chi = -1$ in mks units. For YBCO, χ_D in emu/cm3 is multiplied by the volume per mole, 666/6.38 cm3, to convert to emu/mol.
