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Background: Parity-violating electron scattering provides a model-independent determination of the nuclear
weak-charge form factor that has widespread implications across such diverse areas as fundamental symmetries,
nuclear structure, heavy-ion collisions, and neutron-star structure.
Purpose: We assess the impact of precise measurements of the weak-charge form factor of 48Ca and 208Pb on a
variety of nuclear observables, such as the neutron skin and the electric-dipole polarizability.
Methods: We use the nuclear density functional theory with several accurately calibrated nonrelativistic and
relativistic energy density functionals. To assess the degree of correlation between nuclear observables and to
explore systematic and statistical uncertainties on theoretical predictions, we employ the chi-square statistical
covariance technique.
Results: We find a strong correlation between the weak-charge form factor and the neutron radius, that allows
for an accurate determination of the neutron skin of neutron-rich nuclei. We determine the optimal range of
the momentum transfer q that maximizes the information content of the measured weak-charge form factor and
quantify the uncertainties associated with the strange quark contribution. Moreover, we confirm the role of the
electric-dipole polarizability as a strong isovector indicator.
Conclusions: Accurate measurements of the weak-charge form factor of 48Ca and 208Pb will have a profound
impact on many aspects of nuclear theory and hadronic measurements of neutron skins of exotic nuclei at
radioactive-beam facilities.

DOI: 10.1103/PhysRevC.88.034325 PACS number(s): 21.10.Gv, 21.60.Jz, 21.65.Mn, 25.30.Bf

I. INTRODUCTION

The lead radius experiment (“PREX”) at the Jefferson
Laboratory has used parity-violating electron scattering to
probe the weak-charge density distribution in 208Pb [1,2].
Given that the weak charge of the neutron is much larger than
that of the proton, parity-violating electron scattering provides
a clean probe of neutron densities [3]. The parity-violating
asymmetry calculated within the Born approximation, al-
though qualitative, is directly proportional to the weak-charge
form factor, which in turn is obtained from the weak-charge
density by a Fourier transform. This direct relation is preserved
in calculations that account for Coulomb distortions [4,5].
PREX measured the weak-charge form factor of 208Pb at a
momentum transfer of qPREX = 0.475 fm−1 to be [2]

FW (qPREX ) = 0.204 ± 0.028. (1)

By making some assumptions pertaining to the form factor,
PREX was able to provide the first determination of the
neutron-skin of 208Pb [1]:

r208
skin = r208

n − r208
p = 0.33+0.16

−0.18 fm, (2)

where r208
n (r208

p ) is the neutron (proton) root-mean-square
(rms) radius of 208Pb. Although PREX demonstrated excellent
control of systematic errors, the statistical accuracy of the

measurement was compromised. Fortunately, the PREX Col-
laboration has made a successful proposal (“PREX-II”) [6]
that will allow them to reach their original goal of 0.06 fm in
the experimental uncertainty.

Given that PREX demonstrated that model-independent
measurements of the weak-charge form factor in heavy nuclei
are now feasible, it is pertinent to ask whether a measurement in
a different neutron-rich nucleus could prove advantageous. In-
deed, the case of 48Ca seems particularly attractive for several
reasons. First, 48Ca is a doubly-magic nucleus that is already
within the reach of ab initio calculations [7,8]. Thus, the
recently approved calcium radius experiment (“CREX”) [9]
could provide a critical bridge between ab initio approaches
and density functional theory. Second, by providing this kind
of bridge, CREX will help elucidate the character of the
three-nucleon force, or the density dependence of the energy
density functional, which play a critical role in determining
the limits of the nuclear landscape [10–13] and properties
of nuclear and neutron matter [14–16]. Finally, CREX—
together with PREX-II—will provide calibrated benchmarks
for hadronic measurements of neutron skins at radioactive
beam facilities. Note that the CREX collaboration has made a
successful proposal to measure the neutron radius of 48Ca using
parity-violating electron scattering with an unprecedented
accuracy of 0.02 fm [9]. This has a great potential to guide
further theoretical developments [17,18].
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Among the great variety of nuclear structure models,
self-consistent mean-field (SCMF) models rooted in the
nuclear density functional theory (DFT) provide the best
compromise between accuracy, computational expediency,
and universality (by covering the greatest range of acces-
sible nuclei) [19,20]. This survey is concerned with the
performance of SCMF models in relation to the weak-charge
form factor and its possible impact on improving energy
density functionals (EDFs) that are at the heart of the SCMF
approaches.

The structure of all EDFs can be motivated on formal
grounds by invoking methods such as density-matrix expan-
sion that may be tested against ab initio approaches. Although
enormous progress has been made in developing ab initio
techniques, at present they are of limited use in building the
spectroscopic quality of EDFs. Thus, the coupling constants of
EDFs, i.e., model parameters, must be determined empirically
through a fit to selected nuclear data. Once determined, often
through the minimization of an appropriate objective function,
the parameters are universal in that the same functional can
in principle be applied to all nuclei, nuclear reactions, and
neutron stars.

Such an empirical fit also provides valuable information on
the statistical uncertainties of the model parameters and the
correlations between them. This is of particular importance
in the context of the isovector sector of the EDFs. Indeed,
whereas the isoscalar sector of the density functional is fairly
well determined by the pool of available nuclear data (such as
ground-state masses and charge radii), the isovector sector
is hindered by the sparsity of high-quality data that are
sensitive to the neutron-proton asymmetry. This implies that
all isovector-sensitive observables, such as the neutron skin
and electric-dipole polarizability of neutron-rich nuclei, are
predicted with large theoretical uncertainties. However, those
uncertainties can be turned into an advantage by allowing us to
explore correlations between different observables. Indeed, it
was through such a statistical covariance analysis that a strong
correlation between the electric dipole polarizability and the
neutron skin of 208Pb was established [21]. We wish to em-
phasize that theoretical uncertainties and correlations among
observables are estimated within a given model by computing
the covariance matrix associated with the minimization of the
associated objective function [18,21–25]. Although such an
approach provides the statistical uncertainties and correlations,
it cannot assess the systematic errors that reflect constraints and
limitations of a given model. Such systematic uncertainties
can only emerge by comparing different models [17,18,26].
It is the aim of the present paper to apply both statistical
and systematic (or trend) analyzes to investigate uncertainties
and correlations associated to the weak-charge form factor
at the momentum transfers of relevance to PREX-II and
CREX.

The manuscript has been organized as follows. In Sec. II
we develop the formalism required to carry out the correlation
analysis for a variety of accurately-calibrated SCMF models.
Results are presented in Sec. III for the correlations between
various observables using both a trend and a covariance
analysis. We summarize our results and present the outlook
for the future in Sec. IV.

II. FORMALISM

In this section we introduce the SCMF models used in the
present survey, the observables discussed, and the details of
the statistical covariance analysis.

A. SCMF models

In this survey we compare results from two different nuclear
EDFs: the nonrelativistic Skyrme-Hartree-Fock (SHF) and the
relativistic mean-field (RMF) models. There is some variety
among the relativistic models. Here we will consider the
standard nonlinear (NL) RMF, its point-coupling (PC) variant,
its extension from Florida State University (FSU), and finally
the relativistic model with density dependent meson-nucleon
couplings (DDME). We now briefly summarize the essential
features and fitting protocols of the various functionals.

1. Nonrelativistic Skyrme-Hartree-Fock (SHF) model

The SHF model uses an EDF which is constructed from
baryon, spin-orbit, and kinetic-energy densities. Each interac-
tion term (including the spin-orbit term) appears in isoscalar
and isovector form. This provides the model with great
flexibility in the isovector channel. Note that SHF has, unlike
the RMF model, explicit independent parameters for the spin-
orbit coupling. The functional has altogether about ten free
parameters. Pairing is modeled by a density-dependent contact
interaction having three further free parameters. For details see
[19,22,23]. Here, we shall use the SV parametrizations from
Ref. [22]. These fits were done to a large pool of semimagic
nuclei that were checked to have negligible correlation effects
[27]. The observables included in the SV optimization database
are binding energy (70 entries), rms charge radius (50 entries),
charge diffraction radius (28 entries), charge surface thickness
(26 entries), neutron and proton pairing gaps (37 entries),
and spin-orbit splittings of single-particle energies (7 entries).
An objective function χ2 was calibrated to these data and its
minimization yields the SV-min parametrization that will be
used here for the correlation analysis (see below). We have also
provided a couple of further parametrizations with systematic
variation of nuclear matter properties (incompressibility K ,
isoscalar effective mass m∗/m, symmetry energy at the
saturation density J , and TRK sum rule enhancement κ related
to isovector effective mass). To this end, these four properties
are constrained in a fit using the same data as for SV-min.
Several fits of that sort are run producing four chains each one
varying exclusively one of these nuclear matter properties.
This set of parametrizations is used for the trend analysis.

2. Traditional relativistic mean-field model (RMF)

The RMF model consists of Dirac nucleons interacting
via the exchange of three mesons: an isoscalar-scalar σ
meson, an isoscalar-vector ω meson, and an isovector-vector
ρ meson. The corresponding baryon densities become the
sources for the meson-field equations that are solved at the
mean-field level. In turn, the meson fields provide the scalar
and vector potentials that enter into the Dirac equation. This
procedure is repeated until self-consistency is achieved [28].
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A quantitatively successful RMF model emerges when these
three Yukawa couplings were augmented by a nonlinear
(NL) self-coupling of the σ meson [29]. This had led to
some successful applications throughout the nuclear chart,
first NL1 [30] and then NL3 [31]; for some reviews see
Refs. [32,33]. However, with increasing demands on quality
predictions, several deficiencies of the original nonlinear mod-
els became apparent. For example, both the incompressibility
of symmetric nuclear matter and the slope of the symmetry
energy were notoriously high as compared to SHF models.
In particular, this hindered the description of giant monopole
resonances (GMRs) over a larger mass range [34]. In particular,
NL3 overestimates the location of the breathing mode in
90Zr—a nucleus with a well developed GMR peak but small
neutron-proton asymmetry.

3. FSU RMF model

In response to these shortcomings, a new FSUGold
parametrization was developed [35] by extending the NL3
model by two additional terms in order to soften both
the equation of state of symmetric nuclear matter and the
symmetry energy. Following standard practices, FSUGold
was accurately calibrated through the minimization of χ2

constrained by the binding energies and charge radii of magic
nuclei, as well as some bulk properties of nuclear matter. The
slight extension of the model allowed FSUGold to generate
a smaller incompressibility coefficient and a softer symmetry
energy, which proved essential in reproducing simultaneously
the GMR in both 90Zr and 208Pb, as well as the isovector
giant dipole resonance in 208Pb. We note, however, that
at the time of the calibration of the FSUGold interaction,
no covariance matrix was extracted. Hence, the correlation
coefficients predicted in the present work by FSUGold (or
“FSU” for short) are obtained from the simplified covariance
analysis presented in Ref. [24]. As in the nonrelativistic
case, trends will also be studied by producing NL and FSU
chains (or “families”) through a systematic variation of the
model parameters. In the case of NL and FSU, the systematic
variations are implemented by only varying the two isovector
parameters of the model; the isoscalar sector remains intact.
For details on the implementation we refer the reader to
Refs. [36,37].

4. Density dependent RMF model

We also employ two other variants of the RMF model.
The RMF-DDME functional is based on the standard form
of Yukawa-coupled nucleon-meson interactions, but with the
coupling constants supplemented with an elaborate density
dependence [38]. Modeling the density dependence introduces
four additional free parameters which brings to 8 the total
number of parameters in RMF-DDME. In the RMF-PC model
one effectively eliminates the mesons by making their masses
much larger than any scale in the problem. In this model,
nucleons interact via four-fermion contact interactions or
equivalently, via point coupling terms that are quadratic in
the various baryon densities [39]. Similar to the NL models,
nonlinearities are introduced through cubic and quartic terms

in the scalar density. Finally, to compensate for the finite range
of the (missing) meson fields, the model is supplemented
with derivative (or gradient) coupling terms involving the
two vector densities. This amounts to 9 free parameters for
the RMF-PC model. Both in DDME and PC variants of the
RMF model, the pairing force is introduced by using the BCS
approximation with empirical pairing gaps. Finally, in both
cases, optimal parametrizations were obtained by fitting to the
data set that includes ground-state binding energies, charge
radii, diffraction radii, and surface thicknesses of 17 spherical
nuclei ranging from 16O to 214Pb.

B. Nuclear observables

As we have seen above, basic ground-state observables,
such as binding energies and charge radii are critical inputs for
the calibration of the functional. Here we consider additional
observables that were not included in the calibration and whose
correlations we wish to explore. These are

(i) the root-mean-square neutron radius rn;
(ii) the neutron skin rskin;

(iii) the weak-charge form factor FW (q);
(iv) the electric dipole polarizability αD .

The rms radii are computed from the r2 weighted den-
sity distribution. The weak-charge form factor FW (q) is
obtained from the Fourier transform of the corresponding
weak-charge density with the calibration FW (0) = 1 (for
details see Appendix). Finally, the electric dipole polariz-
ability is computed in a random-phase approximation (RPA)
from the inverse-energy weighted dipole strength αD =
2
∑

n(|〈�n|D̂|�0〉|2/En), where n runs over all excited states
of the system. We note that the RPA is the consistent linear re-
sponse of the mean-field ground state to external perturbations.
We will compute these observables with a variety of EDFs
for 48Ca and 208Pb in an effort to emphasize the importance
of CREX and PREX-II. Besides these observables in finite
nuclei, we will consider key response properties of symmetric
nuclear matter: the incompressibility K , the symmetry energy
J , and the density dependence of the symmetry energy L.

C. Correlating observables

1. Optimization by χ 2 minimization

Each EDF is characterized by about a dozen free parameters
p = (p1, . . . , pF ) that are calibrated to a host of observables
from finite nuclei. The most efficient and systematic imple-
mentation of the calibration procedure is through a least-
squares fit. The fitting procedure starts with the definition of an
objective function (quality measure) χ2(p) that is computed by
accumulating the squared residuals of calculated observables
relative to the experimental data

χ2 =
N∑

i=1

[Oexp.
i − Otheo.

i (p)

σi

]2

, (3)

and weighted by the corresponding one standard devia-
tion σi associated with the ith observable. The optimum
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parametrization p0 is the one that minimizes χ2 with the
minimum value given by χ2

0 ≡ χ2(p0).

2. The space of reasonable model parameters

Model parameters p which lie in the immediate vicinity of
p0 also provide a good description of the experimental data.
Moreover, the trends in this vicinity encode a wealth of useful
information which we can exploit in a covariance analysis.
Specifically, the range of “reasonable” parametrizations is
defined to cover all model parameters p for which χ2(p) �
χ2

0 + 1 [40]. Given that such a range of parameters is usually
rather small, we can expand χ2 in a power series around p0.
That is, up to second order in (p − p0) we obtain

χ2(p) − χ2
0 ≈

F∑
i,j=1

(p − p0)i Mij (p − p0)j , (4)

where Mij is the matrix of second derivatives:

Mij = 1
2∂pi

∂pj
χ2(p)

∣∣
p0

. (5)

The reasonable parametrizations thus fill the confidence
ellipsoid given by (see Sec. 9.8 of [40])

(p − p0)T M̂(p − p0) � 1. (6)

3. Correlations between observables

It is now interesting to examine the impact of the formula-
tion on physical observables. Each set of model parameters
p determines the functional, and thus any observable A
predicted by such functional may be considered a function
of the parameters, i.e., A = A(p). For a Gaussian distribution
exp[−χ2(p)] of the different parametrizations p around the
minimum p0, the central value of the observable is given by
A0 ≡ A(p0) and there is an uncertainty in the value of A as one
varies the p within the confidence ellipsoid. We now assume for
simplicity that the observable varies slowly with p within the
relevant range, so that we can estimate its uncertainty through
a linear estimate. That is,

A(p) ≈ A0 + (p − p0) · ∂pA|p0 . (7)

The Gaussian-weighted average over the parameter landscape
yields the combined uncertainties of two observables A and
B, i.e., their covariance:


A
B =
∑
ij

(
∂pi

A
)
(M̂−1)ij

(
∂pj

B
)
. (8)

In the case of A = B, then Eq. (8) gives the variance (
A)2,
which defines the uncertainty of A. Variance and covariance
are useful concepts that allow to estimate the impact of an
observable on the model and its fit. We will exploit this in two
ways by means of (i) a trend analysis and (ii) a covariance
analysis. In the trend analysis, parameters of the optimum
model are modified according to a change in a given bulk
parameter of infinite nuclear matter and then the response
of the observable of interest is monitored. For example, one
could fix the slope of the symmetry energy L, then constrain

the remaining model parameters to reproduce this value, and
finally monitor how the neutron skin of 208Pb responds to this
change. Such a strategy helps elucidate systematic differences
among the predictions of the models. In the covariance (or
correlation) analysis, on the other hand, only information
from the properly extracted covariance matrix M̂−1 is used to
compute statistical correlations within a given optimum model.
A useful dimensionless statistical measure of correlation
between two observables is the Pearson product-moment
correlation coefficient [40]:

cAB = |
A
B|√

A2 
B2

. (9)

In particular, a value cAB = 1 means that the two observables
are fully correlated whereas a value of cAB = 0 means that
they are uncorrelated. Note that we do not distinguish be-
tween perfect correlation cAB = +1 and perfect anticorrelation
cAB = −1.

III. RESULTS

In this section we present results for the correlations
between observables. We start with the conceptually simpler
trend analysis and continue with the more quantitative covari-
ance analysis.

A. Trend analysis

A simple way to visualize the mutual dependence between
isovector observables is to produce sets of parametrizations
with systematically varied symmetry energy J and to study
the behavior of a pair of observables along those sets (see, e.g.,
Refs. [22,26]). In the following, we compare the predictions
of four different families of models (SHF, DDME, NL3,
FSU) that cover a systematic variation of J . As displayed in
Fig. 1, such a variation is reflected in systematic changes to
strong isovector indicators, such as r208

skin ≡ rskin[208Pb] and
the associated weak-charge form factor F 208

W ≡
FW (qPREX )[208Pb]. Very strong correlations appear for all
pairs of observables and for all model families.

As alluded earlier, F 208
W is strongly sensitive to the density

dependence of the symmetry energy and this is reflected in
its strong correlation with r208

skin, as displayed in Fig. 1(e).
This strong correlation appears universal as all models lie
practically on one line, suggesting that the experimentally ex-
tracted weak-charge from factor F 208

W from the parity-violating
asymmetry provides a strong constraint on r208

skin [1,2,5,42].
However, we observe a weaker intermodel correlation between
these two observables and the electric dipole polarizability
αD[208Pb], see panels (a) and (b), and the weak-charge form
factor of 48Ca (F 48

W ) in Figs. 1(c) and 1(d). The correlation
between α208

D and r208
skin has been studied in Ref. [17] that

has confirmed α208
D as a key isovector indicator (see also

discussion in Refs. [43,44]). We note that the electric dipole
polarizability in 208Pb was recently measured at the Research
Center for Nuclear Physics (RCNP) using polarized proton
inelastic scattering at forward angles. The reported value from
such a landmark experiment is [41]

e2α208
D = (20.1 ± 0.6) fm3 . (10)
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FIG. 1. (Color online) Systematic trends as predicted by the
various families of models for the following isovector observables:
the neutron skin, electric-dipole polarizability, weak-charge form
factor FW (q = 0.475 fm−1) of 208Pb, and the weak-charge form factor
FW (q = 0.778 fm−1) of 48Ca. Experimental values are indicated by
black squares with error bars (r208

skin and F 208
W from Refs. [1,2] and α208

D

from Ref. [41]).

Note that there two conventions for the units of the polarizabil-
ity are commonly used. Some references [17,41], augment it
with the charge factor e2 = 1.44 MeV fm, thus expressing αD

in units of fm3. Others, e.g., [21] and this work, use the dipole
operator without charge, which leads to units fm2/MeV.

In this work, we look for the first time into the correlation
between the weak-charge form factors of 48Ca and 208Pb
displayed in Fig. 1(d). In particular, we note a significant model
variance of the correlation between F 208

W and F 48
W , suggesting

that PREX-II and CREX provide complimentary information.
Indeed, whereas PREX-II places powerful constrains on
bulk nuclear-matter properties (primarily L), 48Ca—with a
significant larger surface-to-volume ratio than 208Pb—may
help constrain better surface properties of nuclear structure
models by providing a powerful bridge between ab initio
calculations and density functional theory.

In further comparing models in Fig. 1, we observe that
the linear behavior displayed in the figure is characterized by
nearly equal slopes for all models but different intercepts.
It is interesting to note that there is a significant spread
even among the RMF variants. Recall that DDME introduces
density dependence directly into the meson-nucleon couplings
whereas both NL3 and FSU incorporate density-dependent

effects through nonlinear meson self-interactions and mixed
terms. In particular, we note that models that predict the
same r208

skin show large variations in F 48
W , suggesting that a

measurement of the neutron radius of 208Pb is unable to
constrain the neutron radius in 48Ca [17]. This is likely to
suggest significant differences in the surface properties of the
models used. Preliminary explorations along these lines are
now in progress.

Before leaving this section, we briefly summarize the main
findings from trend analysis between F 208

W , F 48
W , r208

skin, and α208
D :

All these observables are mutually related showing clear trends
whose slope is the same for all models while the offset can
differ significantly. Unambiguous is the correlation between
F 208

W and r208
skin. For the other pairs of observables, we see offsets.

These point towards underlying differences in the models as
density dependence and surface properties.

B. Covariance analysis

Having estimated the systematic uncertainties generated by
various models, we now proceed to implement the correlation
analysis directly in terms of the covariance matrix. To this
end, we compute correlation coefficients (9) for all the
models considered, directly in terms of their own covariance
matrix (5). Figure 2(a) displays correlation coefficients
between F 208

W and a suitable selection of physical observables
and bulk parameters of infinite nuclear matter. The analogous
information on F 48

W is shown in Fig. 2(b). The accurately
calibrated models included in this comparison are SV-min
(a SHF model) and three RMF variants: DDME-min1, PC-
min1, and FSUGold. The first (topmost) entry illustrates the
excellent correlation between F 208

W and F 48
W within each model.

This is reminiscent of the strong correlation—within each
model family—observed in Fig. 1(d). However, recall that
as, systematic uncertainties across the various models are
assessed, the correlation weakens significantly. These findings
reinforce the argument in favor of combined measurements of
F 208

W and F 48
W . Indeed, both PREX-II and CREX will provide

invaluable information in discriminating among various SCMF
models.

The second entry confirms the strong correlation between
r208
n and F 208

W . This suggest that although qPREXr208
n � 1,

thereby invalidating a direct extraction of r208
n from F 208

W ,
measuring the form factor provides a strong constraint on the
neutron radius [42]. The same strong correlations were found
between r48

n and F 48
W (not shown here) which thus allows the

same conclusions for 48Ca. Still, we stress that the cleanest
comparison between theory and experiment is directly in terms
of the experimentally measured form factor. We will look into
this connection in more detail in Sec. III C.

The correlations with rskin may seem surprising at first
glance. There is an apparent dichotomy between SV-min and
DDME-min1 on the one hand, and PC-min1 and FSUGold
on the other. Whereas the former display a strong correlation
between r208

skin and F 208
W , the correlation weakens significantly

for the latter. The apparent contradiction may have its origin
in the underlying fitting protocols and different density depen-
dence. For example, both SV-min and DDME-min1 include the
charge radius of 208Pb (r208

ch ) with its very small experimental
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FIG. 2. (Color online) Correlation coefficients (9) derived from
a covariance analysis between the weak-charge form factors of 208Pb
(F 208

W ) and 48Ca (F 48
W ), and a variety of nuclear observables, including

the strong isovector indicators such as neutron skin, electric dipole
polarizability, symmetry energy J , slope of the symmetry energy L,
and a strong isoscalar indicator: incompressibility K at saturation
density. In all cases correlation coefficients are obtained from the
covariance matrix associated with each model.

error [45] in the fit. Such a small error strongly constrains the
linear combination of model parameters sensitive to the charge
radius. This implies that the exploration of the model landscape
is “locked” at the experimental value of r208

ch (or equivalently
r208
p ). Thus, any changes in r208

skin around the optimal model are
essentially generated by the corresponding changes in r208

n .
The charge radius of 208Pb was also included in the calibration
procedure of the FSUGold functional [35]. However, in
contrast to SV-min and DDME-min1, no covariance matrix
was extracted at that time. Thus, the FSUGold correlation
coefficients presented in this work were obtained from a
simplified covariance analysis of Ref. [24] that did not include
r208

ch into the fit. Clearly, as we develop next-generation EDFs,
their optimization procedure should always generate both the
optimal model as well as the covariance matrix. We note that, in
the case of the correlation between F 48

W and r48
skin, DDME-min1

remains the sole model displaying a strong correlation; in the
case of SV-min, the correlation is much weaker. Again, this
difference may originate from the various fitting protocols.

In Ref. [21] the electric dipole polarizability in 208Pb
was identified as a strong isovector indicator that is strongly
correlated to r208

skin. Here too we find a strong correlation
between F 208

W and α208
D , except for PC-min1 where this

correlation appears to be fairly weak. Moreover, we note

that the correlation between α208
D and the weak-charge form

factor of 48Ca weakens significantly, with the exception of
DDME-min1. Within the next few years we expect that
CREX and PREX-II will provide accurate measurements
of the neutron radius of 48Ca and 208Pb with anticipated
errors of 0.02 fm and 0.06 fm, respectively. We note that
a high-precision measurement of α208

D is now available [41]
and that the corresponding measurement on 48Ca is presently
being analyzed [46]. When combined, these four key isovector
indicators will provide the critical input for the calibration of
EDFs of increasing sophistication.

Finally, correlations between F 208
W and bulk parameters of

infinite nuclear matter display a large model dependence. For
example, both SV-min and DDME-min1 display a strong cor-
relation between F 208

W and the symmetry energy J and the slope
of the symmetry energy L at saturation density. This appears
not to be the case for PC-min1 and FSUGold. As mentioned
earlier, this reflects the simplified covariance analysis with
FSUGold that failed to include a tightly constrained charge
radius of 208Pb into the fit. Finally, as an illustration, we show
how a strong isoscalar indicator such as the incompressibility
of symmetric nuclear matter K is weakly correlated with both
weak-charge form factors in all the models.

C. Momentum-transfer sensitivity of the
weak-charge form factor

So far we have only considered the weak-charge form fac-
tors at the relevant momentum transfers of CREX and PREX-
II, namely, qCREX = 0.778 fm−1 and qPREX = 0.475 fm−1. We
now explore the sensitivity of the correlation between the
neutron radius and the weak-charge form factor as a function
of the momentum transfer q. This is particularly relevant
because the optimal momentum transfer emerges from a
compromise between the elastic cross section, which falls
rapidly with q, and the parity-violating asymmetry, which is
proportional to q2. However, it is a priori unclear whether
at an optimal momentum transfer (which is not small) the
correlation between the weak-charge form factor and the
neutron radius is strong.

We begin by displaying in Fig. 3 the weak-charge form
factors for both 48Ca and 208Pb with their associated theoretical
uncertainties as a function of q. Note that in order to make
the theoretical errors visible they had to be amplified by a
factor of 10. The results show clearly the faster falloff of
F 208

W (q) due to its larger weak-charge radius. In particular, this
allows CREX to go to a higher momentum transfer where
the parity-violating asymmetry is larger. At the values of the
proposed momentum transfers, the predicted form factors are
almost equal, i.e., F 48

W ≈ F 208
W ≈ 0.2. Note that the predictions

from the nonrelativistic SV-min and the relativistic FSUGold
agree very well with each other and both are consistent with
the PREX measurement. We emphasize that, although some
model-dependent assumptions must be invoked in extracting
the neutron radius from a measurement of the form factor, such
assumptions are ultimately unnecessary. This is because one
can always compare the theoretical form factors directly with
experiment.

We now explore the correlation between r208
n and F 208

W (q)
for a range of momentum transfer. In Fig. 4(a) we compare
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FIG. 3. (Color online) Weak-charge form factors with corre-
sponding theoretical errors for 48Ca and 208Pb as predicted by
SV-min and FSUGold. Note that the theoretical error bars have
been artificially increased by a factor of 10. Indicated in the figure
are the values of the momentum transfer appropriate for PREX-II
(q = 0.475 fm−1) and CREX (q = 0.778 fm−1).

the (absolute value) of the correlation as predicted by SV-
min and FSUGold. At small momentum transfer, the form
factor behaves as FW (q) ≈ 1 − q2r2

W/6 ≈ 1 − q2r2
n/6 so the

correlation coefficient is nearly 1. Note that we have used the
fact that the weak-charge radius rW is approximately equal to
rn [4]. Also note that, although at the momentum transfer of the
PREX experiment the low-q expression is not valid, the strong
correlation is still maintained. Indeed, the robust correlation is
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FIG. 4. (Color online) Correlation coefficient (9) between r208
n

and F 208
W (q) as a function of the momentum transfer q. Panel (a) shows

the absolute value of the correlation coefficient predicted by SV-min
and FSUGold assuming no strange-quark contribution to the nucleon
form factor. Panel (b) shows the impact of including the experimental
uncertainty in the strange-quark contribution to the nucleon form
factor. The arrow marks the PREX-II momentum transfer of q =
0.475 fm−1. The first dashed vertical line indicates the position of
the first zero of F 208

W (q), the second one marks the position of the
first maximum of |F 208

W (q)| (from which the surface thickness can be
deduced).

maintained at all q values, except for diffraction minima and
maxima. Given the similar patterns predicted by SV-min and
FSUGold, we suggest that the observed q dependence of the
correlation with rn represents a generic model feature.

Figure 4(b) displays the same correlation, but now we also
include the experimental uncertainty on the strange-quark form
factor. Although the strange-quark contribution to the electric
form factor of the nucleon appears to be very small [47],
there is an experimental error attached to it that we want to
explore. For simplicity, only results using SV-min are shown
with and without incorporating the experimental uncertainty
on the s quark. We note that an almost perfect correlation at
low-to-moderate momentum transfer gets diluted by about 6%
as the uncertainty in the strange-quark contribution is included.
Most interestingly, the difference almost disappears near the
actual PREX point, lending confidence that the experimental
conditions are ideal for the extraction of r208

n . Finally, given that
the strong correlation between the neutron radius and the form
factor is maintained up to the first diffraction minima (about
q = 1.2 fm−1 in the case of 48Ca), the CREX experimental
point lies safely within this range (figure not shown).

IV. CONCLUSIONS AND OUTLOOK

In this survey, we have studied the potential impact of the
proposed PREX-II and CREX measurements on constraining
the isovector sector of the nuclear EDF. In particular, we
explored correlations between the weak-charge form factor
of both 48Ca and 208Pb, and a variety of observables sensitive
to the symmetry energy. We wish to emphasize that we have
chosen the weak-charge form factor rather than other derived
quantities—such as the weak-charge (or neutron) radius—
since FW is directly accessed by experiment. To assess correla-
tions among observables, two different approaches have been
implemented. In both cases we relied exclusively on models
that were accurately calibrated to a variety of ground-state data
on finite nuclei. In the “trend analysis,” the parameters of the
optimal model were adjusted in order to systematically change
the symmetry energy, and the resulting impact on nuclear
observables was monitored. In the “covariance analysis,” we
obtained correlation coefficients by relying exclusively on the
covariance (or error) matrix that was obtained in the process
of model optimization. From such combined analysis we find
the following:

(i) We verified that the neutron skin of 208Pb provides a
fundamental link to the equation of state of neutron-rich
matter. The landmark PREX experiment achieved a
very small systematic error on r208

n that suggests that
reaching the total error of ±0.06 fm anticipated in
PREX-II is realistic.

(ii) We also concluded that an accurate determination of
r208

skin is insufficient to constrain the neutron skin of
48Ca. Indeed, because of the significant difference in
the surface-to-volume ratio of these two nuclei, there
is a considerable spread in the predictions of the
models [17]. Given that CREX intends to measure
r48

skin with an unprecedented error of ±0.02 fm, this
model dependence can be tested experimentally [18].
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In addition, as discussed in Sec. I, there are several
advantages for nuclear theory in measuring the neutron
radius of both 48Ca and 208Pb.

(iii) We have verified that at the momentum transfer selected
for PREX-II (0.475 fm−1) there is a large sensitivity
of the weak-charge form factor to the neutron radius
of 208Pb; a similar conclusion was obtained in the case
of CREX.

(iv) Finally, we estimated the contribution from the strange-
quark uncertainty on the electric form factor error
budget. We concluded that this contribution is very
small near the actual PREX q value.

In summary, although PREX-II provides a powerful con-
straint on the slope of the symmetry energy L, the neutron
radius of 48Ca is sensitive to nuclear dynamics that goes well
beyond L. Thus, CREX in combination with PREX-II will
constrain different aspects of the nuclear EDF. Moreover,
we have reconfirmed that the electric-dipole polarizability
in 208Pb represents a strong isovector indicator. Hence, we
strongly advocate measurements of the neutron radius and
electric-dipole polarizability in 48Ca. Together, these four
observables—neutron radii and dipole polarizabilities in both
48Ca and 208Pb—will form a critical set of isovector indicators
that will provide essential constraints on nuclear density
functionals of the next generation.
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APPENDIX: THE WEAK-CHARGE FORM FACTOR

Here, we briefly summarize the computation of the weak-
charge form factor as detailed in Ref. [4]. The basic input
are the local proton and neutron density distributions, ρp and
ρn, respectively. Accounting for magnetic contributions would
require also the spin-orbit current (for SHF) or the tensor
current (for RMF) [48]. We ignore these as they add only a
small correction, which is not important for this survey. The
proton and neutron densities are normalized in the usual way:∫

d3rρp = Z and
∫

d3rρn = N . Note that Ref. [4] uses the
invariant four-momentum Q2 and the spatial momentum q

side by side. They are related by q =
√

Q2. We use only q
throughout.

We assume spherically symmetric systems, i.e., ρ(r) =
ρ(r) where r = |r|. In general, F (q) and ρ(r) are connected
through the Fourier transformation [49]

F (q) =
∫

d3r eiq·rρ(r) = 4π

∫ ∞

0
dr r2 j0(qr)ρ(r), (A1a)

ρ(r) =
∫

d3q

8π3
e−iq·rF (q) = 1

2π2

∫ ∞

0
dq q2 j0(qr)F (q).

(A1b)

The transformation applies to any local density, for pro-
tons ρp ←→ Fp, neutrons ρn ←→ Fn, and the weak-charge
density ρW ←→ FW .

We prefer to formulate the weak-charge distributions in
terms of the form factor because the necessary folding
operations become much simpler in the Fourier space. The
weak charge form factor normalized to one at q = 0 can be
written as

FW (q) = eacmq2 GZ
n (q)Fn(q) + GZ

p (q)Fp(q)

GZ
n (0)Fn(0) + GZ

p (0)Fp(0)
, (A2)

with

GZ
p = Np

[
Gp − Gn

4
− S�W

Gp − Gs

4

]
, (A3a)

GZ
n = Nn

[
Gn − Gp

4
− S�W

Gn − Gs

4

]
, (A3b)

Gs(q) = ρs

h̄2q2/(4c2M2)

1 + 4.97 h̄2q2/(4c2M2)
, (A3c)

Np = 0.0721

1 − 4 sin2(�W )
, Nn = 0.9878, (A3d)

where Gp and Gn are the standard proton and neutron
electromagnetic form factors, respectively; Gs is the strange-
quark electric form factor; S�W

= sin2(�W ) = 0.23; ρs =
(−0.24 ± 0.70) fm; M is the average nucleon mass; and
acm a parameter for the center-of-mass (c.m.) correction.
The renormalization factors Np, Nn take into account the
radiative corrections to the weak charge [50]. They guarantee
that the weak-charge becomes 0.0721 for the proton and
−0.9878 for the neutron. The simple renormalization by a
constant factor assumes that the corrections do not change
significantly over the range of q relevant for the PREX
measurements.

The strength ρs of the s-quark coupling and its uncer-
tainties are taken from Refs. [47,51]. These two evaluations
agree in the strength and have slightly different values for
the uncertainties. In this work, we took the average of
both.

A word is in order about the c.m. correction. The variance
of the c.m. momentum 〈P̂ 2

c.m.〉 is computed in SCMF models
from the actual wave function to define the coefficient

ac.m. = h̄2

8
〈
P̂ 2

c.m.

〉 . (A4a)

One often uses a simple estimate for the c.m. correction energy
from a harmonic oscillator shell model. In this context, it is
consistent to make the replacement

ac.m. = 1.58

6.0A2/3
fm2, (A4b)

where A is the mass number.
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TABLE I. Parameters of the model (A5) for the nucleon form factors. The constants bi are given in units fm−2. E0 is the isoscalar (I = 0)
electric form factor and E1 the isovector one (I = 1). The form factors are taken from [52].

a1 a2 a3 a4 b1 b2 b3 b4

E0 2.2907 −0.6777 −0.7923 0.1793 15.75 26.68 41.04 134.2
E1 0.3681 1.2263 −0.6316 0.0372 5.00 15.02 44.08 154.2

The weak-charge form factor is expressed in terms of the
intrinsic nucleon form factors. We use here the traditional form
of Simon and Walther [52,53]. It parametrizes isoscalar and
isovector form factors as a sum of dipole terms:

G
(S)
typ(q) =

4∑
ν=1

atyp,ν

1 + q2/btyp,ν

(A5)

with typ ∈ {“E, I = 0”, “E, I = 1”} and with parameters
listed in Table I. The proton and neutron Sachs form factors
are

G
(S)
E,p = 1

2

(
G

(S)
E,I=0 + G

(S)
E,I=1

)
, (A6a)

G
(S)
E,n = 1

2

(
G

(S)
E,I=0 − G

(S)
E,I=1

)
. (A6b)

[1] S. Abrahamyan et al., Phys. Rev. Lett. 108, 112502 (2012).
[2] C. J. Horowitz et al., Phys. Rev. C 85, 032501 (2012).
[3] T. Donnelly, J. Dubach, and I. Sick, Nucl. Phys. A 503, 589

(1989).
[4] C. J. Horowitz, S. J. Pollock, P. A. Souder, and R. Michaels,

Phys. Rev. C 63, 025501 (2001).
[5] X. Roca-Maza, M. Centelles, X. Viñas, and M. Warda, Phys.
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