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We report measurements of single- and double-spin asymmetries for W� and Z=γ� boson production
in longitudinally polarized pþ p collisions at

ffiffiffi
s

p ¼ 510 GeV by the STAR experiment at RHIC. The
asymmetries for W� were measured as a function of the decay lepton pseudorapidity, which provides a

PRL 113, 072301 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

15 AUGUST 2014

072301-2



theoretically clean probe of the proton’s polarized quark distributions at the scale of theW mass. The results
are compared to theoretical predictions, constrained by polarized deep inelastic scattering measurements,
and show a preference for a sizable, positive up antiquark polarization in the range 0.05 < x < 0.2.

DOI: 10.1103/PhysRevLett.113.072301 PACS numbers: 24.85.+p, 13.38.Be, 13.38.Dg, 14.20.Dh

In high-energy proton-proton collisions, weak boson and
Drell-Yan production are dominated by quark-antiquark
annihilations. Because of the valence quark structure of
the proton, these interactions primarily involve the lightest
two quark flavors, up (u) and down (d). In unpolarized
collisions, measurements of these processes are used to
constrain the helicity-independent parton distribution func-
tions (PDFs) of the quarks (e.g., Refs. [1,2]). In particular,
Drell-Yan measurements [3,4] and earlier deep inelastic
scattering (DIS) results [5,6] have reported a large enhance-
ment in d̄ over ū quarks for a wide range of partonic
momentum fractions x. Calculations have shown that
perturbative QCD does not produce such a flavor asym-
metry in the proton’s light antiquark distributions, indicat-
ing another, likely nonperturbative, mechanism is needed
[7,8]. This generated significant theoretical interest, with
many nonperturbative models able to qualitatively describe
the data [9–12].
In the case of longitudinally polarized proton collisions

at RHIC, the coupling of W� bosons to left-handed quarks
and right-handed antiquarks (uLd̄R→Wþ and dLūR→W−)
determines the helicity of the incident quarks. This pro-
vides a direct probe of the helicity-dependent PDFs through
a parity-violating longitudinal single-spin asymmetry,
which is defined as AL ¼ ðσþ − σ−Þ=ðσþ þ σ−Þ, where
σþð−Þ is the cross section when the polarized proton beam
has positive (negative) helicity. Analogous to the unpolar-
ized case, measurements of this asymmetry can be used to
constrain the helicity-dependent quark PDFs Δq¼qþ−q−,
where qþ (q−) is the distribution of quarks with spin parallel
(antiparallel) to the proton spin. Of particular interest is a
possible flavor asymmetry in the polarized case, given by
Δū − Δd̄, which some nonperturbative models predict to
be similar to, or even larger than, the unpolarized flavor
asymmetry [11,12].
Semi-inclusive DIS measurements with polarized beams

and targets also constrain the helicity-dependent PDFs,
although they require the use of fragmentation functions to
relate themeasured final-state hadrons to the flavor-separated
quark and antiquark distributions [13–15]. Both inclusive
and semi-inclusive DIS measurements have been included
in global QCD analyses to determine the helicity-dependent
PDFs of the proton [16,17]. The extracted polarized flavor
asymmetry Δū − Δd̄ is positive within the sizable uncer-
tainty afforded by the current measurements.
In this Letter, we report measurements of single- and

double-spin asymmetries for weak boson production in
longitudinally polarized pþ p collisions from 2011 and
2012 by the STAR collaboration at RHIC for

ffiffiffi
s

p ¼ 500

and 510 GeV, respectively. The beam polarization and
luminosity of this data set correspond to an order of
magnitude reduction in the statistical variance for single-
spin asymmetry measurements, in comparison to results
reported previously by STAR [18] and PHENIX [19].
These measurements place new constraints on the helicity-
dependent antiquark PDFs, and prefer a larger value for the
up antiquark polarization Δū than previously expected by
global QCD analyses [16,17].
The polarizations of the two beams were each measured

using Coulomb-nuclear interference proton-carbon polar-
imeters, which were calibrated with a polarized hydrogen
gas-jet target [20]. The average luminosity-weighted beam
polarization during 2011 (2012) was 0.49 (0.56), with a
relative scale uncertainty of 3.4% for the single beam
polarization and 6.5% for the product of the polarizations
from two beams. The integrated luminosities of the data
sets from 2011 and 2012 are 9 and 77 pb−1, respectively.
The subsystems of the STAR detector [21] used in

this measurement are the Time Projection Chamber [22]
(TPC), providing charged particle tracking for pseudora-
pidity jηj ≲ 1.3, and the Barrel [23] and Endcap [24]
Electromagnetic Calorimeters (BEMC, EEMC). These
lead-sampling calorimeters cover the full azimuthal angle
ϕ for jηj < 1 and 1.1 < η < 2, respectively.
In this analysis, W� bosons were detected via their

W� → e�νe decay channels, and were recorded using a
calorimeter trigger requirement of 12 (10) GeV of trans-
verse energy ET in a Δη × Δϕ region of ∼0.1 × 0.1 of the
BEMC (EEMC). Primary vertices were reconstructed along
the beam axis of the TPC within �100 cm of the center of
the STAR interaction region. The vertex distribution was
approximately Gaussian with an rms of 49 cm. The spread
of the vertex distribution allows the detector η coverage to
be extended by ∼0.1.
The selection criteria for electrons and positrons detected

in the BEMC, with e� pseudorapidity jηej < 1.1, are des-
cribed in previously reported measurements of the W� and
Z=γ� cross sections [25], and will only be summarized here.
At mid-rapidity,W� → e�νe events are characterized by an
isolated e� with a transverse energy Ee

T measured in the
BEMC that peaks near half the W boson mass. Leptonic
W� decays also produce a neutrino, close to opposite in
azimuth of the decay e�. The neutrino is undetected and
leads to a large missing transverse energy. As a result, there
is a large imbalance in the vector transverse momentum
(pT) sum of all reconstructed final-state objects for W�
events, in contrast to Z=γ� → eþe− and QCD dijet events.
We define a pT-balance variable ~pbal

T , which is the vector
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sum of the e� candidate ~pe
T and the pT vectors of all

reconstructed jets outside an isolation cone around the e�
candidate track with a radius of ΔR¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δη2þΔϕ2

p
¼ 0.7.

Jets were reconstructed from charged tracks in the TPC and
energy deposits in the BEMC and EEMC using an anti-kT
algorithm [26]. The scalar variable signed pT- balance ¼
ð~pbal

T · ~pe
TÞ=j~pe

T j is required to be larger than 14 GeV=c.
W� candidates were charge separated based on e� track

curvature measured in the TPC. The charge separated yields
are shown in Fig. 1, along with the estimated contributions
from electroweak processes and QCD backgrounds, as a
function of Ee

T . TheW
� → τ�ντ and Z=γ� → eþe− electro-

weak contributions were determined from Monte Carlo
(MC) samples simulated using PYTHIA 6.422 [27] with the
Perugia 0 tune [28]. The generated events were passed
through a GEANT [29] model of the STAR detector response,
embedded in real STAR zero-bias triggered events [25],
and reconstructed using the same selection criteria as the
data. In the W� → τ�ντ sample the TAUOLA package was
used for the polarized τ� decay [30]. Background yields
fromQCD processes were estimated independently for each
ηe bin through two contributions described in Ref. [25],
referred to as the second EEMC and data-driven QCD.
These background contributions originate primarily from
events that satisfy the W� selection criteria but contain jets
escaping detection due to the missing calorimeter coverage
for η < −1 and η > 2.
The EEMC was used to reconstruct the energy of the

decay e� candidates at forward rapidity (ηe > 1). Charged
track reconstruction was provided by the TPC, limiting the
pseudorapidity acceptance to ηe ≲ 1.3. Similar to the mid-
rapidity event selection, isolation and signed pT-balance
requirements were used to select W� → e�νe candidates.
Additionally, the EEMC Shower Maximum Detector

(ESMD) [24], consisting of two orthogonal planes of
scintillating strips at a depth of ∼5 radiation lengths,
provided a measurement of the electromagnetic shower’s
profile transverse to its propagation direction. A single
electromagnetic shower from a W� → e�νe decay should
be isolated with a narrow transverse profile (Molière radius
of ∼1.5 cm in lead [31]), while QCD background candi-
dates typically contain a π0 or other additional energy
deposits in proximity to the candidate track leading to a
wider reconstructed shower. In addition, the location of the
extrapolated TPC track and the shower reconstructed in the
ESMD should be well correlated for W� → e�νe events.
To further suppress QCD background events, a ratio of
the energy deposited in the ESMD strips within �1.5 cm
of the candidate TPC track to the energy deposited in the
strips within �10 cm was computed. This ratio, denoted
RESMD, was required to be greater than 0.6 to select
isolated, narrow e� showers.
The charge-summed candidate yield as a function of

signed pT-balance for forward rapidity e� is shown in
Fig. 2(a), where the electroweak contributions were esti-
mated using the same MC samples described for the mid-
rapidity case. The QCD background was estimated from
the shape of the signed pT-balance distribution for e�
candidates with RESMD < 0.5. This shape was determined
for each charge sign independently and was normalized to
the measured yield in the QCD background dominated
region −8 < signedpT- balance < 8 GeV=c. Forward rap-
idity W� candidates were selected by requiring signed pT-
balance > 20 GeV=c. The difference between the data and
W� → e�νe MC distributions for signed pT-balance >
20 GeV=c is within the MC normalization uncertainty,
and this uncertainty provides a negligible contribution to
the measured spin asymmetries.
Figure 2(b) shows the reconstructed charge sign multi-

plied by the ratio of Ee
T (measured by the EEMC) to pe

T
(measured by the TPC) for forward rapidity candidates.
Because of their forward angle, these tracks have a reduced
number of points along their trajectory measured by the
TPC compared to the mid-rapidity case, which leads to a
degraded pT resolution. Despite that, a clear charge
sign separation is observed. The data were fit to two
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double-Gaussian template shapes generated from W� MC
samples to estimate the reconstructed charge sign purity.
The shaded regions were excluded from the analysis to
remove tracks with poorly reconstructed pT and reduce the
opposite charge sign contamination. The residual charge
sign contamination is estimated to be 6.5%, which is small
relative to the statistical uncertainties of the measured spin
asymmetries.
Measurements of Z=γ� production at RHIC energies are

limited by a small production cross section. However, one
unique advantage of this channel is the fully reconstructed
eþe− final state, allowing the initial state kinematics to
be determined event by event at leading order. A sample of
88 Z=γ� → eþe− events was identified by selecting a pair
of isolated, oppositely charged e� candidates, as described
in Ref. [25]. The resulting invariant mass distribution of
eþe− pairs is shown in Fig. 3, superimposed with the
MC expectation.
The measured spin asymmetries were obtained from the

2011 and 2012 data samples using a likelihood method to
treat the low statistics of the 2011 sample. For a given data
sample, a model for the expected, spin-dependentW� event
yield μ in a given positive pseudorapidity range, labeled a,
of the STAR detector can be defined for each of the four
RHIC helicity states of the two polarized proton beams

μaþþ ¼ lþþNað1þ P1βA
þηe
L þ P2βA

−ηe
L þ P1P2βALLÞ;

μaþ− ¼ lþ−Nað1þ P1βA
þηe
L − P2βA

−ηe
L − P1P2βALLÞ;

μa−þ ¼ l−þNað1 − P1βA
þηe
L þ P2βA

−ηe
L − P1P2βALLÞ;

μa−− ¼ l−−Nað1 − P1βA
þηe
L − P2βA

−ηe
L þ P1P2βALLÞ; ð1Þ

where P1 (P2) is the absolute value of the polarization of
beam 1 (2), Aþηe

L (A−ηe
L ) is the single-spin asymmetry

measured at positive (negative) ηe with respect to beam
1, ALL is the parity-conserving double-spin asymmetry
[32], which is symmetric with respect to ηe, Na is the spin
averaged yield, and l�� are the respective relative lumi-
nosities determined from an independent sample of QCD

events, which required a nonisolated lepton candidate with
Ee
T < 20 GeV as described in Ref. [18].
A similar set of four equations can be written for the

symmetric negative pseudorapidity range of the STAR
detector, labeled b, by interchanging Aþηe

L with A−ηe
L .

The dilution of the asymmetries due to unpolarized back-
ground contributions to the W� candidate yield is repre-
sented by β ¼ S=ðSþ BÞ, where S and B are the number of
signal and background events as shown in Figs. 1 and 2,
and were measured separately for regions a and b. The
estimated W� → τ�ντ yield is not a background for the
asymmetry measurement as it is produced in the same
partonic processes as the primary signal, W� → e�νe.
The eight spin-dependent yields for the pair of sym-

metric pseudorapidity regions in the STAR detector (a and
b) are used to define a likelihood function

L ¼
Y4

i

PðMa
i jμai ÞPðMb

i jμbi ÞgðβaÞgðβbÞ ð2Þ

consisting of a product of Poisson probabilities PðMijμiÞ
for measuring Mi events in a helicity configuration i given
the expected value μi from Eq. (1) and a Gaussian
probability gðβÞ for the estimated background dilution.
The spin asymmetry parameters (Aþηe

L , A−ηe
L , and ALL)

of this likelihood function were bounded to be within
their physically allowed range of ½−1; 1�, Na;b and βa;b

were treated as nuisance parameters, and the remaining
parameters (P and l��) are known constants.
Separate likelihood functions were computed for the

2011 and 2012 data sets, consisting of 2759 Wþ and 837
W− candidates in total. The product of these two likelihood
functions was used in a profile likelihood analysis [31] to
obtain the central values and confidence intervals for the
asymmetries. The W� asymmetries were measured for e�
with 25 < Ee

T < 50 GeV and are shown in Figs. 4 and 5 as
a function of e� pseudorapidity for the single- and double-
spin asymmetries, respectively. These results are consistent
with our previous measurements of AL [18]. The data
points are located at the average ηe within each bin, and
the horizontal error bars represent the rms of the ηe
distribution within that bin. The vertical error bars show
the 68% confidence intervals, which include the statistical
uncertainty, as well as systematic uncertainties due to the
unpolarized background dilutions. The magnitude of the
confidence intervals is dominated by the statistical preci-
sion of the data. The relative luminosity systematic uncer-
tainty is �0.007 as indicated by the gray band in Fig. 4.
The single- (double-)spin asymmetries have a common
3.4% (6.5%) normalization uncertainty due to the uncer-
tainty in the measured beam polarization.
The measured single-spin asymmetries are compared

to theoretical predictions using both next-to-leading order
(CHE) [33] and fully resummed (RHICBOS) [34] calculations
in Fig. 4. The RHICBOS calculations are shown for the
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FIG. 3 (color online). Distributions of the invariant mass of
Z=γ� → eþe− candidate events. The Z=γ� → eþe− MC distri-
bution (filled histogram) is shown for comparison.
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DSSV08 [16] helicity-dependent PDF set, and the CHE

calculations are shown for DSSV08 [16] and LSS10 [17].
The DSSV08 uncertainties were determined using a
Lagrange multiplier method to map out the χ2 profile
of the global fit [16], and the Δχ2=χ2 ¼ 2% error band
in Fig. 4 represents the estimated PDF uncertainty for
AW
L [35].
The measured AWþ

L is negative, consistent with the
theoretical predictions. For AW−

L , however, the measured
asymmetry is larger than the central value of the theoretical
predictions for ηe− < 0. This region is most sensitive to the

up antiquark polarization Δū, which is not currently well
constrained [16,17] as can be seen by the large uncertainty
in the theoretical prediction there. While consistent within
the theoretical uncertainty, the large positive values for AW−

L
indicate a preference for a sizable, positive Δū in the range
0.05 < x < 0.2 relative to the central values of the DSSV08
and LSS10 fits. Global analyses from both DSSVþþ [36]
and neural network PDF [37] have extracted the antiquark
polarizations, using our preliminary measurement from
the 2012 data set. These analyses quantitatively confirm
the enhancement of Δū and the expected reduction in the
uncertainties of the helicity-dependent PDFs compared to
previous fits without our data.
The W� double-spin asymmetry, shown in Fig. 5, is

sensitive to the product of quark and antiquark polar-
izations, and has also been proposed to test positivity
constraints using a combination of AL and ALL [38]. The
measured double-spin asymmetries are consistent with the
theoretical predictions and in conjunction with AW�

L satisfy
the positivity bounds within the current uncertainties.
A similar profile likelihood procedure is used to deter-

mine the single-spin asymmetry AZ=γ�
L for Z=γ� production

with jηej<1.1, Ee
T>14GeV, and 70<meþe−<110GeV=c2.

AZ=γ�
L is sensitive to the combination of u, ū, d, and d̄

polarizations. The measured asymmetry AZ=γ�
L ¼−0.07þ0.14

−0.14
is consistent, within the large uncertainty, with theoretical
predictions using the different helicity-dependent PDFs
AZ=γ�
L ðDSSV08Þ ¼ −0.07 and AZ=γ�

L ðLSS10Þ ¼ −0.02.
In summary, we report new measurements of the parity-

violating single-spin asymmetry AL and parity-conserving
double-spin asymmetry ALL for W� production as well
as a first measurement of AL for Z=γ� production in
longitudinally polarized proton collisions by the STAR
experiment at RHIC. The dependence of AW�

L on the decay
lepton pseudorapidity probes the flavor-separated quark
and antiquark helicity-dependent PDFs at theW mass scale.
A comparison to theoretical predictions based on different
helicity-dependent PDFs suggests a positive up antiquark
polarization in the range 0.05 < x < 0.2. The inclusion
of this measurement in global analyses of RHIC and DIS
data should significantly improve the determination of the
polarization of up and down antiquarks in the proton and
provide new input on the flavor symmetry of the proton’s
antiquark distributions.
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