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The production of �− and �− baryons and their anti-particles in Pb–Pb collisions at
√

sNN = 2.76 TeV
has been measured using the ALICE detector. The transverse momentum spectra at mid-rapidity
(|y| < 0.5) for charged � and � hyperons have been studied in the range 0.6 < pT < 8.0 GeV/c and
1.2 < pT < 7.0 GeV/c, respectively, and in several centrality intervals (from the most central 0–10% to
the most peripheral 60–80% collisions). These spectra have been compared with the predictions of recent
hydrodynamic models. In particular, the Kraków and EPOS models give a satisfactory description of
the data, with the latter covering a wider pT range. Mid-rapidity yields, integrated over pT, have been
determined. The hyperon-to-pion ratios are similar to those at RHIC: they rise smoothly with centrality
up to 〈Npart〉 ∼ 150 and saturate thereafter. The enhancements (yields per participant nucleon relative to
those in pp collisions) increase both with the strangeness content of the baryon and with centrality, but
are less pronounced than at lower energies.

© 2013 The Authors. Published by Elsevier B.V. Open access under CC BY license.
1. Introduction

The study of strange and multi-strange particle production in
relativistic heavy-ion collisions is an important tool to investigate
the properties of the strongly interacting system created in the
collision. Particle spectra provide information both about the tem-
perature of the system and about collective flow. In particular they
reflect conditions at kinetic freeze-out, i.e. the point in the expan-
sion where elastic collisions cease. Collective flow is addressed by
hydrodynamic models, and depends on the internal pressure gra-
dients created in the collision. The effects are species-dependent,
so new data on multi-strange baryons at LHC energies can bring
new constraints to models.

The enhancement of strangeness in heavy-ion collisions was
one of the earliest proposed signals for the Quark–Gluon Plasma
[1–3]. It rests on the expectation that in a deconfined state the
abundances of parton species should quickly reach their equili-
brium values, resulting in a higher abundance of strangeness per
participant than what is seen in proton–proton interactions. In this
picture equilibration takes place quickly owing to the low excita-
tion energies required to produce qq̄ pairs. However, it was shown
that, at the same entropy-to-baryon ratio, the plasma in equi-
librium does not contain more strangeness than an equilibrated
hadron gas at the same temperature [4–6]. Strangeness enhance-
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ments have indeed been observed by comparing central heavy-ion
collisions with p–Be and pp reactions both at the SPS [7–12] and
at RHIC [13–15]. Over the past 15 years, it has been found that
the hadron yields in central heavy-ion collisions follow the ex-
pectation for a grand-canonical ensemble [16], increasingly well
as a function of the collision energy, indicative of a system in
equilibrium. At the same time it was understood that, for pp colli-
sions, canonical suppression effects are important [17] and account
for the overall hyperon enhancement. The progressive removal of
these effects also qualitatively describes the increase in strangeness
yields with centrality in Pb–Pb, although at RHIC it was noted
that canonical suppression could not successfully reproduce all the
features of particle production [18,19]. At lower energies a bet-
ter description of the system size dependencies could be achieved
using a core-corona model [20–22]. These pictures can now be
re-examined at the much higher LHC energy. The most straight-
forward expectation would be equilibrium values for the yields of
strange particles in central Pb–Pb collisions, combined with re-
duced canonical suppression in proton–proton collisions. In this
Letter, after an introduction to the ALICE detector and a descrip-
tion of the analysis techniques used to identify strange particles via
their decay topology, the multi-strange baryon pT spectra are pre-
sented. Spectra in five different centrality intervals are compared
with hydrodynamic models and the corresponding mid-rapidity
yields are given. Their ratios to the interpolated yields for pp in-
teractions at the same centre-of-mass energy, normalized to the
number of participant nucleons, are used to obtain the enhance-
ment plot as used at lower energies. In addition, we study the
dependence on centrality of the hyperon-to-pion production ratio
at mid-rapidity and compare these results with predictions.

0370-2693 © 2013 The Authors. Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.physletb.2013.11.048
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2. The ALICE experiment

The ALICE experiment was specifically designed to study heavy-
ion collisions at the LHC. The apparatus consists of a central barrel
detector, covering the pseudorapidity window |η| < 0.9, in a large
solenoidal magnet providing a 0.5 T field, and a forward dimuon
spectrometer with a separate 0.7 T dipole magnet. Additional for-
ward detectors are used for triggering and centrality selection. The
first LHC heavy-ion run took place at the end of 2010 with colli-
ding Pb ions accelerated to a centre-of-mass energy per nucleon of√

sNN = 2.76 TeV. The analysis described in this Letter uses data
from this first heavy-ion run where events in a wide collision
centrality range were collected, and is based on the information
provided by the sub-detectors mentioned below.

Tracking and vertexing are performed using the full tracking
system. It consists of the Inner Tracking System (ITS), which has six
layers of silicon detectors and the Time Projection Chamber (TPC).
Three different technologies are used for the ITS: Silicon Pixel De-
tectors (SPD), Silicon Drift Detectors (SDD) and Silicon Strip Detec-
tors (SSD). The two innermost layers (at average radii of 3.9 cm
and 7.6 cm, covering |η| < 2 and |η| < 1.4, respectively) consist
of pixel detectors. These are used to provide high resolution space
points (12 μm in the plane perpendicular to the beam direction
and 100 μm along the beam axis). The two intermediate layers
consist of silicon drift detectors, and the two outermost layers of
double-sided silicon microstrips. Their radii extend from 15 cm to
43 cm and they provide both space points for tracking and energy
loss for particle identification. The precise space points provided
by the ITS are of great importance in the definition of secondary
vertices. The TPC is a large cylindrical drift detector whose ac-
tive volume extends radially from 85 cm to 247 cm, and from
−250 cm to +250 cm along the beam direction. For a charged par-
ticle traversing the TPC, up to 159 space points can be recorded.
These data are used to calculate a particle trajectory in the mag-
netic field, and thus determine the track momentum, and also to
measure dE/dx information for particle identification.

The SPD layers and the VZERO detector (scintillation ho-
doscopes placed on either side of the interaction region, covering
2.8 < η < 5.1 and −3.7 < η < −1.7) are used for triggering. The
trigger selection strategy is described in detail in [23]. In addition,
two neutron Zero Degree Calorimeters (ZDC) positioned at ±114 m
from the interaction point are used in the offline event selection.
A complete description of the ALICE sub-detectors can be found
in [24].

3. Data samples and cascade reconstruction

The analysis was performed on the full sample recorded du-
ring the 2010 Pb–Pb data taking. Only events passing the standard
selection for minimum bias events were considered. This selec-
tion is mainly based on VZERO and ZDC timing information to
reject beam-induced backgrounds and events coming from para-
sitic beam interactions (“satellite” collisions). The VZERO signal is
required to lie in a narrow time window of about 30 ns around
the nominal collision time, while a cut in the correlation between
the sum and the difference of the arrival times in each of the
ZDCs allows to remove satellite events. In addition, a minimal en-
ergy deposit of about 500 GeV in the ZDCs is required to further
suppress the background from electromagnetic interactions (for
details, see [23,25]). Only events with a primary vertex position
within 10 cm from the centre of the detector along the beam line
were selected; this ensures good rapidity coverage and uniformity
for the particle reconstruction efficiency in the ITS and TPC track-
ing volume. In order to study the centrality dependence of multi-
strange baryon production, these events were divided into five

centrality classes according to the fraction of the total inelastic col-
lision cross-section: 0–10%; 10–20%; 20–40%; 40–60%; 60–80%. The
definition of the event centrality is based on the sum of the am-
plitudes measured in the VZERO detectors, as described in [23,26].
The final sample in the 0–80% centrality range corresponds to ap-
proximately 15 × 106 Pb–Pb collisions at

√
sNN = 2.76 TeV. For

each centrality class the average number of participant nucleons,
〈Npart〉, is calculated from a Glauber model [26–28]. This is impor-
tant for comparisons since the number of participants is often used
as a centrality measure at lower energies or in different collision
systems.

Multi-strange baryons are measured through the reconstruc-
tion of the cascade topology of the following weak decays into
final states with charged particles only: �− → � + π− (branch-
ing ratio 99.9%) and �− → � + K− (67.8%) with subsequent decay
� → p + π− (63.9%), and their charge conjugates for the anti-
particle decays. The resulting branching ratios are 63.9% and 43.3%
for the � and the �, respectively. Candidates are found by com-
bining charged tracks reconstructed in the ITS and TPC volume.
Topological and kinematic restrictions are imposed, first to se-
lect the “V0” (� candidate V-shaped decay), and then to match
it with one of the remaining secondary tracks (“bachelor” candi-
date). The distance of closest approach (DCA) between the two
V0 daughter tracks, or between the V0 and the bachelor track,
or the V0 and the primary vertex position, as well as the V0

and cascade candidate pointing angles (PA) with respect to the
primary vertex position, are among the most effective selection
variables. Pre-defined fiducial windows around the Particle Data
Group (PDG) [29] mass values are set, both to select the � in the
cascade candidates (±5 MeV/c2) and to reject � candidates that
match the � hypothesis (±8 MeV/c2). In addition, each of the
three daughter tracks is checked for compatibility with the pion,
kaon or proton hypotheses using their energy loss in the TPC. The
selection procedure, while similar to that utilized for the pp sam-
ple [30], is optimized for the higher multiplicity environment of
the Pb–Pb collisions, which required tightening the cuts on the
DCA and PA variables. In particular, all the cuts are fine-tuned in
the final analysis, and cross-checked with Monte Carlo simulations,
in order to find the best compromise between the combinato-
rial background minimization and the significance of the signals.
The invariant mass distributions of the candidates for all particle
species passing the selection cuts are shown in Fig. 1. The signal-
to-background ratio, integrated over ±3σ , is 4.1 for the � and
1.0 for the �. The combinatorial background for anti-particles is
approximately 5% smaller than for particles, over the whole mea-
sured pT range. This difference has been found to increase rapidly
when going to the lowest momenta, consistent with the different
absorption cross-sections for baryons and anti-baryons within the
detector material.

Data are partitioned into the five centrality bins mentioned
above and, for each centrality, into different pT intervals. To ex-
tract the raw yields, a symmetric region around the peak (±3σ )
is defined by fitting the distribution with the sum of a Gaussian
and a polynomial. The background is determined by sampling the
regions on both sides of the peak; in these regions, whose width
and distance from the peak vary with centrality, pT and particle
species, the invariant mass distribution is fitted with a second or-
der polynomial (first order for high pT bins). The raw yield in each
pT and centrality bin is then obtained by subtracting the integral
of the background fit function in the peak region from the total
yield in the peak region obtained from bin counting.

A correction factor, which takes into account both the detec-
tor acceptance and the reconstruction efficiency (including the
branching ratio of the measured decay channel), is determined
for each particle species as a function of pT, and also in different
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Fig. 1. Invariant mass distributions for � (a) and � (b) selected candidates from 0–80% most central Pb–Pb collisions at
√

sNN = 2.76 TeV. The plots are for candidates in the
rapidity interval |y| < 0.5, at pT > 0.6 and 1.2 GeV/c for � and �, respectively. The arrows point to the PDG mass values.
Fig. 2. Acceptance × efficiency factors for �− (circles) and �− (squares) at mid-
rapidity as a function of pT, both for the most central 0–10% (full symbols) and the
most peripheral 60–80% (open symbols) Pb–Pb collisions. The points already take
into account the branching ratios of the corresponding measured decay channels.
Those for the �− are also scaled by a factor of 0.75, to avoid overlap with the �−
at high pT.

rapidity intervals to verify that the correction varies by less than
10% with rapidity. This is true for |y| < 0.5 for all particles with
pT > 1.8 GeV/c; for lower transverse momenta, a narrower ra-
pidity range (|y| < 0.3) has been chosen. Corrections were de-
termined using about 3 × 106 Monte Carlo events, generated us-
ing HIJING [31] with each event being enriched by one hyperon
of each species, generated with a flat pT distribution. The “en-
riched” events were then processed with the same reconstruction
chain used for the data events. To check that the results are not
biased by the presence of such injected signals, the correction
computed with the enriched events and that obtained using a
“pure” HIJING sample were compared in the low pT region (be-
low 3 GeV/c) and found to be compatible. Both samples have
then been used to maximize the total available statistics for the
computation of the correction. As an example, Fig. 2 shows the
resulting acceptance × efficiency factors as a function of pT for
�− and �− , both for the most central (0–10%) and the most pe-
ripheral (60–80%) classes. The uncertainties correspond to the total
statistics of the Monte Carlo samples used to compute the correc-
tion. The curves for the anti-particles are compatible with those
for particles. The values are found to decrease with increasing
event centrality, as expected. Compared to the correction applied
in the 7 TeV pp collision analysis [30], they are smaller by a factor
between 2.5 and 3 in the most peripheral class of the Pb–Pb sam-
ple, basically because of the tighter selection cuts in the heavy-ion
analysis.

4. Corrected spectra and systematic uncertainties

The corrected pT spectra for each particle species were ob-
tained by dividing bin-by-bin the raw yield distributions by the
acceptance × efficiency factors determined as described above.
They are shown in Fig. 3 for �− , �̄+ , �− and �̄+ , in the five
centrality classes from the most central (0–10%) to the most pe-
ripheral (60–80%) Pb–Pb collisions. The values at low pT (below
1.8 GeV/c) have been normalized to |y| < 0.5 to make all the
points correspond to a common rapidity window. Particle and anti-
particle spectra are compatible within errors, as expected at LHC
energies. The pT interval covered in the most central collisions
spans from 0.6 to 8.0 GeV/c for �− and �̄+ , and from 1.2 to
7.0 GeV/c for �− and �̄+ . The transverse momentum range of
the measurement is limited by the acceptance at low pT and by
the available statistics at high pT.

In order to extract particle yields integrated over the full
pT range, the spectra are fitted using a blast-wave parametriza-
tion [32]. Yields are then calculated by adding to the integral of
the data in the measured pT region, the integral of the fit func-
tion outside that region. The extrapolation to low pT is a much
larger fraction of the yield than that for high pT: it contributes
between 10–20% of the final total yields for the �, and 35–50%
for �, depending on centrality. Other functions of the transverse
momentum (exponential, Boltzmann and Tsallis [33] parametriza-
tions) have been used for comparison with the blast-wave shape.
The average difference in the total integrated yield, obtained using
the other fit functions, is taken as an estimate of the systematic
uncertainty due to the extrapolation: it is found to be around 7%
for � and 15% for �, in the worst case of the most peripheral col-
lisions.

The following sources of systematic uncertainty on the final
yields have been estimated: (i) material budget in the simulation
(4%), (ii) track selection in the TPC, through the restriction on
the number of TPC pad plane clusters used in the particle recon-
struction (1% for � and 3% for �), (iii) topological and kinematic
selection cuts (1% for � and 3% for �), (iv) for the �, removal
of candidates satisfying the � mass hypothesis (1%), (v) signal ex-
traction procedure (1%), (vi) use of FLUKA [34] to correct [35] the
anti-proton absorption cross-section in GEANT3 [36] (1%), (vii) cen-
trality dependence of the correction (3%). The last contribution is
related to the fact that the particle distributions in a given centra-
lity class are different in the injected Monte Carlo simulations and
in the data. The total systematic uncertainty, obtained by adding
the sources above in quadrature, is 5% for � and 7% for �, inde-
pendent of the pT bin and centrality interval. It has been added
in quadrature to the statistical error for each spectra data point
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Fig. 3. Transverse momentum spectra for �− and �− (a), (b) and their anti-particles (c), (d) in five different centrality classes, from the most central (0–10%) to the most
peripheral (60–80%) Pb–Pb collisions at

√
sNN = 2.76 TeV, for |y| < 0.5 at pT > 1.8 GeV/c and |y| < 0.3 at pT < 1.8 GeV/c. The statistical error bars are smaller than the

symbols for most data points, while the systematic uncertainties are represented by the open boxes.

Table 1
Total integrated mid-rapidity yields, dN/dy, for multi-strange baryons in Pb–Pb collisions at

√
sNN = 2.76 TeV, for different centrality intervals. Both statistical (first) and

systematic (second) errors are shown. For each centrality interval the average number of participants, 〈Npart〉, is also reported [26].

Centrality 0–10% 10–20% 20–40% 40–60% 60–80%
〈Npart〉 356.1 ± 3.6 260.1 ± 3.9 157.2 ± 3.1 68.6 ± 2.0 22.5 ± 0.8

�− 3.34 ± 0.06 ± 0.24 2.53 ± 0.04 ± 0.18 1.49 ± 0.02 ± 0.11 0.53 ± 0.01 ± 0.04 0.124 ± 0.003 ± 0.009
�̄+ 3.28 ± 0.06 ± 0.23 2.51 ± 0.05 ± 0.18 1.53 ± 0.02 ± 0.11 0.54 ± 0.01 ± 0.04 0.120 ± 0.003 ± 0.008
�− + �̄+ 6.67 ± 0.08 ± 0.47 5.14 ± 0.06 ± 0.36 3.03 ± 0.03 ± 0.22 1.07 ± 0.01 ± 0.08 0.240 ± 0.006 ± 0.019
�− 0.58 ± 0.04 ± 0.09 0.37 ± 0.03 ± 0.06 0.23 ± 0.01 ± 0.03 0.087 ± 0.005 ± 0.014 0.015 ± 0.002 ± 0.003
�̄+ 0.60 ± 0.05 ± 0.09 0.40 ± 0.03 ± 0.06 0.25 ± 0.01 ± 0.03 0.082 ± 0.005 ± 0.013 0.017 ± 0.002 ± 0.003
�− + �̄+ 1.19 ± 0.06 ± 0.19 0.78 ± 0.04 ± 0.15 0.48 ± 0.02 ± 0.08 0.170 ± 0.007 ± 0.029 0.032 ± 0.003 ± 0.005
before fitting the distribution and extracting the yields. An addi-
tional systematic error of 7% (15%) has been added to the final �

(�) yield to take into account the uncertainty due to the extrapo-
lation at low pT, as mentioned above.

5. Results and discussion

The total integrated yields for �− , �̄+ , �− + �̄+ , �− , �̄+ and
�− + �̄+ have been determined in each centrality class, and are
presented in Table 1. Statistical and systematic uncertainties are
quoted. The systematic errors include both the contribution due
to the correction factors and that from the extrapolation to the
unmeasured pT region. Particle and anti-particle yields are found
to be compatible within the errors.

The � and � pT spectra are compared to hydrodynamic model
calculations. The purpose of this comparison is to test the ability
of the models to reproduce yields, spectral shape and centrality
dependence. Four models are considered. VISH2+1 [37] is a vis-
cous hydrodynamic model, while HKM [38,39] is an ideal hydro-
dynamic model similar to VISH2+1 which, in addition, introduces a
hadronic cascade (UrQMD [40,41]) following the partonic hydrody-

namic phase. The Kraków model [42,43], on the other hand, intro-
duces non-equilibrium corrections due to viscosity in the transition
from a hydrodynamic description to one involving the final state
particles. EPOS (2.17v3) [44–46] aims to be a comprehensive model
and event generator, describing all pT domains with the same dy-
namical picture: in particular, it incorporates hydrodynamics and
models the interaction between high pT hadrons and the expan-
ding fluid, then uses UrQMD as hadronic cascade model.

The results are shown in Fig. 4 for � and � hyperons in diffe-
rent ranges of centrality. Predictions in each of the data centrality
intervals are available for all the models, except for HKM, which is
available only for the 10–20% and 20–40% most central collisions.
Moreover, for EPOS the curves correspond to the average of particle
and anti-particle as for the data points, while for the other models
only the predictions for the �− and �− are available at the time
of writing. We first focus on the most central events (0–10%). Here,
all the available models succeed in describing the shape of the �

spectrum quite well in the pT range up to 3 GeV/c, although only
the Kraków model correctly reproduces the yield. This supports
the hydrodynamic interpretation of the pT spectra in central col-
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Fig. 4. Transverse momentum spectra for � (a) and � (b) hyperons (average of particle and anti-particle) in five different centrality classes, compared to hydrodynamic
models. Ratios of models to data are also shown.
lisions at the LHC, which was already shown to be successful in
describing pion, kaon and proton spectra [47]. The description is
less successful with the �. VISH2+1 and EPOS both overestimate
the yield, though EPOS reproduces the shape; Kraków underesti-
mates the yield and does not reproduce the slope. As we move
progressively to less central events, the quality of the agreement
remains similar for the �, but deteriorates for the �.

For the �, the Kraków model describes both the yield and the
shape to within about 30% over the centrality range 0–60%, while
it fails to describe the spectrum in the most peripheral class. EPOS
describes the shape correctly for all centralities and also repro-
duces the yield in the most peripheral class, while the other two
models give a worse description. For the �, the EPOS and Kraków
models again provide the most successful description, reproduc-
ing the shape rather well (i.e. to within ∼30%) in all the centra-
lity classes, although EPOS consistently overestimates the yields.
As in the case of the �, VISH2+1 and HKM provide a less ac-
curate description of the data, though HKM works better than
VISH2+1. Comparing these models gives an insight into the mecha-
nism at work in hyperon production. VISH2+1, which results in the
least successful description, does not include the hadronic cascade
mechanism. The Kraków model indeed provides a good descrip-
tion for both the yields and shapes in the pT range up to 3 GeV/c.
EPOS, on the other hand, includes all these processes and gives
the most successful description overall in a wider pT range. In this
model the aim is to account in a single approach for bulk matter
and jets, and the interaction between the two; the flux-tubes pro-
duced in the initial hard scattering either escape the medium and
hadronize as jets, or contribute to the bulk matter where hydro-
dynamics becomes important. Good agreement has already been
observed between EPOS and ALICE data for pion, kaon and proton
spectra in central and semi-central collisions [47]; in this study the
agreement is confirmed for the � and � hyperons, and extended
to peripheral events.

The strangeness enhancements are defined as ratios of the
strange particle yields measured in Pb–Pb collisions, normalized
to the mean number of participant nucleons 〈Npart〉, to the corre-
sponding quantities in pp interactions at the same energy. The pp
reference values were obtained by interpolating ALICE data at two
energies (

√
s = 0.9 and 7 TeV [30,48]) for the �, and STAR data at

200 GeV [49] and ALICE data at 7 TeV for the �. For both particles,
the energy dependence of the PYTHIA yields1 is assumed. Although
PYTHIA underestimates the overall yields [30,51], its energy de-
pendence is found to be s0.13 (which is slightly higher than s0.11,
obtained for the charged-particle pseudorapidity density [25]): the
same power law describes the measured yields and is therefore
used for interpolation.

Fig. 5(a) and (b) show the enhancements for �− , �̄+ and
�− + �̄+ in Pb–Pb collisions at

√
sNN = 2.76 TeV (full symbols),

as a function of the mean number of participants. For the �, par-
ticle and anti-particle have been added for the sake of comparison
with the corresponding results at lower energy. The enhancements
are larger than unity for all the particles. They increase with the
strangeness content of the particle, showing the hierarchy already
observed at lower energies and also consistent with the picture of
enhanced ss̄ pair production in a hot and dense partonic medium.
In addition, the same shape and scale are observed for baryons and
anti-baryons (shown for �− and �̄+ in Fig. 5), as expected be-
cause of the vanishing net-baryon number at the LHC energy. The
centrality dependence shows that the multi-strange particle yields
grow faster than linearly with 〈Npart〉, at least up to the three most
central classes (Npart > 100–150), where there are indications of
a possible saturation of the enhancements. Comparing the ALICE
measurements with those from the experiments NA57 at the SPS
(Pb–Pb collisions at

√
sNN = 17.2 GeV) and STAR at RHIC (Au–Au

collisions at
√

sNN = 200 GeV), represented by the open symbols

1 Perugia 2011 tune 88 S350 [50] has been used.
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Fig. 5. (a), (b) Enhancements in the rapidity range |y| < 0.5 as a function of the mean number of participants 〈Npart〉, showing LHC (ALICE, full symbols), RHIC and SPS
(open symbols) data. The LHC data use interpolated pp values (see text). Boxes on the dashed line at unity indicate statistical and systematic uncertainties on the pp or p–Be
reference. Error bars on the data points represent the corresponding uncertainties for all the heavy-ion measurements and those for p–Pb at the SPS. (c) Hyperon-to-pion
ratios as a function of 〈Npart〉, for A–A and pp collisions at LHC and RHIC energies. The lines mark the thermal model predictions from [55] (full line) and [56] (dashed line).
in Fig. 5(a) and (b), the enhancements are found to decrease with
increasing centre-of-mass energy, continuing the trend established
at lower energies [8,9,15].

The hyperon-to-pion ratios �/π ≡ (�− + �̄+)/(π− + π+) and
�/π ≡ (�− + �̄+)/(π− + π+), for A–A and pp collisions both
at LHC [30,47,48,52,53] and RHIC [49,54,14] energies, are shown
in Fig. 5c as a function of 〈Npart〉. They indicate that different
mechanisms contribute to the evolution with centrality of the en-
hancements as defined above. Indeed, the relative production of
strangeness in pp collisions is larger than at lower energies. The
increase in the hyperon-to-pion ratios in A–A relative to pp (∼1.6
and 3.3 for � and �, respectively) is about half that of the stan-
dard enhancement ratio as defined above. It displays a clear in-
crease in strangeness production relative to pp, rising with centra-
lity up to about 〈Npart〉 ∼ 150, and apparently saturating thereafter.
A small drop is observed in the �/π ratio for the most cen-
tral collisions, which is however of limited significance given the
size of the systematic errors. Also shown are the predictions for
the hyperon-to-pion ratios at the LHC from the thermal models,
based on a grand canonical approach, described in [55] (full line,
with a chemical freeze-out temperature parameter T = 164 MeV)
and [56] (dashed line, with T = 170 MeV). We note that the
predictions for T = 164 MeV agree with the present data while,
for this temperature, the proton-to-pion ratio is overpredicted by
about 50% [47]. It is now an interesting question whether a grand-
canonical thermal model can give a good description of the com-
plete set of hadron yields in Pb–Pb collisions at LHC energy with a
somewhat lower T value. Alternatively, the low p/π ratio has been
addressed in three different approaches: (i) suppression gover-
ned by light quark fugacity in a non-equilibrium model [57,58],
(ii) baryon–anti-baryon annihilation in the hadronic phase, which
would have a stronger effect on protons than on multi-strange par-
ticles [59–62], (iii) effects due to pre-hadronic flavor-dependent
bound states above the QCD transition temperature [63,64].

6. Conclusions

In summary, the measurement of multi-strange baryon pro-
duction in heavy-ion collisions at the LHC and the correspon-

ding strangeness enhancements with respect to pp have been pre-
sented. Transverse momentum spectra of mid-rapidity �− , �̄+ ,
�− and �̄+ particles in Pb–Pb collisions at

√
sNN = 2.76 TeV have

been measured in five centrality intervals. The spectra are com-
pared with the predictions from several hydrodynamic models. It
is found that the best agreements are obtained with the Kraków
and EPOS models, with the latter covering a wider pT range. The
yields have been measured to be larger than at RHIC while the
hyperon-to-pion ratios are similar at the two energies, rising with
centrality and showing a saturation at 〈Npart〉 ∼ 150. The values of
those ratios for central collisions are found compatible with recent
predictions from thermal models. The enhancements relative to pp
increase both with the strangeness content of the baryon and with
centrality, but are less pronounced than at lower energies.
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A. Deloff bs, E. Dénes dv, A. Deppman dg, G.O.V. de Barros dg, A. De Caro k,ab, G. de Cataldo cs,
J. de Cuveland al, A. De Falco u, D. De Gruttola ab,k, N. De Marco cz, S. De Pasquale ab, R. de Rooij az,
M.A. Diaz Corchero i, T. Dietel av, R. Divià ag, D. Di Bari ad, C. Di Giglio ad, S. Di Liberto cx, A. Di Mauro ag,
P. Di Nezza bn, Ø. Djuvsland q, A. Dobrin az,du, T. Dobrowolski bs, B. Dönigus cl,at, O. Dordic t, A.K. Dubey dr,
A. Dubla az, L. Ducroux dp, P. Dupieux bl, A.K. Dutta Majumdar cp, D. Elia cs, D. Emschermann av, H. Engel as,
B. Erazmus ag,da, H.A. Erdal ah, D. Eschweiler al, B. Espagnon ar, M. Estienne da, S. Esumi dn, D. Evans cq,
S. Evdokimov ax, G. Eyyubova t, D. Fabris cw, J. Faivre bm, D. Falchieri y, A. Fantoni bn, M. Fasel ch,
D. Fehlker q, L. Feldkamp av, D. Felea be, A. Feliciello cz, G. Feofilov dq, J. Ferencei by, A. Fernández Téllez b,
E.G. Ferreiro o, A. Ferretti w, A. Festanti aa, J. Figiel dd, M.A.S. Figueredo dg,dk, S. Filchagin cn, D. Finogeev ay,
F.M. Fionda ad, E.M. Fiore ad, E. Floratos cd, M. Floris ag, S. Foertsch bh, P. Foka cl, S. Fokin co,
E. Fragiacomo cy, A. Francescon aa,ag, U. Frankenfeld cl, U. Fuchs ag, C. Furget bm, M. Fusco Girard ab,
J.J. Gaardhøje bv, M. Gagliardi w, A. Gago cr, M. Gallio w, D.R. Gangadharan r, P. Ganoti bz, C. Garabatos cl,
E. Garcia-Solis l, C. Gargiulo ag, I. Garishvili bq, J. Gerhard al, M. Germain da, A. Gheata ag, M. Gheata ag,be,
B. Ghidini ad, P. Ghosh dr, P. Gianotti bn, P. Giubellino ag, E. Gladysz-Dziadus dd, P. Glässel ch, L. Goerlich dd,
R. Gomez j,df, P. González-Zamora i, S. Gorbunov al, S. Gotovac dc, L.K. Graczykowski dt, R. Grajcarek ch,
A. Grelli az, C. Grigoras ag, A. Grigoras ag, V. Grigoriev br, A. Grigoryan a, S. Grigoryan bi, B. Grinyov c,
N. Grion cy, J.F. Grosse-Oetringhaus ag, J.-Y. Grossiord dp, R. Grosso ag, F. Guber ay, R. Guernane bm,
B. Guerzoni y, M. Guilbaud dp, K. Gulbrandsen bv, H. Gulkanyan a, T. Gunji dm, A. Gupta cf, R. Gupta cf,
K.H. Khan n, R. Haake av, Ø. Haaland q, C. Hadjidakis ar, M. Haiduc be, H. Hamagaki dm, G. Hamar dv,
L.D. Hanratty cq, A. Hansen bv, J.W. Harris dw, H. Hartmann al, A. Harton l, D. Hatzifotiadou ct,
S. Hayashi dm, A. Hayrapetyan ag,a, S.T. Heckel at, M. Heide av, H. Helstrup ah, A. Herghelegiu bt,
G. Herrera Corral j, N. Herrmann ch, B.A. Hess af, K.F. Hetland ah, B. Hicks dw, B. Hippolyte aw, Y. Hori dm,
P. Hristov ag, I. Hřivnáčová ar, M. Huang q, T.J. Humanic r, D. Hutter al, D.S. Hwang s, R. Ilkaev cn, I. Ilkiv bs,
M. Inaba dn, E. Incani u, G.M. Innocenti w, C. Ionita ag, M. Ippolitov co, M. Irfan p, M. Ivanov cl, V. Ivanov ca,
O. Ivanytskyi c, A. Jachołkowski z, C. Jahnke dg, H.J. Jang bj, M.A. Janik dt, P.H.S.Y. Jayarathna di, S. Jena ap,di,
R.T. Jimenez Bustamante bf, P.G. Jones cq, H. Jung am, A. Jusko cq, S. Kalcher al, P. Kaliňák bb, A. Kalweit ag,
J.H. Kang dx, V. Kaplin br, S. Kar dr, A. Karasu Uysal bk, O. Karavichev ay, T. Karavicheva ay, E. Karpechev ay,
A. Kazantsev co, U. Kebschull as, R. Keidel dy, B. Ketzer at, S.A. Khan dr, M.M. Khan p, P. Khan cp,
A. Khanzadeev ca, Y. Kharlov ax, B. Kileng ah, M. Kim dx, M. Kim am, T. Kim dx, J.S. Kim am, D.W. Kim bj,am,
D.J. Kim dj, B. Kim dx, S. Kim s, S. Kirsch al, I. Kisel al, S. Kiselev ba, A. Kisiel dt, G. Kiss dv, J.L. Klay e,
J. Klein ch, C. Klein-Bösing av, A. Kluge ag, M.L. Knichel cl, A.G. Knospe de, C. Kobdaj db,ag, M.K. Köhler cl,
T. Kollegger al, A. Kolojvari dq, V. Kondratiev dq, N. Kondratyeva br, A. Konevskikh ay, V. Kovalenko dq,
M. Kowalski dd, S. Kox bm, G. Koyithatta Meethaleveedu ap, J. Kral dj, I. Králik bb, F. Kramer at,
A. Kravčáková ak, M. Krelina aj, M. Kretz al, M. Krivda cq,bb, F. Krizek an,by,aj, M. Krus aj, E. Kryshen ca,
M. Krzewicki cl, V. Kucera by, Y. Kucheriaev co, T. Kugathasan ag, C. Kuhn aw, P.G. Kuijer bw, I. Kulakov at,
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J. Kumar ap, P. Kurashvili bs, A. Kurepin ay, A.B. Kurepin ay, A. Kuryakin cn, S. Kushpil by, V. Kushpil by,
M.J. Kweon ch, Y. Kwon dx, P. Ladrón de Guevara bf, C. Lagana Fernandes dg, I. Lakomov ar, R. Langoy ds,
C. Lara as, A. Lardeux da, A. Lattuca w, S.L. La Pointe az, P. La Rocca z, R. Lea v, M. Lechman ag, S.C. Lee am,
G.R. Lee cq, I. Legrand ag, J. Lehnert at, R.C. Lemmon bx, M. Lenhardt cl, V. Lenti cs, M. Leoncino w,
I. León Monzón df, P. Lévai dv, S. Li bl,f, J. Lien ds,q, R. Lietava cq, S. Lindal t, V. Lindenstruth al,
C. Lippmann cl, M.A. Lisa r, H.M. Ljunggren ae, D.F. Lodato az, P.I. Loenne q, V.R. Loggins du, V. Loginov br,
D. Lohner ch, C. Loizides bp, X. Lopez bl, E. López Torres h, G. Løvhøiden t, X.-G. Lu ch, P. Luettig at,
M. Lunardon aa, J. Luo f, G. Luparello az, C. Luzzi ag, P.M. Jacobs bp, R. Ma dw, A. Maevskaya ay, M. Mager ag,
D.P. Mahapatra bd, A. Maire ch, M. Malaev ca, I. Maldonado Cervantes bf, L. Malinina bi,1, D. Mal’Kevich ba,
P. Malzacher cl, A. Mamonov cn, L. Manceau cz, V. Manko co, F. Manso bl, V. Manzari cs,ag,
M. Marchisone bl,w, J. Mareš bc, G.V. Margagliotti v, A. Margotti ct, A. Marín cl, C. Markert de,ag,
M. Marquard at, I. Martashvili dl, N.A. Martin cl, P. Martinengo ag, M.I. Martínez b, G. Martínez García da,
J. Martin Blanco da, Y. Martynov c, A. Mas da, S. Masciocchi cl, M. Masera w, A. Masoni cu, L. Massacrier da,
A. Mastroserio ad, A. Matyja dd, J. Mazer dl, R. Mazumder aq, M.A. Mazzoni cx, F. Meddi x,
A. Menchaca-Rocha bg, J. Mercado Pérez ch, M. Meres ai, Y. Miake dn, K. Mikhaylov bi,ba, L. Milano ag,w,
J. Milosevic t,2, A. Mischke az, A.N. Mishra aq, D. Miśkowiec cl, C.M. Mitu be, J. Mlynarz du, B. Mohanty dr,bu,
L. Molnar aw,dv, L. Montaño Zetina j, M. Monteno cz, E. Montes i, M. Morando aa, D.A. Moreira De Godoy dg,
S. Moretto aa, A. Morreale dj, A. Morsch ag, V. Muccifora bn, E. Mudnic dc, S. Muhuri dr, M. Mukherjee dr,
H. Müller ag, M.G. Munhoz dg, S. Murray bh, L. Musa ag, B.K. Nandi ap, R. Nania ct, E. Nappi cs, C. Nattrass dl,
T.K. Nayak dr, S. Nazarenko cn, A. Nedosekin ba, M. Nicassio cl,ad, M. Niculescu ag,be, B.S. Nielsen bv,
S. Nikolaev co, S. Nikulin co, V. Nikulin ca, B.S. Nilsen cb, M.S. Nilsson t, F. Noferini k,ct, P. Nomokonov bi,
G. Nooren az, A. Nyanin co, A. Nyatha ap, J. Nystrand q, H. Oeschler ch,au, S.K. Oh am,3, S. Oh dw, L. Olah dv,
J. Oleniacz dt, A.C. Oliveira Da Silva dg, J. Onderwaater cl, C. Oppedisano cz, A. Ortiz Velasquez ae,
A. Oskarsson ae, J. Otwinowski cl, K. Oyama ch, Y. Pachmayer ch, M. Pachr aj, P. Pagano ab, G. Paić bf,
F. Painke al, C. Pajares o, S.K. Pal dr, A. Palaha cq, A. Palmeri cv, V. Papikyan a, G.S. Pappalardo cv, W.J. Park cl,
A. Passfeld av, D.I. Patalakha ax, V. Paticchio cs, B. Paul cp, T. Pawlak dt, T. Peitzmann az,
H. Pereira Da Costa m, E. Pereira De Oliveira Filho dg, D. Peresunko co, C.E. Pérez Lara bw, D. Perrino ad,
W. Peryt dt,4, A. Pesci ct, Y. Pestov d, V. Petráček aj, M. Petran aj, M. Petris bt, P. Petrov cq, M. Petrovici bt,
C. Petta z, S. Piano cy, M. Pikna ai, P. Pillot da, O. Pinazza ct,ag, L. Pinsky di, N. Pitz at, D.B. Piyarathna di,
M. Planinic do,cm, M. Płoskoń bp, J. Pluta dt, S. Pochybova dv, P.L.M. Podesta-Lerma df, M.G. Poghosyan ag,
B. Polichtchouk ax, A. Pop bt, S. Porteboeuf-Houssais bl, V. Pospíšil aj, B. Potukuchi cf, S.K. Prasad du,
R. Preghenella k,ct, F. Prino cz, C.A. Pruneau du, I. Pshenichnov ay, G. Puddu u, V. Punin cn, J. Putschke du,
H. Qvigstad t, A. Rachevski cy, A. Rademakers ag, J. Rak dj, A. Rakotozafindrabe m, L. Ramello ac,
S. Raniwala cg, R. Raniwala cg, S.S. Räsänen an, B.T. Rascanu at, D. Rathee cc, W. Rauch ag, A.W. Rauf n,
V. Razazi u, K.F. Read dl, J.S. Real bm, K. Redlich bs,5, R.J. Reed dw, A. Rehman q, P. Reichelt at, M. Reicher az,
F. Reidt ag,ch, R. Renfordt at, A.R. Reolon bn, A. Reshetin ay, F. Rettig al, J.-P. Revol ag, K. Reygers ch,
L. Riccati cz, R.A. Ricci bo, T. Richert ae, M. Richter t, P. Riedler ag, W. Riegler ag, F. Riggi z, A. Rivetti cz,
M. Rodríguez Cahuantzi b, A. Rodriguez Manso bw, K. Røed q,t, E. Rogochaya bi, S. Rohni cf, D. Rohr al,
D. Röhrich q, R. Romita bx,cl, F. Ronchetti bn, P. Rosnet bl, S. Rossegger ag, A. Rossi ag, P. Roy cp, C. Roy aw,
A.J. Rubio Montero i, R. Rui v, R. Russo w, E. Ryabinkin co, A. Rybicki dd, S. Sadovsky ax, K. Šafařík ag,
R. Sahoo aq, P.K. Sahu bd, J. Saini dr, H. Sakaguchi ao, S. Sakai bp,bn, D. Sakata dn, C.A. Salgado o,
J. Salzwedel r, S. Sambyal cf, V. Samsonov ca, X. Sanchez Castro bf,aw, L. Šándor bb, A. Sandoval bg,
M. Sano dn, G. Santagati z, R. Santoro k,ag, D. Sarkar dr, E. Scapparone ct, F. Scarlassara aa,
R.P. Scharenberg cj, C. Schiaua bt, R. Schicker ch, C. Schmidt cl, H.R. Schmidt af, S. Schuchmann at,
J. Schukraft ag, M. Schulc aj, T. Schuster dw, Y. Schutz ag,da, K. Schwarz cl, K. Schweda cl, G. Scioli y,
E. Scomparin cz, R. Scott dl, P.A. Scott cq, G. Segato aa, I. Selyuzhenkov cl, J. Seo ck, S. Serci u, E. Serradilla i,bg,
A. Sevcenco be, A. Shabetai da, G. Shabratova bi, R. Shahoyan ag, S. Sharma cf, N. Sharma dl, K. Shigaki ao,
K. Shtejer h, Y. Sibiriak co, S. Siddhanta cu, T. Siemiarczuk bs, D. Silvermyr bz, C. Silvestre bm, G. Simatovic do,
R. Singaraju dr, R. Singh cf, S. Singha dr, V. Singhal dr, B.C. Sinha dr, T. Sinha cp, B. Sitar ai, M. Sitta ac,
T.B. Skaali t, K. Skjerdal q, R. Smakal aj, N. Smirnov dw, R.J.M. Snellings az, R. Soltz bq, M. Song dx, J. Song ck,
C. Soos ag, F. Soramel aa, M. Spacek aj, I. Sputowska dd, M. Spyropoulou-Stassinaki cd, B.K. Srivastava cj,
J. Stachel ch, I. Stan be, G. Stefanek bs, M. Steinpreis r, E. Stenlund ae, G. Steyn bh, J.H. Stiller ch, D. Stocco da,
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M. Stolpovskiy ax, P. Strmen ai, A.A.P. Suaide dg, M.A. Subieta Vásquez w, T. Sugitate ao, C. Suire ar,
M. Suleymanov n, R. Sultanov ba, M. Šumbera by, T. Susa cm, T.J.M. Symons bp, A. Szanto de Toledo dg,
I. Szarka ai, A. Szczepankiewicz ag, M. Szymański dt, J. Takahashi dh, M.A. Tangaro ad, J.D. Tapia Takaki ar,
A. Tarantola Peloni at, A. Tarazona Martinez ag, A. Tauro ag, G. Tejeda Muñoz b, A. Telesca ag, C. Terrevoli ad,
A. Ter Minasyan co,br, J. Thäder cl, D. Thomas az, R. Tieulent dp, A.R. Timmins di, A. Toia cw, H. Torii dm,
V. Trubnikov c, W.H. Trzaska dj, T. Tsuji dm, A. Tumkin cn, R. Turrisi cw, T.S. Tveter t, J. Ulery at, K. Ullaland q,
J. Ulrich as, A. Uras dp, G.M. Urciuoli cx, G.L. Usai u, M. Vajzer by, M. Vala bb,bi, L. Valencia Palomo ar,
P. Vande Vyvre ag, L. Vannucci bo, J.W. Van Hoorne ag, M. van Leeuwen az, A. Vargas b, R. Varma ap,
M. Vasileiou cd, A. Vasiliev co, V. Vechernin dq, M. Veldhoen az, M. Venaruzzo v, E. Vercellin w, S. Vergara b,
R. Vernet g, M. Verweij du,az, L. Vickovic dc, G. Viesti aa, J. Viinikainen dj, Z. Vilakazi bh,
O. Villalobos Baillie cq, A. Vinogradov co, L. Vinogradov dq, Y. Vinogradov cn, T. Virgili ab, Y.P. Viyogi dr,
A. Vodopyanov bi, M.A. Völkl ch, S. Voloshin du, K. Voloshin ba, G. Volpe ag, B. von Haller ag, I. Vorobyev dq,
D. Vranic ag,cl, J. Vrláková ak, B. Vulpescu bl, A. Vyushin cn, B. Wagner q, V. Wagner aj, J. Wagner cl,
Y. Wang ch, Y. Wang f, M. Wang f, D. Watanabe dn, K. Watanabe dn, M. Weber di, J.P. Wessels av,
U. Westerhoff av, J. Wiechula af, J. Wikne t, M. Wilde av, G. Wilk bs, J. Wilkinson ch, M.C.S. Williams ct,
B. Windelband ch, M. Winn ch, C. Xiang f, C.G. Yaldo du, Y. Yamaguchi dm, H. Yang m,az, P. Yang f, S. Yang q,
S. Yano ao, S. Yasnopolskiy co, J. Yi ck, Z. Yin f, I.-K. Yoo ck, I. Yushmanov co, V. Zaccolo bv, C. Zach aj,
C. Zampolli ct, S. Zaporozhets bi, A. Zarochentsev dq, P. Závada bc, N. Zaviyalov cn, H. Zbroszczyk dt,
P. Zelnicek as, I.S. Zgura be, M. Zhalov ca, F. Zhang f, Y. Zhang f, H. Zhang f, X. Zhang bp,bl,f, D. Zhou f,
Y. Zhou az, F. Zhou f, X. Zhu f, J. Zhu f, J. Zhu f, H. Zhu f, A. Zichichi k,y, M.B. Zimmermann av,ag,
A. Zimmermann ch, G. Zinovjev c, Y. Zoccarato dp, M. Zynovyev c, M. Zyzak at
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