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Screening is one of the fundamental concepts in solid-state physics. It has a great impact on the electronic
properties of graphene, where huge mobilities were observed in spite of the large concentration of charged
impurities. While static screening has successfully explained dc mobilities, screening properties can be
significantly changed at infrared or optical frequencies. In this paper, we discuss the influence of dynamical
screening on the optical absorption of graphene and other two-dimensional electron systems such as metallic
monolayers. This research is motivated by recent experimental results that pointed out that graphene plasmon
linewidths and optical scattering rates can be much larger than scattering rates determined by dc mobilities.
Specifically, we discuss a process in which a photon incident on a graphene plane can excite a plasmon by
scattering from an impurity, or a surface optical phonon of the substrate.

DOI: 10.1103/PhysRevB.89.085415 PACS number(s): 73.20.Mf, 73.25.+i

I. INTRODUCTION

In recent years there has been a lot of interest in the
field of plasmonics, which seems to be the only viable path
toward the realization of nanophotonics, or the control of
light at scales substantially smaller than the wavelength [1].
However, plasmonic materials (most notably metals) suffer
from large losses in the frequency regimes of interest, which
led to a wide search for better materials [2]. A great deal of
attention has recently been given to plasmonics in graphene
[3,4], which is a single two-dimensional (2D) plane of carbon
atoms arranged in a honeycomb lattice [5,6]. One exciting
point of interest of 2D materials is that they are tunable. For
example, graphene can be doped to high values of electron
or hole concentrations by applying gate voltage [5], much
like in field effect transistors. Furthermore, graphene can
be produced in very clean samples with large mobilities
(demonstrated by dc transport measurements) [5,6]. The
dc scattering rates would imply small plasmon losses in
graphene, however it is still not clear how the scattering rates
change with frequency, particularly in the infrared (ir) region.
Recent nanoimaging measurements [7] have demonstrated
somewhat increased plasmon losses at ir compared to the
estimate based on dc transport measurements. Measurements
of optical transmission through graphene nanoribbons [8] have
demonstrated a strong increase in plasmon linewidth with
frequency and losses that are much larger than the dc estimates.
However, since the ribbon width in these experiments is
very small (10–100 nm), edge scattering can significantly
increase the losses. Nevertheless, a similar experiment [9] with
graphene nanorings has demonstrated plasmon linewidths that
approximately agree with the dc estimate.

Finally, electron energy loss spectroscopy (EELS) [10] on
graphene sheets has demonstrated huge plasmon linewidths
that increase linearly with plasmon momentum; however, the
(dc) transport measurements were not reported, so it is not
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clear what was the actual quality of the graphene films. It is
also interesting to note that similar results [11] were obtained
with EELS on monatomic silver film, which could imply a
common origin of plasmon damping in these two 2D systems.
On the one hand, metallic monolayers might be even more
interesting from the point of view of plasmonics since they
have an abundance of free electrons even in the intrinsic case,
while graphene has to be doped with electrons since it is a
zero-band-gap semiconductor. On the other hand, graphene
has superior mechanical properties and was demonstrated in a
free-standing (suspended) sample while metallic monolayers
have only been observed on a substrate.

Instead of calculating plasmon linewidth, we will focus
on a directly related problem of optical absorption, which is
easier to analyze. In that respect, it was shown experimentally
[12] that suspended graphene absorbs around 2.3% of normal
incident light in a broad range of frequencies. However, if
graphene is doped with electrons, then the Pauli principle
blocks some of these transitions and there should be a sudden
decrease of absorption below a certain threshold, which should
theoretically occur at twice the Fermi energy. Nevertheless,
optical spectroscopy experiments [13] have shown that there
is still a great deal of absorption even below this threshold.
This absorption is much larger than the estimate based on
dc measurements. A great deal of theoretical work addressed
this problem [14–18], but to our knowledge the experimental
results have quantitatively not been explained yet.

In this paper, we focus on optical absorption mediated
by charged impurity scattering. As we have already stated,
the motivation for studying this problem follows from the
fact that typical graphene samples can have large mobilities
(μ ≈ 10 000 cm2/V s) in spite of a huge concentration of
charged impurities [19] (ni ≈ 1012 cm−2), which is actually
comparable to the typical concentration of electrons. The
reason one can have such a large mobility is screening [19]. In
fact, if one assumes that electrons scatter from bare charged
impurities described with the Coulomb potential Vq , then the
resulting mobility is almost two orders of magnitude lower
than the measured value [19]. The only way to reconcile the
experiment and theory is to say that the actual scattering
potential is screened to Vq/ε(q), where ε(q) is the static
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dielectric function. However, in the dynamical case, at finite
frequency, screening is not so effective and ε(q) should be
replaced with the dynamic dielectric function ε(q,ω). This
will certainly influence the single-particle excitations where
an incident photon excites an electron hole pair through
impurity scattering. Moreover, at finite frequency one can
have ε(q,ω) = 0 (at the plasmon dispersion) so there exists
an additional decay channel where an incident photon excites
a plasmon of the same energy, through impurity scattering.
In other words, impurities break the translational symmetry
(momentum does not need to be conserved), which allows the
photon to couple directly to a plasmon mode. Very recently,
another group also calculated this process in graphene, but
only in the small frequency limit [20]. Here we give the
result for the arbitrary frequency (both for metallic monolayers
and graphene), which can be very different from the small
frequency limit.

More specifically, we calculate the optical absorption in 2D
electron systems with randomly arranged charged impurities.
First, we discuss the case of metallic monolayers which have
a parabolic electron dispersion, and then the case of graphene
with Dirac electron dispersion. We focus on a decay channel
where the incident photon emits a plasmon through impurity
scattering, but we also discuss a case in which the incident
photon emits the plasmon and a surface optical phonon of
the substrate. For graphene on a SiO2 substrate, the resulting
optical absorption is very small compared to the experimental
results [13], and it is not enough to reconcile the difference be-
tween theory [14–18] and experiment [13]. On the other hand,
we predict large optical absorption by plasmon emission via
impurity scattering in suspended graphene. Thus we believe
that these ideas can be tested in suspended graphene. Finally,
we note that for suspended graphene (metallic monolayers),
the small frequency limit [20] gives an order of magnitude
lower (larger) result than the more exact RPA calculation.

II. METALLIC MONOLAYERS

The case of the optical absorption in a bulk 3D system with
parabolic electron dispersion and randomly arranged impuri-
ties was already studied by Hopfield [21]. It is straightforward
to extend his result to a 2D system, and here we provide only
a brief description of the calculation.

We study a system described by the Hamiltonian H = H0 +
He-e + Hl + Hi , where H0 represents the kinetic energy of
free electrons, He-e describes the electron-electron interaction,
which is conveniently represented through the screening effect,
Hl describes scattering with light, and Hi represents scattering
with impurities. Electrons in a metallic monolayer can be
described with a parabolic dispersion: H0 = p2/2m∗, where
p is the electron momentum and m∗ is the effective mass of
the electron. Next, let us introduce a monochromatic light
beam of frequency ω which is described by the electric field
E(t) = E0e

−iωt + c.c. This wave is incident normally on a 2D
electron gas, that is, E(t) is in the plane of the gas. If we are only
interested in a linear response with respect to this electric field,
then interaction of electrons with light takes a particularly sim-
ple expression: Hl = −i e

m∗ω p · E0e
−iωt + c.c., where we have

introduced electron charge (−e). Later on, since momentum is
a good quantum number even in an interacting electron system,

light scattering (Hl) will not change the many-body eigenstates
of H0 + He-e, but only the eigenvalues; see Ref. [21]. Then,
one only needs to do the perturbation theory in the impurity
scattering. Unfortunately, this trick (due to Hopfield) works
only in systems with parabolic electron dispersion, while in the
case of Dirac electrons, such as those found in graphene, one
needs to apply the perturbation theory both in light scattering
and in impurity scattering, which is a much more tedious task.

We can write the Hamiltonian for impurity scattering as
a Fourier sum over wave vectors q: Hi = 1

�

∑
q Vi(q)eiq·r,

where � is the total area of our 2D system. By calculating the
induced current to second order in Vi(q), one can find the real
part of the conductivity [21]:

Reσ (ω) = − e2

m∗2ω3

1

�

∑
q

q2
x

1

�
|Vi(q)|2 1

Vc(q)
Im

1

ε(q,ω)
.

(1)

Note that this quantity [Reσ (ω)] determines the optical
absorption in our system. Here ε(q,ω) stands for a dielectric
function of the electron gas, and Vc(q) = e2

2ε̄r ε0q
is the Fourier

transform of the Coulomb potential between two electrons in a
2D layer embedded between two dielectrics of average relative
permittivity, ε̄r = (εr1 + εr2)/2. We have assumed without
loss of generality that the external field points in the x direction
(E0 = x̂E0) and is parallel to the plane of our 2D electron gas.

In the case of randomly assembled impurities at posi-
tions Rj , one can write for the scattering potential Vi(q) =
−Vc(q)

∑
j e−iq·Rj . Note that we are assuming positively

charged (e) impurities embedded in a see of negative electrons
(−e). Then by averaging over random impurity positions,
one has 〈|Vi(q)|2〉 = NiV

2
c (q), where Ni is the number of

impurities [22].
Equation (1) depends on the loss function Im 1

ε(q,ω) , which
generally contains contribution from single-particle excita-
tions and collective (plasmon) excitations. In this paper, we
focus solely on the plasmon contribution, in which case one
can write [23]

Im
1

ε(q,ω)
= −π

∂ε
∂ω

δ(ω − ωq), (2)

where ωq is the plasmon frequency determined by the zero of
the dielectric function: ε(q,ωq ) = 0. This term then represents
the process in which an incident photon excites plasmon of the
same energy through impurity scattering.

The δ function from Eq. (2) extracts only a single wave
vector from the sum in Eq. (1), which corresponds to the
plasmon wave vector at the given frequency ω. Then one is
left with integration over the angle ϕq, which is straightforward

to perform since
∫ 2π

0 dϕq · q2
x = πq2.

Finally, we plot the conductivity from expression (1) in
Fig. 1 by using the dielectric function ε(q,ω) within the random
phase approximation (RPA) given in Ref. [24]. To represent
the experiment [11], which studied a silver monolayer on
a silicon substrate, we choose εr1 = εSi = 12, εr2 = 1, the
effective mass m∗ = 0.3m, where m is the free-electron mass,
electron concentration n = 2 × 1013 cm−2, and we assume the
impurity concentration ni = 1012 cm−2.
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FIG. 1. (Color online) Plasmon dispersion and optical conduc-
tivity for metallic monolayers. In plot (a) we show the plasmon
dispersion relation within the random phase approximation (solid
line) and within the Drude model, i.e., in the small frequency limit
(dashed line). The gray area denotes the regime of single-particle
excitations. Random assembly of impurities breaks the translation
invariance, which allows a zero-momentum photon to couple to a
finite-momentum plasmon (sketched by the red arrow). In plot (b)
we show the optical absorption for the plasmon emission process
through impurity scattering. We plot the real part of the conductivity
in units of σ0 = e2

4�
vs photon energy in units of Fermi energy EF .

One can see that the small frequency limit (dashed line) significantly
overestimates the more exact RPA result (solid line).

It is also convenient to look at the small frequency limit
(�ω � EF ), in which case only long-wavelength (q � qF )
plasmons contribute to the scattering. Here EF and qF stand
for Fermi energy and Fermi momentum, respectively. In this
limit, one can use a simple Drude model to obtain the dielectric
function:

εD(q,ω) = 1 − q

ω2

e2n

2ε̄r ε0m∗ . (3)

In this case, plasmon dispersion is simply ω ∝ √
q and one

can easily evaluate Eqs. (1) and (2) to obtain the conductivity,

Reσ (ω) = πe2

4�

ni

q2
TF

(
�ω

EF

)3

. (4)

Here we have introduced the Thomas-Fermi wave vector:
qTF = e2m∗

2πε̄r ε0�2 , while ni = Ni/� stands for the impurity
density. From Fig. 1(b) we see that in the case of metallic
monolayers, the small frequency limit (dashed line) signifi-
cantly overestimates the more exact RPA result (solid line).

III. GRAPHENE

Unfortunately, the trick that Hopfield used in the case of
parabolic dispersion does not work for Dirac dispersion, so one
has to apply the perturbation theory both in impurity scattering
and light scattering while including the screening effect in
every order of the perturbation theory. This is a straightforward
but very tedious task, so we give the derivation of the optical
absorption in the Appendix. Here we only write the final result:

Reσ (ω) = −e2v2
F

ω

1

�

∑
q

1

�

∣∣∣∣Vi(q)

ε(q)

∣∣∣∣
2

F 2(q,ω)Vc(q)Im
1

ε(q,ω)
,

(5)

where we have assumed a general impurity scattering Hamil-
tonian: Hi = 1

�

∑
q Vi(q)eiq·r (see the Appendix for more

details). In the case of charged impurities, one has 〈|Vi(q)|2〉 =

FIG. 2. (Color online) Plasmon dispersion and optical conductiv-
ity for graphene sitting on the SiO2 substrate with air above. In plot (a)
we show plasmon dispersion within the random phase approximation
(solid line) and within the Drude model, i.e., in the small frequency
limit (dashed line). The gray area denotes the regime of single-particle
excitations. Random assembly of impurities breaks the translation
invariance, which allows a zero-momentum photon to couple to a
finite-momentum plasmon (sketched by the red arrow). This process
is possible only when the plasmon dispersion is outside of the gray
area. Otherwise, plasmons are strongly damped due to single-particle
excitations (Landau damping). In plot (b) we show optical absorption
for the plasmon emission process through impurity scattering. We plot
the real part of the conductivity in units of σ0 = e2

4�
vs photon energy

in units of Fermi energy EF . One can see that the small frequency
limit (dashed line) is very close to the more exact RPA result (solid
line). This is related to the fact that in this case the plasmon dispersion
from (a) is very well described by the small frequency limit.

NiV
2
c (q) after averaging over random impurity positions.

Then, to find the contribution of the plasmon emission process,
one can use Eq. (2) and the dielectric function which is
calculated in Ref. [25] within the RPA. The resulting optical
absorption is plotted in Fig. 2. To resemble parameters from
the experiment [13], we choose electron concentration n =
7 × 1012 cm−2 and impurity concentration ni = 1012 cm−2.
Furthermore, we plot the case of graphene sitting on the
SiO2 substrate where ε̄r = 2.5, but also the case of suspended
graphene where ε̄r = 1.

It is also convenient to look at the small frequency limit
(�ω � EF ), in which case only long-wavelength (q � qF )
plasmons contribute to the scattering. Then, one can use
a simple Drude model to obtain the dielectric function in
graphene [3]:

εD(q,ω) = 1 − q

ω2

e2vF

√
n

2ε̄r ε0�
√

π
. (6)

In this case, the function F takes a particularly simple
expression (see the Appendix for more details): F (q,ω) =

−qx

π�2ωvF
, and it is straightforward to evaluate expression (5) to

obtain

Reσ (ω) = πe2

4�

ni

q2
TF

(
�ω

EF

)3

. (7)

Note that this is the same result as in the case of metallic
monolayers. This is expected because in the small frequency
(long-wavelength) limit, one does not expect to see specific
details of the band structure. Of course, in the graphene
case, the Thomas-Fermi wave vector is given by a different
expression: qTF = e2qF

πε̄r ε0�vF
. We would like to note that the

small frequency limit in the case of graphene was also recently
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FIG. 3. (Color online) Plasmon dispersion and optical conductivity for suspended graphene. In plot (a) we show plasmon dispersion within
the random phase approximation (solid line) and within the Drude model, i.e., in the small frequency limit (dashed line). The gray area denotes
the regime of single-particle excitations. Random assembly of impurities breaks the translation invariance, which allows a zero-momentum
photon to couple to a finite-momentum plasmon (sketched by the red arrow). This process is possible only when the plasmon dispersion is
outside of the gray area. Otherwise, plasmons are strongly damped due to single-particle excitations (Landau damping). In plot (b) we show
optical absorption for the plasmon emission process through impurity scattering. We plot the real part of the conductivity in units of σ0 = e2

4�

vs photon energy in units of Fermi energy EF . One can see that the small frequency limit (dashed line) can be an order of magnitude lower that
the more exact RPA result (solid line). The predicted loss mechanism should be observable in optical transmission measurements on suspended
graphene, as sketched in plot (c). Red circles with crosses represent positively charged impurity ions that have donated electrons to the graphene
plane. See text for details.

obtained by another group [20]. However, from Fig. 3 one can
see that the small frequency limit can be very different from
the more general RPA result.

If we now compare our results [Fig. 2(b)] with experiment
[13], we see that this effect of plasmon emission is relatively
small (Reσ < 0.02σ0) compared to the experimental results
(Reσ ≈ 0.3σ0) in this regime. One might ask, what are the
other potentially strong scattering mechanisms? For example,
in experiment [13], graphene is sitting on SiO2, which is a
polar substrate, so there is a strong interaction of electrons with
the surface polar phonons at energy �ωSO ≈ 0.15 eV. This is
described by the Hamiltonian HSO = 1

�

∑
q VSO(q)(eiq·ra†

q +
e−iq·raq), where a

†
q is the phonon creation operator. For the

square of the scattering potential, we can write [26] V 2
SO(q) =

� e2

2ε0
�ωSO( 1

εr (∞)+1 − 1
εr (0)+1 ) e−2qz

q
. We use parameters from

Ref. [28] for SO scattering: εr (0) = 3.9, εr (∞) = 2.5, and
we assume that the Van der Waals distance between graphene
and the substrate is z = 0.35 nm. If we neglect the frequency
dependence of HSO, we can make an estimate of absorption
simply by replacing Vi(q) with VSO(q) in relation (5). Strictly
speaking, this is valid only at large frequencies when ω 
 ωSO,
but it should give a reasonable estimate in the regime ω ≈
2ωSO, which is the relevant regime in experiment [13]. The
resulting absorption is still extremely small (Reσ < 0.003σ0)
in the regime of interest (�ω ≈ EF ).

Even though our analysis suggests that these loss mecha-
nisms cannot be distinguished from other loss mechanisms in
current experiments involving graphene on a SiO2 substrate,
our calculations point out that they should be observable in
suspended graphene (see Fig. 3). Suspended graphene is a
much cleaner system as one can eliminate all the scattering
mechanisms that originate from the interaction with the
substrate. Moreover, in optical transmission measurements on
suspended graphene [sketched in Fig. 3(c)] one does not need
to consider optical absorption of the substrate. Suspended
graphene can be doped by depositing electron-donor atoms

such as sodium or lithium. In that case, one is left with
impurity ions with the same number as the number of injected
electrons. In Fig. 3(b) we plot optical absorption in suspended
graphene for identical impurity and electron concentrations
ni = n = 1012 cm−2. One can see that there is a huge optical
absorption through the plasmon emission channel as the
real part of conductivity reaches Reσ ≈ 0.3σ0. This would
correspond to the 0.7% reduction in the intensity of transmitted
light, which could easily be observed as the 2.3% reduction is
already visible with the naked eye [12]. Finally, we note that
the small frequency limit [Eq. (7)] underestimates the more
exact RPA calculation [Eq. (5)] by an order of magnitude.

IV. CONCLUSION

In conclusion, we have studied the optical absorption of
2D electron gas in graphene and metallic monolayers with
a random distribution of charge impurities. This formalism
can also treat other 2D electron systems such as those found
in heterostructures, single-layer boron nitride, or single-layer
molybdenum disulfide, where we expect similar behavior.
Specifically, we have focused on a decay channel where an
incident photon excites a plasmon through impurity scattering.
For the graphene sitting on a SiO2 substrate, we have also
studied a decay channel where an incident photon excites
a plasmon and an optical phonon of the polar substrate.
The resulting optical absorption is more than one order of
magnitude lower than the experimental results [13], which
is not enough to reconcile the difference between theory
[14–18] and experiment [13]. On the other hand, we predict
large optical absorption by plasmon emission via impurity
scattering in suspended graphene. Thus we believe that these
ideas can be tested in suspended graphene. Finally, we note
that for suspended graphene (metallic monolayers), the small
frequency limit [20] gives an order of magnitude lower (larger)
result than the more exact RPA calculation.
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APPENDIX: CALCULATION OF OPTICAL
ABSORPTION IN GRAPHENE

We use the single-particle density matrix (SPDM) ap-
proach, which is a convenient way to take into account both
temperature and the Pauli principle. The equation of motion
for SPDM ρ is given by [27]

i�
∂ρ

∂t
= [H,ρ], (A1)

where the Hamiltonian is given by

H = H0 + Hl + Hi + Hs. (A2)

Here H0 represents the kinetic energy of free electrons, Hl

describes scattering with light, Hi represents scattering with
impurities, and Hs describes electron-electron interactions,
which we only take in the form of a self-consistent screening
field. In the case of graphene, electrons are described by Dirac
dispersion [28,29]:

H0 = �vF σ · k, (A3)

where vF = 106 m/s is the Fermi velocity, k is the electron
wave vector, σ = σx x̂ + σy ŷ, and σx,y are the Pauli spin
matrices. Let us denote by |nk〉 eigenstates of H0, where n = 1
stands for the conduction band, and n = −1 for the valence
band. Then the eigenvalues of H0 are given by Dirac cones:
Enk = n�vF |k|. If we now introduce a light source described
by the electric field E(t) = x̂E0e

−iωt + c.c., then scattering
with light is determined by the Hamiltonian

Hl = −i
evF

ω
σxE0e

−iωt + c.c., (A4)

where −e is the electron charge. Furthermore, we can write
the Hamiltonian for impurity scattering as a Fourier sum over
wave vectors q:

Hi = 1

�

∑
q

Vi(q)eiq·r, (A5)

where � is the total area of our graphene flake, r is the position
operator, and Vi(q) is the Fourier transform of the scattering
potential. Here we assume a general scattering potential, and
only later will we specify Vi(q) for the case of charged impurity
scattering and surface polar phonon scattering. Finally, one can
also write the screening field as a Fourier sum:

Hs = 1

�

∑
q

V s(q)eiq·re−iωt + c.c., (A6)

but one has to keep in mind that different orders of the
perturbation expansion will have a different time dependence

(frequencies). Here, the screening field is taken as a self-
consistent electrostatic field that the electrons induce on
themselves, so one can write V s(q) = Vc(q)n(q), where n(q)
is the Fourier transform of the electron density and Vc(q)
is the Fourier transform of the Coulomb potential between
two electrons. For a 2D electron gas embedded between
two dielectrics of relative permittivity, ε̄r = (εr1 + εr2)/2, one
can write Vc(q) = e2

2ε̄r ε0q
. Note that this is valid only in the

electrostatic limit q 
 ω/c, which is the relevant regime for
our case. Furthermore, since n(q) = Tr{e−iq·rρ}, one can write
for the screening field,

V s(q) = Vc(q)4
∑
n1n2k

〈n1k|e−iq·r|n2k + q〉〈n2k + q|ρ|n1k〉,

(A7)

where we have taken into account two spin and two valley
degeneracies. We are now interested in calculating the current
response up to linear order in the external electric field E(t).
Since the electric field is uniform in the graphene plane, we
are only interested in the q = 0 term, and the current density
operator is given by jop = − evF

�
σ . The induced current will

have only the x component, since the electric field points in
the x direction. Finally, the induced current density is given
by j = Tr{jop ρ}, so we can write

jx = −evF

�
4

∑
n1n2k

〈n1k|σx |n2k〉〈n2k|ρ|n1k〉. (A8)

To include also impurity scattering, we need to calculate the
induced current up to second order in Vi(q). In other words,
we need to do a perturbation expansion of SPDM:

ρ = ρ0 + ρl + ρi + ρli + ρlii , (A9)

where ρ0 is the equilibrium solution to Eq. (A1) for indepen-
dent Dirac electrons in the absence of impurity scattering and
light scattering, ρl ∝ Hl is the solution of Eq. (A1) correct
up to linear order in light scattering, ρi ∝ Hi is the solution
up to linear order in impurity scattering, ρli ∝ HlHi is the
solution up to linear order in both light scattering and impurity
scattering, and ρlii ∝ HlH

2
i is the solution up to linear order

in light scattering and quadratic in impurity scattering. Using
Eq. (A1), we can now write the equation of motion for every
order of SPDM expansion:

i�
∂ρ0

∂t
= [H0,ρ0], (A10)

i�
∂ρl

∂t
= [H0,ρl] + [

Hl + Hs
l ,ρ0

]
, (A11)

i�
∂ρi

∂t
= [H0,ρi] + [

Hi + Hs
i ,ρ0

]
, (A12)

i�
∂ρli

∂t
= [H0,ρli] + [

Hi + Hs
i ,ρl

]
+ [

Hl + Hs
l ,ρi

] + [
Hs

li,ρ0
]
, (A13)

i�
∂ρlii

∂t
= [H0,ρlii] + [

Hi + Hs
i ,ρli

] + [
Hs

li,ρi

] + [
Hs

lii ,ρ0
]
.

(A14)
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The equilibrium solution of Eq. (A10) describes the free
electrons and is given by

〈n2k + q|ρ0|n1k〉 = δn1,n2δq,0fn1k, (A15)

where δa,b is the Kronecker delta symbol and fnk =
[e(Enk−EF )/kT + 1]−1 is the Fermi-Dirac distribution at tem-
perature T and Fermi energy EF . Using relation (A15), we
can write the solution of Eq. (A11) as

〈n2k + q|ρl|n1k〉
= −i

evF

ω
E0δq,0〈n2k|σx |n1k〉 fn1k − fn2k

�ω + En1k − En2k
, (A16)

which is a steady-state solution of SPDM that oscillates
at frequency ω. Here we have used the following re-
lation: 〈n2k + q|σx |n1k〉 = δq,0〈n2k|σx |n1k〉. We have ne-
glected the screening field Hs

l in Eq. (A11) since the
2D electron gas cannot screen the uniform electric field.
This can be seen below from Eq. (A40), which gives
the dielectric function of graphene in the long-wavelength
limit. One can immediately see that ε(q = 0,ω) = 1, which
means that there is no screening in the q = 0 limit.

Let us now focus on Eq. (A12). We can introduce a
self-consistent Hamiltonian H sc

i = Hi + Hs
i , and write H sc

i =
1
�

∑
q V sc

i (q)eiq·r, where V sc
i = Vi + V s

i is a self-consistent
scattering potential that consists of a bare impurity scattering
potential Vi and a screening field V s

i . By solving Eqs. (A7) and
(A12) in a self-consistent way, one can show that V sc

i (q) =
Vi(q)/ε(q), where ε(q) is the static dielectric function. The
dynamic dielectric function of graphene is generally

ε(q,ω) = 1 − Vc(q)
4

�

∑
n1n2k

fn1k − fn2k+q

�ω + En1k − En2k+q

× |〈n2k + q|eiq·r|n1k〉|2, (A17)

and one can simply check that ε(q) = ε(q,ω = 0). Finally, the
solution to Eq. (A12) can be written as

〈n2k + q|ρi |n1k〉 = 1

�

Vi(q)

ε(q)

fn1k − fn2k+q

En1k − En2k+q

×〈n2k + q|eiq·r|n1k〉. (A18)

To solve the next order of perturbation theory ρli , we need to
include the screening field described by the Hamiltonian Hs

li =
1
�

∑
q V s

li(q)eiq·re−iωt + c.c.. One can then solve Eq. (A13) by
using results (A15), (A16), and (A18) to obtain

〈n2k + q|ρli |n1k〉 = 1

�
V s

li(q)
fn1k − fn2k+q

�ω + En1k − En2k+q
〈n2k + q|eiq·r|n1k〉 + 1

�

Vi(q)

ε(q)
(−i)

evF

ω
E0

1

�ω + En1k − En2k+q

×
(∑

n3

〈n2k + q|eiq·r|n3k〉〈n3k|σx |n1k〉 fn1k − fn3k

�ω + En1k − En3k
−

∑
n3

〈n2k + q|σx |n3k + q〉

× 〈n3k + q|eiq·r|n1k〉 fn3k+q − fn2k+q

�ω + En3k+q − En2k+q
+

∑
n3

〈n2k + q|σx |n3k + q〉〈n3k + q|eiq·r|n1k〉

× fn1k − fn3k+q

En1k − En3k+q
−

∑
n3

〈n2k + q|eiq·r|n3k〉〈n3k|σx |n1k〉 fn3k − fn2k+q

En3k − En2k+q

)
. (A19)

Next, one can use relation (A7) to obtain the screening field in a self-consistent way:

V s
li(q) = Vi(q)

ε(q)

Vc(q)

ε(q,ω)
(−i)

evF

ω
E0

4

�

∑
n1n2n3k

〈n1k|e−iq·r|n2k + q〉
�ω + En1k − En2k+q

(
〈n2k + q|σx |n3k + q〉〈n3k + q|eiq·r|n1k〉

× fn1k − fn3k+q

En1k − En3k+q
− 〈n2k + q|eiq·r|n3k〉〈n3k|σx |n1k〉 fn3k − fn2k+q

En3k − En2k+q

)
, (A20)

where ε(q,ω) is the dynamic dielectric function given in (A17). Note that the terms containing fn1k − fn3k and fn3k+q − fn2k+q
have disappeared after summation over n1,n2,n3 and k. One can also demonstrate the following important property: V s

li(−q) =
−V s

li (q). Finally, one can use Eq. (A14) to find ρlii , and Eq. (A8) to find the induced current up to first order in light scattering
and second order in impurity scattering:

j lii
x = −evF

�
4

∑
n1n2n3k,q

〈n1k|σx |n2k〉
�ω + En1k − En2k

(
1

�

Vi(q)

ε(q)
〈n2k|e−iq·r|n3k + q〉〈n3k + q|ρli |n1k〉

− 1

�

Vi(q)

ε(q)
〈n2k|ρli |n3k − q〉〈n3k − q|e−iq·r|n1k〉 + 1

�
V s

li(−q)〈n2k|e−iq·r|n3k + q〉

× 〈n3k + q|ρi |n1k〉 − 1

�
V s

li(−q)〈n2k|ρi |n3k − q〉〈n3k − q|e−iq·r|n1k〉
)

. (A21)
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Note that we have neglected the screening field Hs
lii since we

need only the q = 0 component of ρlii to obtain j lii
x , and there

is no screening in the 2D electron gas in the q = 0 case. Also
note that we have skipped the lower orders in the induced
current since one can generally show that j li

x = 0. On the

other hand, j l
x �= 0, but we are interested here in the optical

absorption below the interband threshold �ω < 2EF , where
Rej l

x = 0. Finally, to evaluate the current component j lii
x from

expression (A21), we need to use expression (A18) for ρi and
expression (A19) for ρli . The resulting conductivity is

σlii(ω) = i
e2v2

F

ω

1

�

∑
q

1

�

∣∣∣∣Vi(q)

ε(q)

∣∣∣∣
2
⎛
⎝ Vc(q)

ε(q,ω)
F 2(q,ω) + 4

�

∑
n1n2n3n4k

G(n1,n2,n3,k,q,ω) · H (n1,n2,n4,k,q,ω)

⎞
⎠ , (A22)

where the functions F , G, and H are given by the following expressions:

F (q,ω) = − 4

�

∑
n1n2n3k

fn1k − fn2k+q

En1k − En2k+q

( 〈n3k|e−iq·r|n2k + q〉
�ω + En3k − En2k+q

〈n2k + q|eiq·r|n1k〉〈n1k|σx |n3k〉

− 〈n1k|e−iq·r|n2k + q〉 〈n2k + q|eiq·r|n3k〉
−�ω + En3k − En2k+q

〈n3k|σx |n1k〉
)

, (A23)

G(n1,n2,n3,k,q,ω) = 1

�ω + En1k − En2k+q

(
〈n3k|e−iq·r|n2k + q〉 〈n1k|σx |n3k〉

�ω + En1k − En3k

−〈n1k|e−iq·r|n3k + q〉 〈n3k + q|σx |n2k + q〉
�ω + En3k+q − En2k+q

)
, (A24)

H (n1,n2,n4,k,q,ω) = 〈n2k + q|eiq·r|n4k〉〈n4k|σx |n1k〉
(

fn1k − fn4k

�ω + En1k − En4k
− fn4k − fn2k+q

En4k − En2k+q

)

+〈n2k + q|σx |n4k + q〉〈n4k + q|eiq·r|n1k〉
(

− fn4k+q − fn2k+q

�ω + En4k+q − En2k+q
+ fn1k − fn4k+q

En1k − En4k+q

)
. (A25)

However, if we are interested only in the contribution from
the collective excitations, we can neglect the single-particle
excitations to obtain

Reσ (ω) = −e2v2
F

ω

1

�

∑
q

1

�

∣∣∣∣Vi(q)

ε(q)

∣∣∣∣
2

F 2(q,ω)Vc(q)Im
1

ε(q,ω)
.

(A26)

Note that this is the complete expression for the real part of
the conductivity, i.e., Reσ (ω) = Reσlii(ω), since Reσl(ω) = 0
in this regime, and generally Reσli(ω) = 0. Then, since we are
only interested in the plasmon contribution, one can write the
loss function as

Im
1

ε(q,ω)
= −π

∂ε
∂ω

δ(ω − ωq) = π
∂ε
∂q

δ(q − qω), (A27)

where ωq is the plasmon frequency at a given wave vector
q, and qω is the plasmon wave vector at a given frequency
ω, which is determined by the zero of the dielectric function:
ε(q,ωq ) = ε(qω,ω) = 0. Note that δ function from Eq. (A27)
extracts only a single wave vector from the integral

∫
dq in

Eq. (A26). Moreover, one can explicitly perform the remaining
integral

∫
dϕq. To demonstrate this, we start by writing

the expression for the Dirac wave function in coordinate
representation:

ψn,k(r) = 〈r|nk〉 = 1√
2�

(
n

eiϕk

)
eik·r. (A28)

It is straightforward to calculate the following matrix elements:

〈nk|e−iq·r|n′k + q〉 = 1
2 (nn′ + e−iϕk+iϕk+q ), (A29)

〈n′k + q|eiq·r|nk〉 = 1
2 (nn′ + eiϕk−iϕk+q ), (A30)

〈n′k|σx |nk〉 = 1
2 (ne−iϕk + n′eiϕk ). (A31)

Furthermore, the product of the last three terms can be
written as

〈nk|e−iq·r|n′k + q〉〈n′k + q|eiq·r|n′′k〉〈n′′k|σx |nk〉

=
(

1

4
(1 + nn′′) + n′

4
(n + n′′)

k + q cos ϕ

|k + q|

+ i
n′

4
(n − n′′)

q sin ϕ

|k + q|
)

×
(

cos ϕ

2
[n′′eiϕq + ne−iϕq ]

+ i
sin ϕ

2
[n′′eiϕq − ne−iϕq ]

)
, (A32)

where ϕ = ϕk − ϕq. Finally, one can show that

F (q,ω) = F̃ (q,ω) cos ϕq, (A33)
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where F̃ (q,ω) depends only on the magnitude of the wave
vector q and is given by the following expression:

F̃ (q,ω) = − 4

�

∑
n1n2n3k

fn1k − fn2k+q

En1k − En2k+q

(
1

�ω + En3k − En2k+q

− 1

−�ω + En3k − En2k+q

)

×
{
n1(n1 + n3)

(
n1 + n2

k + q cos ϕ

|k + q|
)

cos ϕ

4

+ n1(n1 − n3)n2
q sin ϕ

|k + q|
sin ϕ

4

}
. (A34)

Now one can indeed see that the integration over dϕq in
Eq. (A26) simply contributes with the following factor:∫ 2π

0 dϕq cos2 ϕq = π . Finally, Eq. (A26) is reduced to the
following expression:

Reσ (ω) = −e2v2
F

ω

1

4π
q

1

�

∣∣∣∣Vi(q)

ε(q)

∣∣∣∣
2

F̃ 2(q,ω)Vc(q)
π

∂ε(q,ω)
∂q

∣∣∣∣∣
pl

,

(A35)

where q is the plasmon wave vector at the frequency ω. To
evaluate this expression, one needs to calculate the double
integral

∫
dk

∫
dϕk to evaluate the function F̃ (q,ω). This can

be further simplified at zero temperature when the Fermi-
Dirac distribution is a step function. In that case, we can group
(n1,n2,n3) and (−n1, − n2, − n3) terms in Eq. (A34) to obtain

F̃ (q,ω) = − 2

�

∑
n1n2n3k

fk − fk+q

En1k − En2k+q

(
1

�ω + En3k − En2k+q

− 1

−�ω + En3k − En2k+q

)

×
{
n1(n1 + n3)

(
n1 + n2

k + q cos ϕ

|k + q|
)

cos ϕ

4

+ n1(n1 − n3)n2
q sin ϕ

|k + q|
sin ϕ

4

}
, (A36)

where fk = fn=1,k stands for the Fermi-Dirac distribution of
the conduction band, and we have assumed electron doping,
i.e., EF > 0. We perform a numerical integration to evaluate
the function F̃ (q,ω); however, one can obtain a closed
expression in the small frequency limit when �ω � EF . In
that case, only intraband transitions contribute and one can set
n1 = n2 = n3 = 1 in Eq. (A36). Furthermore, in that case the
plasmon wave vector q is much smaller than the Fermi wave
vector qF , so one can use the long-wavelength expansions

Ek − Ek+q = −∇kEk · q, (A37)

fk − fk+q = − ∂f

∂E
(∇kEk · q). (A38)

Next, it is straightforward to perform integration in Eq. (A36)
to obtain the long-wavelength (small frequency) approxima-
tion:

F̃ (q,ω) = − q

π�2ωvF

. (A39)

In a similar manner, from Eq. (A17), one can obtain the
dielectric function in this approximation:

ε(q,ω) = 1 − q

ω2

e2vF

√
n

2ε̄r ε0�
√

π
, (A40)

which is just the Drude model for the dielectric function in
graphene [3].

Finally, from Eq. (A35) we obtain optical absorption in the
small frequency limit:

Reσ (ω) = πe2

4�

ni

q2
TF

(
�ω

EF

)3

, (A41)

where qTF = e2qF

πε̄r ε0�vF
is the Thomas-Fermi wave vector.
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[4] M. Jablan, M. Soljačić, and H. Buljan, Invited paper in Proc.
IEEE 101, 1689 (2013).

[5] K. S. Novoselov et al., Science 306, 666 (2004).
[6] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V.

Khotkevich, S. V. Morozov, and A. K. Geim, Proc. Natl. Acad.
Sci. (U.S.A.) 102, 10451 (2005).

[7] Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod,
M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G.
Dominguez, M. M. Fogler, A. H. Castro-Neto, C. N. Lau,
F. Keilmann, and D. N. Basov, Nature (London) 487, 82
(2012).

[8] H. Yan, T. Low, W. Zhu, Y. Wu, M. Freitag, X. Li, F. Guinea,
P. Avouris, and F. Xia, Nat. Photon. 7, 394 (2013).

[9] Z. Fang, S. Thongrattanasiri, A. Schlater, Z. Liu,
L. Ma, Y. Wang, P. M. Ajayan, P. Nordlander, N. J. Halas,
and F. J. Garcia de Abajo, ACS Nano 7, 2388 (2013).

[10] Y. Liu, R. F. Willis, K. V. Emtsev, and Th. Seyller, Phys. Rev. B
78, 201403(R) (2008).

[11] T. Nagao, T. Hildebrandt, M. Henzler, and S. Hasegawa, Phys.
Rev. Lett. 86, 5747 (2001).

[12] R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J.
Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science 320,
1308 (2008).

[13] Z. Q. Li, E. A. Henriksen, Z. Jiang, Z. Hao, M. C. Martin,
P. Kim, H. L. Stormer, and D. N. Basov, Nat. Phys. 4, 532
(2008).

[14] T. Stauber, N. M. R. Peres, and A. H. Castro Neto, Phys. Rev.
B 78, 085418 (2008).

085415-8

http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1038/nature01937
http://dx.doi.org/10.1002/lpor.200900055
http://dx.doi.org/10.1002/lpor.200900055
http://dx.doi.org/10.1002/lpor.200900055
http://dx.doi.org/10.1002/lpor.200900055
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1103/PhysRevB.80.245435
http://dx.doi.org/10.1109/JPROC.2013.2260115
http://dx.doi.org/10.1109/JPROC.2013.2260115
http://dx.doi.org/10.1109/JPROC.2013.2260115
http://dx.doi.org/10.1109/JPROC.2013.2260115
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1126/science.1102896
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1073/pnas.0502848102
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nature11253
http://dx.doi.org/10.1038/nphoton.2013.57
http://dx.doi.org/10.1038/nphoton.2013.57
http://dx.doi.org/10.1038/nphoton.2013.57
http://dx.doi.org/10.1038/nphoton.2013.57
http://dx.doi.org/10.1021/nn3055835
http://dx.doi.org/10.1021/nn3055835
http://dx.doi.org/10.1021/nn3055835
http://dx.doi.org/10.1021/nn3055835
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevB.78.201403
http://dx.doi.org/10.1103/PhysRevLett.86.5747
http://dx.doi.org/10.1103/PhysRevLett.86.5747
http://dx.doi.org/10.1103/PhysRevLett.86.5747
http://dx.doi.org/10.1103/PhysRevLett.86.5747
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1126/science.1156965
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1038/nphys989
http://dx.doi.org/10.1103/PhysRevB.78.085418
http://dx.doi.org/10.1103/PhysRevB.78.085418
http://dx.doi.org/10.1103/PhysRevB.78.085418
http://dx.doi.org/10.1103/PhysRevB.78.085418


EFFECTS OF SCREENING ON THE OPTICAL . . . PHYSICAL REVIEW B 89, 085415 (2014)

[15] J. P. Carbotte, E. J. Nicol, and S. G. Sharapov, Phys. Rev. B 81,
045419 (2010).

[16] N. M. R. Peres, R. M. Ribeiro, and A. H. Castro Neto, Phys.
Rev. Lett. 105, 055501 (2010).

[17] F. T. Vasko, V. V. Mitin, V. Ryzhii, and T. Otsuji, Phys. Rev. B
86, 235424 (2012).

[18] B. Scharf, V. Perebeinos, J. Fabian, and P. Avouris, Phys. Rev.
B 87, 035414 (2013).

[19] E. H. Hwang, S. Adam, and S. Das Sarma, Phys. Rev. Lett. 98,
186806 (2007).

[20] K. Kechedzhi and S. Das Sarma, Phys. Rev. B 88, 085403 (2013).
[21] J. J. Hopfield, Phys. Rev. 139, A419 (1965).

[22] G. D. Mahan, Many-Particle Physics, 3rd ed. (Kluwer
Academic/Plenum, New York, 2000).

[23] D. Pines, Elementary Excitations in Solids (Perseus Books,
Reading, Massachusetts, 1999).

[24] F. Stern, Phys. Rev. Lett. 18, 546 (1967).
[25] E. H. Hwang and S. Das Sarma, Phys. Rev. B 75, 205418

(2007).
[26] A. Konar, T. Fang, and D. Jena, Phys. Rev. B 82, 115452

(2010).
[27] A. Ron, Phys. Rev. 131, 2041 (1963).
[28] P. R. Wallace, Phys. Rev. 71, 622 (1947).
[29] G. W. Semenoff, Phys. Rev. Lett. 53, 2449 (1984).

085415-9

http://dx.doi.org/10.1103/PhysRevB.81.045419
http://dx.doi.org/10.1103/PhysRevB.81.045419
http://dx.doi.org/10.1103/PhysRevB.81.045419
http://dx.doi.org/10.1103/PhysRevB.81.045419
http://dx.doi.org/10.1103/PhysRevLett.105.055501
http://dx.doi.org/10.1103/PhysRevLett.105.055501
http://dx.doi.org/10.1103/PhysRevLett.105.055501
http://dx.doi.org/10.1103/PhysRevLett.105.055501
http://dx.doi.org/10.1103/PhysRevB.86.235424
http://dx.doi.org/10.1103/PhysRevB.86.235424
http://dx.doi.org/10.1103/PhysRevB.86.235424
http://dx.doi.org/10.1103/PhysRevB.86.235424
http://dx.doi.org/10.1103/PhysRevB.87.035414
http://dx.doi.org/10.1103/PhysRevB.87.035414
http://dx.doi.org/10.1103/PhysRevB.87.035414
http://dx.doi.org/10.1103/PhysRevB.87.035414
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevLett.98.186806
http://dx.doi.org/10.1103/PhysRevB.88.085403
http://dx.doi.org/10.1103/PhysRevB.88.085403
http://dx.doi.org/10.1103/PhysRevB.88.085403
http://dx.doi.org/10.1103/PhysRevB.88.085403
http://dx.doi.org/10.1103/PhysRev.139.A419
http://dx.doi.org/10.1103/PhysRev.139.A419
http://dx.doi.org/10.1103/PhysRev.139.A419
http://dx.doi.org/10.1103/PhysRev.139.A419
http://dx.doi.org/10.1103/PhysRevLett.18.546
http://dx.doi.org/10.1103/PhysRevLett.18.546
http://dx.doi.org/10.1103/PhysRevLett.18.546
http://dx.doi.org/10.1103/PhysRevLett.18.546
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.75.205418
http://dx.doi.org/10.1103/PhysRevB.82.115452
http://dx.doi.org/10.1103/PhysRevB.82.115452
http://dx.doi.org/10.1103/PhysRevB.82.115452
http://dx.doi.org/10.1103/PhysRevB.82.115452
http://dx.doi.org/10.1103/PhysRev.131.2041
http://dx.doi.org/10.1103/PhysRev.131.2041
http://dx.doi.org/10.1103/PhysRev.131.2041
http://dx.doi.org/10.1103/PhysRev.131.2041
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRev.71.622
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.53.2449
http://dx.doi.org/10.1103/PhysRevLett.53.2449



