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Physical interpretation of the dressed Polyakov loop in the Nambu–Jona-Lasinio model
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We investigate the rapid rise of the dressed Polyakov loop in the Nambu–Jona-Lasinio (NJL) model as a

function of temperature. In QCD such a behavior is interpreted as a confinement-deconfinement phase

transition. However, we demonstrate that in the NJL model this is simply a remnant of the chiral

transition.
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I. INTRODUCTION

The Polyakov loop [1] is a particular representation of a
static source of color, propagating in compact Euclidean
time �. When the color source has a finite mass, the path in
Euclidean space need not be any more a straight line in
� - a possibility to deviate in space directions goes as

/1=mjlj, where m is the quark mass, and jlj is the number
of links in a loop [2–4]. In this case we say that the
Polyakov loop is ‘‘dressed’’ [2–4].

Because of its transformation with respect to the center
of the color SUðNcÞ group of quantum chromodynamics
(QCD) in the static limitm ! 1, it can be used as an order
parameter for a confinement-deconfinement phase transi-
tion, just like the ordinary Polyakov loop [4]. The dressed
Polyakov loop (dPL) has proven to be a valuable tool in
continuum studies of QCD, with the confinement-
deconfinement crossover studied in the Dyson-Schwinger
framework [5–7].

Model calculations of the dPL were performed in the
NJL model [8,9], as well as in the Polyakov NJL (PNJL)
model [10] with a magnetic field [11]. In particular, one of
the results of Ref. [8] shows that even in the NJL model the
dPL shows a rapid rise when proceeding from low to high
temperatures. As the NJL model is not confining,1 it should
be clear then that a physical interpretation of the behavior
of the dPL in the NJL model will not be the same as
in QCD.

In this paper we consider a natural interpretation of the
dPL in the NJL model. By simple Landau analysis we will
understand how it comes to be that the dPL in the NJL
model exhibits a rapid change as a function of the tem-
perature in the first place. We will analytically show that
the temperature at which the change is most pronounced is,
irrespective of the model details, the chiral restoration
temperature. With this result we can understand that the

crossover behavior in the dPL calculated in the NJL model
should be interpreted merely as an imprint of the chiral
phase transition.

II. NAMBU–JONA-LASINIO MODELWITH
TWISTED BOUNDARY CONDITIONS

We work in the chiral limit with Nf ¼ 2, and zero real

chemical potential, � ¼ 0. In order to calculate the dPL
one has to distort the fermionic boundary conditions by
introducing a twisted angle �.2 Alternatively, one can
start from the imaginary chemical potential, so that the
thermodynamic potential in the NJL model is given as [8]

� ¼ �cond þ�kin
vac þ�kin

th ; (1)

where the condensation potential is �cond ¼ �2=2G, and
the vacuum and thermal one-loop contributions read

�kin
vac ¼ �dq

Z d3p

ð2�Þ3
E

2
; (2)

�kin
th ¼�dq

2
T
Z d3p

ð2�Þ3 ½logð1þe��ðEþi�IÞÞþð�I!��IÞ�;
(3)

where E ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ �2

p
, and dq ¼ 2� 2� Nf � Nc.

Divergence of the vacuum energy (2) is regulated by a
cutoff �. The mean field � is obtained by minimizing the
thermodynamic potential (1). A nonzero value of the mean
field� signals chiral symmetry breaking. Equivalently, one
considers the quark condensate h �qqi ¼ ��=G as an order
parameter.
Twisted boundary conditions for the fermion field

c ðx; �Þ ¼ ei�c ðx; �þ �Þ are equivalent to setting �I ¼
Tð�� �Þ, with � 2 ½0; 2�i. The statistically correct fer-
mion degrees of freedom are obtained with � ¼ �.
However, it is important to notice that using � ¼ 0 does
not make these fields bosons. Only by altering the overall
sign in the vacuum and thermal one-loop contributions
does one obtain a true Bose potential.

*sanjinb@phy.hr
1A simple reasoning behind this statement is that the quark

propagator in the NJL model is just the tree-level fermion
propagator, albeit with a constituent (�300 MeV) rather than
current quark mass (�5 MeV). Therefore, a positive-definite
spectral representation is available, allowing the excitation of
these states.

2Details are omitted for simplicity; the interested reader is
invited to consult [2] or [5].
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A. No symmetry restoration at the boundary

We employ a �=� � 1 and a �=T � 1 expansion in
the vacuum and thermal parts, respectively. The relevant
expressions are well known in the literature: The vacuum
part can be found in [12], and the thermal part e.g., in [13].
To discuss the second order chiral phase transition, the
quadratic part has to contain vacuum and thermal fluctua-
tions, while for the quartic part one can just use the vacuum
contribution,

�ð�Þ ’ � 1

2
aðT;�Þ�2 � dq

64�2
log

�
�2

4�2

�
�4; (4)

where

aðT;�Þ ¼ a0 þ
dqT

2

2
B2

�
�

2�

�

¼ a0 þ
dqT

2

8�2

�
ð�� �Þ2 � �2

3

�
(5)

and B2ðxÞ is the second Bernoulli polynomial. The factor
a0 is just the quadratic vacuum contribution

a0 ¼ 1

Gc

� 1

G
;

where Gc�
2 ¼ 8�2=dq. For fermion boundary conditions

� ¼ �, the usual role of thermal fluctuations is to flip
the sign of the quadratic term, marking the critical
temperature.

In the case of general � it is interesting that the
thermal contribution of aðT;�Þ itself can change sign.
This happens at

�� ¼ �� �ffiffiffi
3

p :

Namely, in the region �� <�<�þ, which we call
fermionlike, the model can be subjected to a standard
symmetry-breaking-restoration scenario, provided that
the symmetry is broken in the vacuum, i.e., G>Gc. This
is the usual case in the NJL model. However, at bosonlike
twisted angles 0 � �<��, �þ <�< 2�, the quark
condensate will not respond to arbitrary high thermal
excitations. In other words, the critical temperature
obtained from the condition aðT;�Þ ¼ 0,

Tcð�Þ ¼ 8�2

dqa0

1
�2

3 � ð�� �Þ2 ; (6)

diverges at the boundaries. For convenience we denote
T� ¼ Tcð�Þ.

Thus, the only way for the mean field � to be zero at
bosonlike angles is by altering the theory by hand. For
example, if we choose a0 < 0, i.e., G<Gc, then we find
ourselves in a weird position where the model has a
restored phase at low temperatures and a broken phase at
high temperatures. The other possibility would be to

acknowledge the fact that bosonic theories are capable to
break and restore symmetries just as fermionic ones are
perfectly well. More precisely, if we understand the vac-
uum contribution in (1) as a potential term in a classical
bosonic Zð2Þ theory, then the thermal contribution has to
have an ad hoc sign change if the thermal fluctuations are
also understood as coming from bosonic fields. Only then
does this bosonic theory break the symmetry at low tem-
peratures and restore it at high temperatures.

B. Qualitative behavior of the dressed Polyakov loop

Strictly speaking, the dPL can be defined only when the
quark mass is nonzero [4]. Naively speaking, one can still
calculate this quantity by using its definition [4] as a first
Fourier mode of the quark condensate at the nontrivial
twisted angle

�1ðTÞ ¼
Z 2�

0

d�

2�
ei�h �qqiðT;�Þ: (7)

We will now use arguments of the previous subsection to
qualitatively understand that �1ðTÞ has to rapidly change
across the chiral phase boundary.
First of all, by letting T ! 0, the condensate does not

depend on �. This is because the generalized boundary
conditions modify only the thermal part (3).3 Therefore, at
T ’ 0, we conclude that �1 ’ 0.
However, slightly above the chiral restoration T * T�,

chiral symmetry is first restored in a small region around
� ¼ �. This allows for a nontrivial Fourier transform (7),
establishing a nonzero �1. Therefore, it appears that as
long as chiral symmetry is broken in the vacuum, i.e.,
a0 > 0, the dPL will inevitably display a significant
change, proceeding from low (T � T�) to high (T�T�)

temperatures.

III. DIVERGENCE OF THE TEMPERATURE
DERIVATIVE OF THE DRESSED

POLYAKOV LOOP

From a general thermodynamical point of view it is
known that the phase transition leaves its mark on all
thermodynamic quantities calculated from the partition
function. For example, a second order chiral phase tran-
sition leads to a nonanalyticity in the second derivatives of
the thermodynamic potential, e.g., chiral or thermal sus-
ceptibility, heat capacity, and so on. Therefore, it is not
unreasonable to expect that the dPL in the NJL model
should also display similar properties, not because the
NJL model describes the confinement as well as the
confinement-deconfinement phase transition, but simply
because it does a good job at describing the chiral one.

3Actually, this is tantamount to saying that the Polyakov loop
� itself will be zero strictly at T ¼ 0 regardless of whether the
theory is confining or not. That is, even if the free energy F of a
static quark is finite, we have that � ¼ e�F=T ¼ 0 since T ¼ 0.
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Let us now look for the temperature where the value of
d�1=dT has a maximum. By acknowledging the fact that
h �qqi can be zero at temperatures T > T�, we have

�1ðTÞ ¼
Z �cðTÞ

0

d�

�
cos�h �qqiðT;�Þ; (8)

where the upper limit of integration depends on the
temperature; the specific values are given by solving
aðT;�Þ ¼ 0 for �,

�cðTÞ ¼ �� �ffiffiffi
3

p
�
1� T2

�

T2

�
1=2

: (9)

Using simple algebra, the quantity d�1ðTÞ=dT is
given as

d�1

dT
¼

Z �cðTÞ

0

d�

�
cos�

@h �qqiðT;�Þ
@T

þ d�cðTÞ
dT

@

@�

�
1

�
h �qqið�;TÞcos�

�
�¼�cðTÞ

: (10)

Here

d�cðTÞ
dT

¼ � �ffiffiffi
3

p 1

T

T2
�

T2

�
1� T2

�

T2

��1=2
: (11)

We now realize that (11) diverges as T ! T� from above.

If we naively assume that the first term in (10), as well as
the one multiplying (11), is smooth across the phase tran-
sition, then d�1=dT would have a maximum or, more
precisely, would diverge exactly at T ¼ T�.

In an actual calculation, it turns out that the critical
behavior itself is ‘‘one level’’ milder. The solution of the
gap equation @�=@� ¼ 0 with the truncated thermody-
namic potential (4) is given in terms of the well-known
LambertW�1 function [12,14]. Thus, the thermal behavior
of the condensate for general � can be approximated as

h �qqiðT;�Þ ’�2�

G
exp

�
�1

4
�1

2
W�1

�
�4�2e1=2aðT;�Þ

dq�
2

��
;

(12)

which is to be used only in the fermioniclike region. In the
bosoniclike region the mass gap is finite, so the �=�,
�=T � 1 expansion is no longer applicable, but we might
just approximate the true solution in this region with its
vacuum value. This is simply (12) with a replacement
aðT;�Þ ! a0. Then we can use this in order to integrate
(8). We use the parameters of Ref. [15], where G�2 ¼
4:636 and � ¼ 602:472 MeV. Figure 1 shows the result,
where in the derivative of dPL, instead of the naive
divergence, there is a sharp cusp structure.
We stress that a similar cusp behavior was seen in lattice

QCD calculations in the strong coupling limit [16].
Whereas the NJL model is nonconfining, it is interesting
that in Ref. [16] one deals with a completely opposite
situation: Thanks to the fact that the system is strongly
coupled, deconfinement does not occur, so the change in
the Polyakov loop, and, in particular, the cusp, is indeed
interpreted as an imprint of the chiral transition; see Figs. 2
and 3 in [16].

IV. CONCLUSIONS

Because the NJL interaction dresses the quark with a
momentum independent mass, the singularity structure of
the quark propagator is very simple, which is usually
interpreted as a lack of confinement.4 However, as shown
here, and numerically by Ref. [8], calculation of the dPL
within the NJL model leads to a order parameterlike
behavior.
The semi-analytic study performed here demonstrated

that the change in the temperature behavior of the dressed
Polyakov loop in the NJL model is entirely dictated by the
chiral transition. Our second result is that the temperature
where d�1=dT diverges and the chiral transition tempera-
ture coincide exactly in the chiral limit. In Ref. [8] the
latter result was obtained numerically for a particular set
of parameters. We have shown that their result is more
general, i.e., independent of the model parameters.

ACKNOWLEDGMENTS
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FIG. 1 (color online). On the left panel the dPL as a function of
temperature is shown as calculated from the approximation to
the condensate (12), while the right panel provides the tempera-
ture derivative. The explicit value is normalized to the high

temperature behavior, i.e., ~�1ðTÞ ¼ �1ðTÞ=�1ð1Þ.

4For example, in NJL model calculations this lack of confine-
ment usually leads to the � meson mass lying above the kine-
matic threshold for �qq decay.
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