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We study the role of finite-size effects at the hadron-quark phase transition in a new hybrid equation of state
constructed from an ab initio Brückner-Hartree-Fock equation of state with the realistic Bonn-B potential for the
hadronic phase and a covariant nonlocal Nambu–Jona-Lasinio model for the quark phase. We construct static
hybrid star sequences and find that our model can support stable hybrid stars with an onset of quark matter below
2M� and a maximum mass above 2.17M� in agreement with recent observations. If the finite-size effects are
taken into account the core is composed of pure quark matter. Provided that the quark vector channel interaction
is small, and the finite size effects are taken into account, quark matter appears at densities 2–3 times the nuclear
saturation density. In that case the proton fraction in the hadronic phase remains below the value required by the
onset of the direct URCA process, so that the early onset of quark matter shall affect on the rapid cooling of the
star.
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I. INTRODUCTION

The equation of state (EoS) is the central quantity for
the study of compact stars. Since modern lattice QCD
simulations are not applicable at large baryon densities and low
temperatures T � 0, there is a large uncertainty in theoretical
descriptions of the behavior of matter at extreme densities.
The understanding may be improved by studying astrophysical
phenomena; namely, we may use the known astrophysical
constraints from observations of compact stars in order to
provide constraints on the EoS. Recently, the idea has been
pursued to use a Bayesian analysis (BA) for “inversion” of
the Tolman-Oppenheimer-Volkoff equations, i.e., to extract
a probability measure for models of the cold EoS in the
pressure-energy density plane from observational data related
to masses and radii of compact stars. While first analyses
of this type have favored burst sources with rather uncertain
and model dependent statements about radii [1,2], a very
recent BA uses a set of stronger and statistically independent
observations, testing also the possibility of a first-order phase
transition at supersaturation densities [3].

At this point the strongest restriction to the EoS is provided
by the recent measurement of the high mass of ∼2M� from
observations of the pulsars PSR J1614-2230 by Demorest
et al. [4] and PSR J0348+0432 by Antoniadis et al. [5]. The
recent BA [3] makes use of this constraint together with a new
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mass-radius constraint from the precise timing analysis of the
nearest known millisecond pulsar PSR J0437-4715 [6] and the
constraint on the gravitational binding for the neutron star B
in the binary system J0737-3039(B) [7], see also [8], at the
precisely measured gravitational mass of 1.249 ± 0.001M�.

There are many studies relating astrophysical phenomena
involving compact stars and the properties of matter at extreme
densities, eventually including the possibility of a quark
deconfinement transition; these concern, e.g., the cooling of
compact stars [9–12], gravitational wave emission [13–15],
neutrino emission [16–18], eigenfrequencies [19], and the
energy release during the collapse of neutron stars to quark
stars [20–22].

The study of the baryon-baryon (BB) interaction in lattice
QCD simulations recently became a hot topic [23,24]. Exper-
iments like JPARC will also provide valuable information on
the BB interaction. In the near future the EoS in the hadronic
phase may be determined by incorporating this information on
the BB interaction in the Brückner-Hartree-Fock (BHF) theory
[25], the variational approach [26,27], or the Dirac-Brückner-
Hartree-Fock (DBHF) theory [28,29]. In this paper we adopt
the BHF theory for hadronic matter.

Out of a several of possible models for quark matter we
use the two flavor covariant nonlocal Nambu–Jona-Lasinio
(nlNJL) model [30,31] with vector interactions [32]. The
advantage over the usual local version of the NJL model is
due to the introduction of the additional gradient self-energy
channel and due to the explicit momentum dependence of all
the dressing functions of the quark propagator. Both of these
improvements are well founded on lattice QCD data [33,34]
and Dyson-Schwinger equation studies [35–37], and make the
nonlocal NJL model a well-calibrated, effective low-energy
QCD approach to the thermodynamics of quark matter.
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The main purpose of this work is to examine the features and
the astrophysical consequences of the mixed phase between the
pure quark and hadron matter phases by considering finite-size
effects. Taking into account the surface tension and the charge
screening we find the nonuniform, so-called “pasta” structures
at the hadron-quark interface. In this work we investigate more
in detail the occurrence of pasta structures for the values of
the surface tension σ = 10 MeV fm−2 and 40 MeV fm−2. For
weak surface tension the EoS of the mixed phase becomes
similar to the one of a bulk Gibbs construction, while for
strong surface tension it approaches the result of a Maxwell
construction [38–41], in which the maximum masses with the
phase transition are around 1.5M� and a simple bag model
was used for modeling the quark phase. This model gives
a quite simple description of quark matter, and it should be
replaced by a more sophisticated one to study more realistically
the quark-hadron phase transition. This is the aim of the
present work.

We construct the hybrid EoS and the corresponding hybrid
star sequences. For the calculation of the quark matter EoS
we use the following values for the ratio of the vector and
the scalar channel couplings ηV = GV /GS = 0.10 and ηV =
0.20. Stable hybrid stars respecting the 2M� constraint are
found in the case of ηV = 0.10. The bulk Gibbs construction
for this case supports only a mixed phase in the core. However,
taking into account finite-size effects the cores of massive
hybrid stars are composed of pure quark matter. For ηV =
0.20 the 2M� stars are mainly composed of hadron matter.
With the appearance of quark matter at higher densities the
star becomes unstable. For ηV = 0.10 quark matter appears at
low densities causing a reduction of the proton fraction at the
onset of the mixed phase below the threshold value of 1/9 for
the onset of the direct URCA (dURCA) process in the n-p-e
phase, while for ηV = 0.20 the proton fraction exceeds this
value.

This paper is organized as follows. In Sec. II, we outline
our framework for obtaining the hybrid EoS with pasta phase.
Section III contains numerical results for the EoS with the
different quark-hadron mixed phase constructions including
the pasta phase as well as for the corresponding compact
star sequences. Section IV is devoted to the conclusion
and a discussion of some astrophysical implications of our
results.

II. EQUATION OF STATE

A. Equation of state for quark phase—nonlocal NJL model

The current theoretical description of quark matter includes
many uncertainties, seriously limiting the predictability of the
EoS at high baryon density. We resort here to a field theo-
retical model for the quark matter EoS and apply constraints
on parameters from available experimental information and
lattice QCD data. We will use the Nf = 2 covariant nonlocal
Nambu-Jona–Lasinio (nlNJL) model [30,31]. For some of the
previous works on the cold, dense EoS in this class of models
see Refs. [42] for superconductivity, [43] for application to
2 + 1 flavors, and [32] where a crossover transition was
discussed at T = 0.

At T = 0 the Euclidean action is given as [30,31]

SE =
∫

d4x

[
q̄(−i∂μγμ + m)q − iμq̄γ4q

− GS

2

{
jS
a (x)jS

a (x) + jp(x)jp(x) + jp4 (x)jp4 (x)
}

+ GV

2
jV
μ (x)jV

μ (x)

]
(1)

with currents

jS
a (x) =

∫
d4zg(z)q̄

(
x + z

2

)
�aq

(
x − z

2

)
, (2)

jp(x) =
∫

d4zf (z)q̄
(
x + z

2

) i
←→∇ · γ

2κp
q

(
x − z

2

)
, (3)

jp4 (x) =
∫

d4zf (z)q̄
(
x + z

2

) i
←→
∂4 γ4

2κp4

q
(
x − z

2

)
, (4)

where �a = (1,iγ5τ ), τ are Pauli matrices and m, μ are the
current quark mass set as m = 2.37 MeV for u, d quarks, and
the quark chemical potential. The vector current

jV
μ (x) = q̄(x)γμq(x), (5)

is kept in a local form. By different weights κp 	= κp4 of the
derivative currents jp and jp4 we are anticipating medium
induced Lorentz symmetry breaking. The relation between
the parameters κ2

p/κ2
p4

= 3 restores Lorentz symmetry in the
vacuum.

Within the mean-field approximation the regularized ther-
modynamic potential takes the following form:

� = �cond + �
reg
kin + �

reg
free, (6)

�cond = 1

2GS

(
σ 2

B + κ2
pσ 2

A + κ2
p4

σ 2
C

) − ω2

2ηV GS

, (7)

�
reg
kin = −Nf Nc

∫
d4p

(2π )4
trD log

[
S−1(p̃)

S−1
0 (p̃)

]
, (8)

and

�
reg
free = −Nf Nc

24π2

{
2μ̃3p̃F − 5m2μ̃p̃F

+ 3m4 log

(
p̃F + μ̃

m

)}
,

p̃F =
√

μ̃2 − m2. (9)

Here

S−1(p̃) = −(γ · p)A(p̃2) − γ4p̃4C(p̃2) + B(p̃2) (10)

is the dressed quark propagator with the scalar and vector
dressings

A(p2) = 1 + σAf (p2),

B(p2) = m + σBg(p2), (11)

C(p2) = 1 + σCf (p2),

and S0(p) is the free quark propagator. We have introduced a
shorthand p̃ = (p,p̃4), where p̃4 = p4 − iμ̃ and μ̃ = μ − ω.
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The usage of the nonlocal approach has the important
advantage of fitting the form-factors g(p2) and f (p2) to lattice
data for dynamical scalar B(p2) and vector dressing A(p2)
[33,34,44]. Let us also mention that the strong infrared running
of the QCD correlation functions is a core feature of the
Dyson-Schwinger approaches [36,37]. In this work we adopt
the parametrization from [44].

The model is solved by finding the extremum of Eq. (6)
with respect to the mean fields X = σA,σB,σC,ω

∂�

∂X
= 0. (12)

The EoS is obtained from evaluating the thermodynamic
potential at the extremum

p = −� + �0, (13)

where the constant �0 ensures zero pressure in the vacuum.

B. Equation of state for hadron
phase—Brückner-Hartree-Fock theory

Our theoretical framework for the hadron phase of matter
is the nonrelativistic Brueckner-Hartree-Fock approach [25]
based on the microscopic nucleon-nucleon (NN ) potentials.
The Brückner-Hartree-Fock calculation is a reliable and well-
controlled theoretical approach for the study of dense baryonic
matter. The detailed procedure can be found in Refs. [45–47].
In this paper, we do not consider hyperon degrees of freedom,
since they are superseded by the existence of quarks as we
suggested [41].

For the NN interaction we adopt the so-called Bonn-B
(BOB) potential [48]. We also use semi-phenomenological
Urbana UIX nucleonic three body forces (TBF) [49]. The
nucleon mass is given as mn = mp = 939 MeV.

In Fig. 1 we show the resulting EoS of the pure hadron [thick
curve with the caption “BHF(BOB)”] and the pure quark phase
(thin curves with the caption “nlNJL” and labels for different
values of the vector coupling ηV ). Within this model approach
we find that the vector coupling of the quark phase must be
ηV � 0.10, otherwise the energy per baryon number E/A of
the quark phase is lower than E/A in the hadron phase. On the
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FIG. 1. (Color online) Energy per baryon E/A in comparison
with pure hadron (thick curve) and quark phases (thin curves) for
different values of the vector coupling ηV as indicated on the plot.

other hand, very recent theoretical arguments [50] point that
the vector channel interaction for quark matter might be small.
Therefore, in this work we adopt ηV = 0.10 as the lowest value
and ηV = 0.20 as the highest value.

C. Hadron-quark mixed phase under the Gibbs conditions

To take into account the finite-size effects, we impose the
Gibbs conditions on the mixed phase [51], which require the
pressure balance and the equality of the chemical potentials be-
tween two phases besides the thermal equilibrium. We employ
the Wigner-Seitz approximation in which the whole space is
divided into equivalent cells with given geometrical symmetry,
specified by the dimensionality d = 3 (droplet or bubble),
d = 2 (rod or tube), or d = 1 (slab). The structures of tube
and bubble are opposite distributions of rod and droplet [52].

The quark and hadron phases are separated in each cell with
volume VW : a lump made of the quark phase with volume VQ is
embedded in the hadronic phase with volume VH or vice versa.
A sharp boundary is assumed between the two phases and the
surface energy is taken into account in terms of a surface-
tension parameter σ . Chiral quark model studies suggest values
in the range 5–30 MeV fm−2 [53–55], see also Ref. [56] where
a range of 145–165 MeV fm−2 was found. In our calculations
we use σ = 10 MeV fm−2 and σ = 40 MeV fm−2 and discuss
the effects of its variation as in our previous studies with a
simpler quark model [41].

We use the Thomas-Fermi approximation for the density
profiles of hadrons and quarks. The Helmholtz free energy for
each cell is then given as

E =
∑
i=n,p

∫
VH

d3r EH [ni(r)] +
∑

q=u,d

∫
VQ

d3r EQ[nq(r)]

+Ee + EC + ES (14)

with i = n,p, q = u,d, EH (EQ) is the free energy density for
hadron (quark) matter, and ES = σS the surface energy with
S being the hadron-quark interface area. Ee is the free energy
of the electron gas. For simplicity, muons are not included in
this paper. The value of EC is the Coulomb interaction energy
calculated by

EC = e2

2

∫
VW

d3rd3r ′ nch(r)nch(r ′)
|r − r ′| , (15)

where the charge density is given by

ench(r) =
∑

i=n,p,e

Qini(r) (16)

in VH and

ench(r) =
∑

q=u,d,e

Qqnq(r) (17)

in VQ with Qi (or Qq) being the particle charge (Qe = −e < 0
for the electron). Accordingly, the Coulomb potential φ(r) is
defined as

φ(r) = −
∫

VW

d3r ′ e2nch(r ′)
|r − r ′| + φ0 , (18)
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where φ0 is an arbitrary constant representing the gauge degree
of freedom. We fix it by stipulating the condition, φ(RW ) = 0,
as in Refs. [38,57,58]. The Poisson equation then reads

�φ(r) = 4πe2nch(r) . (19)

Under the Gibbs conditions, we must consider chemical
equilibrium at the hadron-quark interface as well as inside
each phase

μu + μe = μd ,

μp + μe = μn = μu + 2μd . (20)

For a given baryon number density

nB = 1

VW

⎡
⎣ ∑

i=n,p

∫
VH

d3rni(r) +
∑

q=u,d

∫
VQ

d3r
nq(r)

3

⎤
⎦ , (21)

Equations (19)–(20), together with the global charge neutrality
condition, ∫

VW

d3rnch(r) = 0,

obviously fulfill the Gibbs conditions.

D. Strangeness in compact stars?

The question arises whether it is customary to generalize
the approach to the three-flavor case before attempting a
comparison of results with compact star observables. We
argue that our present restriction to the two-flavor case in the
hadronic as well as in the quark matter phase in this work may
be considered quite reliable. Starting with increasing density
in hadronic matter one should expect the onset of hyperons to
play a role for the compact star structure. It turns out, however,
that the appearance of hyperons leads to a softening of neutron
star matter which lowers considerably the maximum mass in
contradiction with the observation of pulsars with masses of
∼2M� [4,5]. This problem is known as the hyperon puzzle and
its standard solution consists in circumventing the appearance
of hyperons in neutron star matter by an early transition to
quark matter [59]. For a recent discussion see [60,61], and
references therein. The occurrence of the strange quark flavor
in quark matter, on the other hand is shown to be a sequential
process within chiral quark models [62–64]. The reason for
the sequential deconfinement in those models is that as a
necessary condition the value of the quark chemical potential
has to exceed that of the dynamically generated quark mass
of a given flavor. As a result, the strange quark matter phases
appear at higher densities than the two-flavor quark matter.
Actually, as has been demonstrated before [65], the onset of
strangeness in cold quark matter leads to a softening of matter
which in particular for the three-flavor color superconducting
(CFL) phase entails the instability of hybrid star configurations
beyond that threshold. The onset of strange quark matter
thus marks the end of the stable hybrid star configurations
(maximum mass star). Following these arguments the structure
of stable compact star configurations may well be devoid of
strangeness in hadronic as well as in quark matter phases.

III. NUMERICAL RESULTS

A. Effects of the surface tension and the vector coupling
on the EoS and on the finite-size structure

Using the above relations, we study the hadron-quark mixed
phase. The four panels of Fig. 2 show the resulting pressure of
the hadron-quark mixed phase in comparison with that of the
pure hadron and quark phases in the relevant range of baryon
density for σ = 10(40) MeV fm−2 on the left (right) panels
and for ηV = 0.10(0.20) on the upper (lower) panels. The
bold dashed and solid lines indicate the pure hadron and quark
phases, respectively, while the symbols indicate the mixed
phase in its various geometric realizations obtained by the full
calculation. The transitions between the different geometrical
structures are, by construction, discontinuous and a more
sophisticated approach would be required for a more realistic
description of this feature. For comparison, the hadron-quark
phase transition resulting from the Maxwell construction is
shown by the thick, dotted gray line and the result of the bulk
Gibbs construction by the thin, dashed blue line.

Compared with the case of weak surface tension (σ =
10 MeV fm−2), the mixed phase with strong surface tension
(σ = 40 MeV fm−2) is restricted to a smaller density interval
and the EoS gets closer to the one given by the Maxwell
construction, even though we properly apply the Gibbs
conditions. This reduction of the mixed phase region due to the
charge screening and surface tension effects has already been
demonstrated earlier for the case when a simple bag model is
used for describing quark matter [38–41].

As shown in Fig. 1, the free energy per baryon E/A of the
nlNJL model becomes large for strong ηV . Hence we observe
that the region of the mixed phase shifts to higher densities
as the vector interaction is increased, see also Fig. 2. This
behavior implies that the density region of the mixed phase
becomes larger for stronger ηV .

Figure 3 shows the free energy per baryon of the droplet
structure for several values of surface tension at ηV = 0.20.
The quark volume fraction (R/RW )3 is fixed to exclude
the trivial RW dependence. Here we use, for example, the
optimal value of (R/RW )3 at σ = 10 MeV fm−2 for all
curves. We normalize them by subtracting the free energy at
infinite radius, �E/A = (E − E(R → ∞))/A, to show the
R dependence clearly. Optimal sizes of R can be evaluated
from the minimum energy of �E/A obeying the variational
principle. The structure of the mixed phase is mechanically
stable below σ ∼ 70 MeV fm−2. For larger values of the
surface tension the minimum disappears so that the formation
of finite-size structures is no longer favorable. The optimal
value of the radius R is shifted to larger values as σ increases.
This behavior is a signal of the mechanical instability resulting
from the interplay between charge screening and surface
tension effects. To elucidate this point more clearly, we discuss
the contribution of ES to E in Eq. (14). For a given quark
volume fraction λ = (R/RW )3, the contribution of the surface
energy on E/A is defined as

ES/VW ∼ λ
σ

R
, (22)

where VW is the volume of the Wigner-Seitz cell. Hence, it
is simply understood as ES/A ∼ 1/R. To reduce the total
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FIG. 2. (Color online) The EoS in terms of pressure p versus baryon density nB for the pure hadronic BOB model (bold dashed line),
the purely quark matter nlNJL model (bold solid line), and three alternatives of the mixed phase construction: pasta phases of different
structures (symbols) in comparison with the Maxwell construction (thick dotted line) and the bulk Gibbs construction (thin dashed line). The
left (right) panels show results for the same surface tension σ = 10(40) MeV fm−2. The upper (lower) panels are for the same vector coupling
ηV = 0.10(0.20).

energy E, a large R is favored for a strong surface tension,
which means that the effects of surface tension increase
R. Similar results have been obtained in previous studies,
although they adopted a simple bag model for the quark matter
EoS [38–41].
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FIG. 3. (Color online) The dependence of the free energy per
baryon on the droplet radius R at nB = 0.70 fm−3 for different
surface tensions. The quark volume fraction (R/RW )3 is fixed to the
optimal value at σ = 10 MeV fm−2 for each curve. The free energy
is normalized by its value at R → ∞. Filled circles on each curve
shows the minimum energy configuration.

When we treat the Coulomb potential and the charge
densities in a self-consistent manner, we can see the charge
screening effect. It gives rise to the Debye screening mass
for the Coulomb interaction and induces the rearrangement of
charge densities. In Fig. 4, the density profiles within a 3D
cell (quark droplet) is shown for nB = 0.70 fm−3 with weak
(strong) surface tension, σ = 10 MeV fm−2 (40 MeV fm−2)
in the upper (lower) panel. We also fixed the vector interaction
as ηV = 0.20, the same value as in Fig. 3. The electron density
is continuous in this figure. But all the other densities are not
since a sharp boundary is assumed between the two phases.

Although the values of the quark volume fraction (R/RW )3

and the cell sizes RW are fixed in Fig. 3, their optimal values
are also evaluated by the variational principle as shown in
Fig. 4. The optimal cell sizes are RW = 8.98 fm for σ =
10 MeV fm−2, and RW = 18.3 fm for σ = 40 MeV fm−2. The
optimal droplet radii are R = 4.50 fm for σ = 10 MeV fm−2,
and R = 9.14 fm for σ = 40 MeV fm−2. Clearly, for strong
surface tension RW is larger than for weak surface tension. The
fraction (R/RW )3 depends only on the total baryon density.
Hence, when the baryon density is conserved, RW grows with
R according to the increase in σ which is large for large σ
as shown in Fig. 3. The effects of surface tension increase
RW mainly through the rearrangement of the charge densities.
Since the properties of hadron matter inside the mixed phase
are very different from those of pure hadron matter, hadron
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FIG. 4. (Color online) Density profiles and Coulomb potential φ

for a 3D (quark droplet) when nB = 0.70 fm−3 for σ = 10 MeV fm−2

(upper panel) and for σ = 40 MeV fm−2 (lower panel). The cell size is
RW = 8.98 fm (18.3 fm) with a droplet radius R = 4.50 fm (9.14 fm)
for the surface tension σ = 40 MeV fm−2 (10 MeV fm−2).

matter is positively charged and its partial density drops to
zero in the mixed phase.

B. Effects on the particle fraction

Particle fractions of quark and hadron species are shown in
Fig. 5. Left (right) panels show results for the weak (strong)
surface tension with values σ = 10 MeV fm−2 (40 MeV fm−2)
for comparison. Upper (lower) panels are calculated with the
vector coupling ηV = 0.10 (0.20). The discontinuities in the
fractions are visible on all panels, since the mixed phases
assume fixed geometrical symmetries.

We also show by the dotted gray line the criterion for the
onset of the dURCA process in n-p-e matter, the threshold
value Yp = 1/9 for proton fraction. For proton fractions
exceeding this value the dURCA process occurs which leads
to rapid cooling of the neutron star in contradiction with
observations, see, e.g., Refs. [9,66,67]. One possible resolution
to this problem is that the nuclear matter is superseded by quark
matter as the density increases. See, e.g., the case of DBHF
with Bonn-A in Ref. [65]. In the present case, with the vector
channel strength ηV = 0.10 the thick red curve on Fig. 5 shows
the proton fraction below the dURCA value. For this picture

to actually work, the dURCA process in quark matter needs
to be suppressed, which can be accomplished by small quark
pairing gaps that do not significantly influence the EoS [12].
Since at this stage our calculation of the quark phase does not
take quark pairing into account our results are to be regarded
as illustrative. If the vector coupling is stronger, ηV = 0.20,
the onset of quark matter is delayed and the proton fraction
exceeds the dURCA value.

C. Mass-radius and mass-central density sequences

In this section we discuss some implications of our results
for the EoS on the maximum mass of neutron stars. We
show the mass-radius (M-R) relations and the mass-central
density (M-nB,C) relations for isothermal hybrid stars in
Figs. 6 and 7, respectively, obtained by solving the Tolman-
Oppenheimer-Volkoff equations. Below the subnuclear den-
sity n < 0.1 fm−3, we use the BPS EoS [68]. In Figs. 6 and 7,
we also show the mass range M = 2.01 ± 0.04M� obtained
from observational data for the pulsar PSR J0348+0432 by
Antoniadis et. al. [5]. All our models are clearly consistent with
their result, and consequently also with the former high-mass
constraint of M = 1.97 ± 0.04M� derived from observational
data for PSR J1614-2230 by Demorest et al. [4].

We can see that the maximum mass Mmax at the weak vector
coupling ηV = 0.10 is slightly smaller than that at ηV = 0.20
for each surface tension, e.g., for σ = 10 MeV fm−2 we have
Mmax = 2.17M� at ηV = 0.10 and Mmax = 2.49M� at ηV =
0.20. This result is easily understood from the fact that strong
vector interactions increase the stiffness of the EoS. However,
they are also responsible for the shift in the onset of the pure
quark (or the mixed) phase as understood from the shift in the
chemical potential. In addition, it turns out that the latter has
a stronger impact on the stability of the star than the former.
The trend is that for higher vector couplings the appearance of
quarks makes the star unstable. For example, with ηV = 0.20
the hybrid star branch lies on the borderline of stability as seen
from Figs. 6 and 7.

Finite-size effects have a strong influence on the com-
position of the star. It is interesting to consider the case of
ηV = 0.10. By comparing the bulk Gibbs construction from
Fig. 6 with Fig. 7 we deduce that the stable region of the
hybrid star branch has only a mixed phase of quarks and
nucleons since the central densities for which pure quark
matter phases appear lie on the unstable branch. If we allow for
finite-size effects, the same comparison leads to the conclusion
that the hybrid branch contains stars with a mixed phase but
also with a pure quark matter core. In particular, the cases
of σ = 10 MeV fm−2 and σ = 40 MeV fm−2 as well as the
limiting Maxwell construction have pure quark matter in the
core of the heaviest stars. On the other hand, we find that
finite-size effects have a small influence on the maximum
mass. For the bulk Gibbs constructions (the extreme case of
vanishing surface tension) the maximum mass is 2.19M� at
ηV = 0.10, and with the EoS under the Maxwell construction
(the extreme case of strong surface tension) it is 2.17M� at
same ηV .

In Table I, we summarize the important quantities as
discussed in this section categorized by the conditions of
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the phase transition and the strength of vector coupling.
The conditions of the phase transition consist of the full
calculations including the finite-size effects with the surface
tension (σ = 10,40 MeV fm−2), the bulk Gibbs and the
Maxwell constructions. As described in Sec. II, we discussed
as a weak vector coupling the value ηV = 0.10, and as a strong
one ηV = 0.20. The columns “n1” and “n2” show the onset
densities of the mixed and the pure quark phase, respectively.

The maximum masses are shown by “Mmax” in units of the
solar mass M�. The column “ndU ” shows the onset densities
of the dURCA process. The last columns show the size of
the pure quark matter r2, that of the mixed phase r1 and the
radius R for four different masses of the star: 1) the mass of
a typical binary radio pulsar MBRP = 1.4M�, 2) the presently
largest of precisely measured masses MAntoniadis = 2.01M�, 3)
the mass at the onset of a pure quark matter core M2, and 4) the

TABLE I. A summary of our main results for hybrid star parameters with structures (pasta) in the mixed phase, categorized by the relative
vector interaction strength ηV and the surface tension σ . For comparison, the extreme cases of the phase transition under the bulk Gibbs and
the Maxwell constructions are shown which do not contain the finite-size effects, neither surface tension σ nor Coulomb interaction.

ηV n1 n2 ndU Mmax/M� At M = MBRP At M = MAnton At M = M2 At M = Mmax

[fm−3] [fm−3] [fm−3] r2[km] r1[km] R[km] r2 r1 R r2 r1 R r2 r1 R

bulk Gibbs condition

0.10 0.30 0.80 0.41 2.17 – 7.19 12.98 – 7.93 12.61 unstable – 9.91 12.31
0.20 0.61 1.06 0.48 2.47 – – 13.09 – – 12.93 unstable – 5.56 11.92

full calculation with pasta structures, σ = 10 MeV fm−2

0.10 0.39 0.67 0.46 2.17 – – 13.09 – 7.57 12.74 0 8.25 12.45 4.39 8.48 11.98
0.20 0.67 1.00 0.48 2.47 – – 13.09 – – 12.93 unstable – 4.25 11.96

full calculation with pasta structures, σ = 40 MeV fm−2

0.10 0.47 0.58 – 2.17 – – 13.09 – 4.32 12.87 0 5.78 12.65 5.41 7.20 11.98
0.20 0.70 0.94 0.48 2.49 – – 13.09 – – 12.93 unstable – 3.01 11.96

Maxwell construction

0.10 0.48 0.51 – 2.17 – – 13.09 3.33 3.33 12.88 0 0 12.96 6.76 6.76 11.84
0.20 0.73 0.91 0.48 2.49 – – 13.09 – – 12.93 0 0 12.03 0 0 12.03
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maximum mass for the given case. Inspecting these results we
make a few observations for the hybrid EoS presented in this
work. At MBRP, there is no pure quark matter core in compact
stars. Even a mixed phase core does not occur, except for the
extreme case of a bulk Gibbs construction for the weak vector
coupling case, when it extends over a little more than half
the radius. At the mass of the Antoniadis pulsar, 2.01M�, for
the weak vector coupling a quark matter core is expected in
all cases (but only for the Maxwell construction this is pure
quark matter) while for the stronger vector coupling there
is none. When the mass is increased to that of the maximum
stable configuration, then also in the case of a structured mixed
phase a pure quark matter core is formed which extends over
almost half the star’s radius, followed by a mixed phase layer
of thickness depending on the surface tension. From zero
thickness for the Maxwell construction over 1.8 km for the
larger surface tension to 3.9 km for the small surface tension.
For vanishing surface tension in the bulk Gibbs construction
case the whole quark matter core is in the mixed phase and
extends up to 9.9 km, i.e., over more than 3/4 of the maximum
mass star with a radius of 12.3 km.

IV. CONCLUSIONS AND DISCUSSION

We have studied the hadron-to-quark-matter phase transi-
tion with finite-size effects by imposing the Gibbs conditions
on the phase equilibrium, and calculated the density profiles
in a self-consistent manner. For the quark phase we used the
covariant nonlocal NJL model, while the hadron phase was
given by the BHF EoS with Bonn-B potential.

At strong surface tension, the EoS of the hadron-quark
phase transition gets close to that given by the Maxwell
construction. This is due to the mechanical instability of the
geometrical structure induced by the surface tension. The
pressure of the mixed phase shows a similar behavior to that
of the bag model [38–41]. It appears that this behavior of
the hadron-quark phase transition is universal. Since the EoS
has many uncertainties, especially concerning quark matter
we plan to study this behavior using other quark and hadron
models such as [69]. Moreover, color superconductivity may
also change our results [70,71].

We have found that the models used here describe compact
star sequences with maximum masses exceeding the present

constraint of ∼2M� as deduced from observations [4,5].
For the low value of the vector coupling quarks appear at
low densities, which might work in favor of suppressing the
dURCA cooling channel in nuclear matter by the early onset of
quark matter. If we conjecture that future observations would
find quark matter in neutron stars our results would indicate
that vector interactions in the quark phase are small, unlike the
ones in nuclear matter.

Since the phase transition to quark matter leads to a soften-
ing of the EoS, this is usually associated with the reduction in
the maximum mass. The fact that the nuclear EoS employed
in this work gives a neutron star surpassing 2M� therefore
works in favour of obtaining a sufficiently heavy hybrid star
to exceeding 2M� as well. However, we should keep in mind
that this statement depends on the relative stiffness of the
nuclear and the quark EoS at the highest densities reached in
the core. There are notable exceptions in the literature, see,
e.g., [41,59–61,72] where one finds an opposite scenario so
that the maximum mass of the hybrid star is actually larger
than the maximum mass of the pure nuclear star.

In the context of the microscopically founded EoS model
presented in this paper with the BHF approach to the hadronic
phase and the nonlocal chiral quark model for the deconfined
phase, the nonstrange hybrid star scenario appears as the
most conservative one. Scenarios including strangeness in the
hadronic and/or quark matter phase may require additional
stiffening effects, that are beginning to be explored [73], in
order to meet the 2M� mass constraint. We shall return to
such scenarios in subsequent work.
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