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1. Introduction

1.1. Heterogeneity of breast cancer

Breast cancer is the most frequently diagnosed malignancy and the leading cause of

carcinoma deaths in women (Siegel et al., 2016). It is not a single disease but rat-

her a diverse group of heterogeneous lesions characterized by distinct pathological

types with different clinical outcomes. One of the initial molecular profiling studies of

primary tumors conducted by Perou et al. (2000) showed that breast cancer could be

segregated into several biologically distinct subtypes. Later, a study of gene expression

patterns of breast cancers derived from cDNA microarrays conducted by Sørlie et al.

(2001) reported their distinctive molecular portraits according to which tumors were

classified into five intrinsic subtypes with distinct clinical outcomes: luminal A, lumi-

nal B, HER2-enriched, basal-like, and normal-like. Gene expression profiling studies

have given us insight into the heterogeneity of breast tumors and can be used to provide

prognostic information beyond standard clinical assessment. A great portion of breast

tumors is diagnosed at an early stage and treated with aim to eliminate all tumor cells,

but in approximately 30% of women (Colleoni et al., 2016) cancer recurs after initial

treatment. To reduce the rate of relapse, adjuvant treatment guided by single biomar-

kers such as estrogen and progesterone receptors and HER2 was introduced (Harris

et al., 2016). Nonetheless, a large fraction of women who would not have relapsed

were unnecessarily treated with consequent morbidities and increased cost for the he-

alth system (Cardoso et al., 2016). To avoid unnecessary or ineffective treatment and

improve patient outcome, guided clinical decisions that take into account the tumor
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genomic profile are introduced (Schmidt, 2016).

1.2. Measuring gene expression

Differences underlying the gene expression patterns among breast cancer subtypes re-

flect the fundamental differences of the tumors at the molecular level (Sørlie et al.,

2003). Therefore, multiple expression-based classifiers have been developed and are

clinically used to stratify patients with breast cancer, and add significant prognostic

and predictive information to standard parameters. One of them is a 50-gene subtype

predictor (Parker et al., 2009) that incorporates the gene expression-based intrinsic

subtypes luminal A, luminal B, HER2-enriched, basal-like, and normal-like. It was

developed by minimizing the intrinsic gene set defined in previous microarray studies

to the top 50 genes, PAM50 gene expression signature, that contribute to distinguishing

intrinsic subtypes. In addition to mouse models (Park et al., 2018) and microarrays,

development of high throughput sequencing contributed to our understanding of breast

cancer and RNA sequencing became a widely used method to study gene expression

patterns.

1.2.1. Microarrays

Microarrays have revolutionized breast cancer research by enabling studies of gene

expression on a transcriptome-wide scale (Fumagalli et al., 2014). With this method

thousands of transcripts can be quantified simultaneously which is useful for determi-

ning differences in transcript levels under different experimental conditions or disease

states. Microarrays consist of thousands of DNA oligonucleotides with known sequ-

ence, called probes, printed in a high density array on a glass slide. The core prin-

ciple behind microarrays is hybridization between two complementary DNA strands.

Two RNA samples of interest are reversely transcribed into cDNA and labelled using

red and green fluorescent dyes, and then hybridized with the arrayed probes if they

contain complementary sequence. After hybridization under specific conditions, non-
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complementary cDNA is washed off and the chip is scanned to measure the relative

abundance of spotted DNA sequences. Data for each gene consists of two fluorescence

intensity measurements (R, G) showing the expression level of the gene in the red and

green labelled mRNA samples. The ratio of the fluorescence intensity for each spot

represents the relative abundance of the corresponding transcript. In the microarray

experiment, however, many undesirable systematic variations that affect the measured

gene expression levels are observed. To remove those sources of variation, normali-

zation methods are applied. The main idea of normalization is to adjust for artifactual

differences in intensity of the two labels such as: affinity of the two labels for DNA,

amounts of sample and label used, differences in photomultiplier tube and laser vol-

tage settings, differences in photon emission response to laser excitation (Park et al.,

2003).

1.2.2. RNA Sequencing

High-throughput next-generation sequencing (NGS) enabled RNA analysis which pro-

vides, in contrary to low-throughput methods such as Northern blots and quantitative

polymerase chain reaction, a more detailed and quantitative view of gene expression.

In addition, this method emerges as a superior alternative to microarrays to define gene

expression levels (Wang et al., 2009). High levels of background noise arising from

non-specific hybridization and probe saturation affect the quantification of transcripts

expressed at low and high levels, limit the dynamic range of the microarray techno-

logy (Fumagalli et al., 2014) whereas RNA-Seq technology efficiently addresses this

issue. In addition, novel RNA transcripts can be detected because, unlike microarrays,

RNA-Seq technology does not require transcript-specific probes.

A typical RNA-Seq experiment consists of isolating RNA, preparing the sequen-

cing library, and sequencing it on an NGS platform. After the extraction of RNA from a

biological sample, RNA-Seq library is created by isolating the desired RNA molecules,

reverse-transcribing the RNA to complementary DNA (cDNA), fragmenting or am-

plifying randomly primed cDNA molecules, and ligating sequencing adaptors. There
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are several different library designs in RNA-Seq library protocols. Desired RNAs, in

this case mRNA, can be isolated from the mixture of all extracted RNAs from the cell

using various methods, including poly-A selection which selects for RNA species with

poly-A tail and enriches for mRNA, and ribo-depletion which enriches for mRNA, pre-

mRNA and ncRNA by depleting ribosomal RNA. Desired single-stranded RNAs are

then converted to double-stranded cDNA using strand-specific or non-strand-specific

protocol. Strand-specific protocols allow an assignment of the reads to their original

strand by attaching distinct adapters in a known orientation relative to the 5’ and 3’

ends of the original mRNA. Non-strand-specific protocols are cheaper and less time

consuming, but they do not provide an information if a read originated from the sense

or antisense strand of the reverse transcribed mRNA. After converting selected RNAs

to cDNA, adaptors are ligated to the ends of cDNA fragments, given fragments are

then amplified by polymerase chain reaction (PCR), and produced RNA-Seq library is

sequenced. Following typical RNA-Seq experiment, reads are aligned to a reference

genome and the expression level of each gene is estimated by counting the number of

reads that align to each transcript or exon (Kukurba and Montgomery, 2015). To ac-

curately estimate gene expression and detect differential expression, read counts must

be normalized to correct for systematic variability such as read depth, library fragment

size, and sequence composition bias (Oshlack and Wakefield, 2009). To analyse diffe-

rential expression, a variety of statistical methods to account for the specifics of count

data, such as non-normality and a dependence of the variance on the mean, have been

designed and implemented in R packages. DESeq2 package for differential analysis

of count data uses shrinkage estimators for variances (or, equivalently, dispersions)

and fold change to improve stability and interpretability of estimates which results

with a more quantitative analysis focused on the strength rather than the mere pre-

sence of differential expression (Love et al., 2014). For RNA-Seq data, the problem

of heteroskedasticity arises: on the original count scale variances are strongly depen-

dent on the mean counts, and the result is dominated by highly expressed and highly

variable genes. Therefore, it is useful to transform count data before the analysis. Va-
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riance stabilizing transformation (VST) implemented in DESeq2 package is effective

at stabilizing variance. It yields a matrix of homoskedastic values, whose variances

are approximately the same throughout the dynamic range, that are normalized with

respect to library size.

1.3. R packages

Packages used and in this research are genefu (Gendoo et al., 2015) and Seurat (Butler

et al., 2018). genefu is used for microarray gene expression data analysis in breast

cancer studies such as gene mapping between different microarray platforms, iden-

tification of molecular subtypes, implementation of published gene signatures, gene

selection, and survival analysis. It implements bioinformatics algorithms and gene

signatures for molecular subtyping of breast cancer, including single sample predictor

(SSP) molecular subtype classification algorithm and PAM50 gene expression signa-

ture. SSP is a nearest centroid classifier where the centroids representing the intrinsic

subtypes were originally identified through hierarchical clustering using a specific gene

list, in this case PAM50 (Sørlie et al., 2003). In subtyping using nearest centroid met-

hod each centroid represents one of the five intrinsic subtypes. This method works by

measuring the distance of each mouse sample to all centroids and assigning the sample

to the closest one.

Seurat is a novel package designed for quality check, and the analysis of single-cell

RNA-Seq data. In this package analytical strategy for integrating scRNA-seq data sets

based on common sources of variation is introduced, enabling the identification of sha-

red populations across data sets and downstream comparative analysis. Additionally,

a computational strategy to integrate diverse datasets together, called Canonical Cor-

relation Analysis, is implemented enabling integration and comparison of single cell

measurements not only across scRNA-seq technologies, but different modalities as

well (Stuart et al., 2019).
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2. Aims and Objectives

Essential approach to examine underlying mechanisms and genetic pathways in breast

cancer, as well as create approaches for modeling clinical tumor subtypes, is the use of

mouse models. In addition to mouse models, development of high throughput sequen-

cing contributed to understand the breast cancer and RNA sequencing became widely

used method to study gene expression patterns.

The aim of this research is to modify PAM50 molecular subtype classification algo-

rithm from package genefu and apply Canonical Correlation Analysis implemented in

package Seurat to subtype RNA sequenced mouse breast tumors in relation to human

tumors, to compare the results of subtyping mouse breast tumors, and to assess the

performance of the two independent approaches for subtyping breast tumors. To mo-

dify PAM50 molecular subtype classification algorithm from genefu package, PAM50

gene expression signature will be adapted by calculating new PAM50 centroids. Furt-

hermore, a recent study showed that human and mouse single-cell sequenced data can

be integrated using Canonical Correlation Analysis implemented in R package Seurat.

The motivation for integrating diverse datasets lies in the potential to use information

from one dataset for the interpretation of another. Therefore, CCA from Seurat pac-

kage will be used to integrate human and mouse bulk RNA sequenced data based on

the set of PAM50 genes and to determine intrinsic breast tumor subtypes.
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3. Materials and Methods

All the analysis was performed using R version 3.4.4 in the integrated development

environment RStudio, code used to produce this research is available in Appendix A,

B and C.

3.1. Data retrieval

In this work, gene expression data obtained by RNA sequencing method were analysed.

The Cancer Genome Atlas (TCGA) database was used to retrieve RNA sequencing

data from human primary breast tumor samples and matched samples from healthy

breast tissue. This database contains over 20,000 molecularly characterized primary

cancers and matched normal samples spanning 33 cancer types. The human dataset

consisting of RNA sequenced primary breast tumors and healthy breast tissue was

prepared by downloading raw counts produced from TCGA database using TCGAbi-

olinks, an R/Bioconductor package for integrative analysis with GDC data (Colaprico

et al., 2015). Downloaded TCGA breast tumor samples also contain the clinically de-

termined PAM50 subtype information from the original publication (Network et al.,

2012). The human dataset consisted of 16679 ortholog genes and 1186 samples; 1073

samples from primary breast tumor and 113 samples from healthy breast tissue. There

are 556 samples clinically subtyped as luminal A, 207 of them as luminal B, 82 HER2-

enriched, 188 basal-like, and 40 normal-like. For TCGA Breast Cancer (BRCA) pro-

ject, mRNAs were isolated using poly-A selection and RNA-Seq library protocol was

non-strand-specific.
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The mouse dataset used in this work was created by combining mouse breast tumor

samples from three different sources: raw counts of RNA sequenced mouse tumors

available at Sequence Read Archive (SRA) with identifier SRP115453, RNA sequen-

ced healthy breast tissue from DKFZ, and mouse breast tumor samples from ARCHS4

(Lachmann et al., 2018) database (Table 4.3). Dataset contained the expression values

of 16679 ortholog genes for 82 mouse samples; 9 of them are control samples where

healthy breast tissue was sequenced, and 73 tumor samples. Samples downloaded from

ARCHS4 database initially contained 47 mouse RNA-Seq breast tissue samples from

8 different series. Series that consist of only one or two samples were removed, and

all samples from series GSE8138 were also removed because those were mouse xeno-

grafts. After removing 4 series, 25 samples from 4 series were appropriate for further

analysis. Samples from series GSE85810 are breast tumor organoids (Delaunay et al.,

2016), and others are breast tumors. Some of the samples downloaded from ARCHS4

were prepared using non-strand-specific protocol, and some using strand-specific, but

all used poly-A method for mRNA selection. Method for mRNA selection in all 9 con-

trol samples was ribo-depletion and non-strand-specific protocol was used. Samples

downloaded from SRA are non-strand-specific and poly-A method for mRNA selec-

tion was used.

Table 3.1: Information about different sources of mouse samples that were combined to pro-

duce a single mouse dataset for the analysis and subtyping. Number of samples, types of breast

tissue, and methods of library preparation are also provided.

Source Tissue type Samples Selection method Strand specificity

SRA Tumor 48 poly-A no

GSE85810 Tumor organoid 6 poly-A no

GSE77107 Tumor 6 poly-A yes

GSE81941 Tumor 4 poly-A yes

GSE112094 Tumor 9 poly-A no

DKFZ Healthy 9 ribo-depletion no
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For further analysis, only mouse orthologs of human genes were selected. To ac-

hieve this, mouse gene symbols were converted to human gene symbols using gene

mappings that were downloaded from BioMart database using biomaRt package (Du-

rinck et al., 2005). Then, the list of human and mouse orthologs was download from

BioMart using the same package.

3.2. Genefu subtyping

In this work PAM50 molecular subtype classification algorithms from genefu were

modified for use with RNA-Seq instead of microarray expression data, by calculating

new centroids specific to each of the intrinsic subtypes of human TCGA dataset. Then,

it was used to subtype mouse tumors into intrinsic subtypes based on newly calculated

centroids of PAM50 gene expression signature. To do that, human and mouse datasets

were transformed separately, then combined and corrected for organism type. After

centroid calculation, cross validation technique was used to assess the performance of

the modified algorithm in subtyping of human breast tumor samples.

3.2.1. Transformation

To accurately estimate gene expression, raw counts have to be normalized in order

to correct for systematic variability such as library size and read depth. In this work

raw counts in human and mouse datasets were separately transformed using variance

stabilizing transformation (VST) implemented in R package DESeq2. VST yields a

matrix of homoskedastic values, that is values with constant variance along the range

of means that are normalized with respect to library size.

3.2.2. Batch effect correction

Prior to VST, checking for outliers in human and mouse datasets was performed by

calculating pairwise correlation of quantile normalized gene expression values. Quan-

tile normalization is a non-linear transformation that replaces each feature value with
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the mean of the features across all the samples with the same quantile. That way

observed distributions of each sample are forced to be the same and the average dis-

tribution, obtained by taking the mean of each quantile across samples, is used as the

reference (Hicks and Irizarry, 2015). Possible sources of batch effects were identified

by researching their protocols for RNA-Seq experiments. After VST, mouse dataset

was corrected for library preparation type and strand specificity. Then, mouse and hu-

man datasets were merged according to matching ortholog genes, and corrected for

organism type to make them comparable.

3.2.3. Centroid Calculation

To calculate PAM50 centroids, human dataset was subsetted from combined and cor-

rected dataset and the information about subtype was added. Only 50 genes that belong

to PAM50 gene expression signature were subsetted from the set of human and mouse

orthologs. Samples having the same subtype were grouped and new centroids for each

subtype were calculated by averaging the expression values for each out of 50 genes.

3.2.4. Subtyping

Newly calculated centroids based on human TCGA breast cancer RNA-Seq data were

incorporated into genefu and intrinsic.cluster.predict() function with modified centro-

ids was further used to subtype breast tumor samples. This function identifies the breast

cancer molecular subtypes using SSP molecular subtype classification algorithm.

3.2.5. Cross-validation

Cross-validation is a statistical method of evaluating and comparing learning algorit-

hms by dividing the data into two segments: one, train set, used to learn or train a

model and the other, test set, used to validate the model (Liu and Özsu, 2009). Ove-

rall accuracy of subtyping model with newly calculated centroids was assessed using

10-fold cross-validation on human TCGA dataset. The dataset was randomly split into
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10 groups, or folds, of approximately equal size. The first group was hold out pre-

senting the test data set. Centroids were calculated based on the remaining 9 groups,

or the train set. Then, subtyping of test dataset was performed using newly calculated

centroids from the train set. Model performance was evaluated by calculating the per-

centage of accurately subtyped samples from the test set considering the information

about clinically determined PAM50 subtypes previously downloaded from TCGA.

3.3. Seurat subtyping

In this work, slight changes in parameters of functions CreateSeuratObject() and Sca-

leData() were made with the aim to use human and mouse bulk RNA-Seq data instead

of single cell RNA-Seq data. Then, the two datasets were integrated by Canonical Cor-

relation Analysis (CCA) transferring information from the human reference dataset to

subtype mouse tumors.

3.3.1. Integration of human and mouse dataset

Two diverse datasets, human reference dataset and mouse query dataset, were integra-

ted using runCCA() function implemented in Seurat. This function performs Canonical

Correlation Analysis (CCA), followed by L2-normalization of the canonical correla-

tion vectors, to project the datasets into a shared space defined by shared correlation

structure across datasets (Figure 3.1: A-B). Pairs of mutual nearest neighbours across

reference and query datasets are then identified (grey lines, Figure 3.1: C), represen-

ting samples in a shared biological state which serve as “anchors” to guide the inte-

gration. To solve for the problem of observing incorrect anchors (red lines, Figure 3.1:

C), a score is assigned based on the consistency of anchors across the neighborhood

structure of each dataset. Incorrect anchors have low scores and are downweighted in

further analyses (Figure 3.1: D). At the end, anchors and their scores are utilized to

compute “correction” vectors for each query sample, transforming its expression so it

can be analysed as part of the reference dataset (Figure 3.1: E).
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Figure 3.1: Schematic overview of reference “assembly” integration in Seurat (Stuart et al.,

2019)

With the calculation of correction vectors, this method does not require previous

batch correction as in case with using SSP molecular subtype classification algorithm

from genefu. Here, the difference in expression profiles between two samples repre-

sents a batch vector and for each cell in the query dataset, a transformation is applied

(correction vector) that represents a weighted average across multiple batch vectors

(Haghverdi et al., 2018). Weights are determined by a sample similarity score and

the anchor score. The sample similarity score is defined by the distance between each

query cell and its k nearest anchors in principal component space, prioritizing anchors

representing a similar biological state (Stuart et al., 2019).

3.3.2. Subtyping

Two diverse datasets were integrated applying CCA on PAM50 genes of mouse and

human datasets consisting of expression values that were previously transformed using

VST. The results of integration were visualized using T-distributed Stochastic Neigh-

bor Embedding (t-SNE). This is a technique for embedding high-dimensional data for
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visualization in a low-dimensional space; in this work, integration result was visuali-

zed in 2D space. The t-SNE algorithm uses local relationships between points to create

a low-dimensional mapping. It works by constructing a probability distribution using

the Gaussian distribution over pairs of high-dimensional objects with more similar pa-

irs having higher probability of being selected. This distribution defines the relation-

ships between the points in high-dimensional space. Then, the Student t-distribution is

used to recreate previously produced probability distribution in low-dimensional space

(Maaten and Hinton, 2008). Clusters representing subtypes were calculated using Fin-

dClusters() function which identifies clusters of samples by a shared nearest neighbor

(SNN) clustering algorithm (Waltman and Van Eck, 2013). In this algorithm, k-nearest

neighbors are calculated and the SNN graph is constructed. Then, the modularity fun-

ction is optimized to determine clusters.

3.4. Assessment and comparison

Before performing assessment of genefu and Seurat based subtyping, TCGA dataset

was analysed by applying hierarchical clustering and Principal Component Analysis

(PCA) to examine how intrinsic subtypes group. Then, the accuracy of subtyping with

genefu was assessed with 10-fold cross-validation. The accuracy of clustering with

Seurat was assessed with calculating clusters and visualizing results using t-SNE.

3.4.1. Hierarchical clustering

Clustering is a form of unsupervised learning used to draw inferences from unlabeled

data. To cluster TCGA data based on PAM50 genes, agglomerative hierarchical cluste-

ring using Pearson’s distance measure and average cluster linkage was performed using

R function hclust(). Agglomerative hierarchical clustering begins with each point in

a distinct cluster, and then combines clusters based on the chosen similarity measure.

In average linkage hierarchical clustering, the distance between two clusters is defined

as the average distance between each point in one cluster to every point in the other
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cluster. The similarity between clusters is usually calculated from the dissimilarity me-

asures. Here Pearson’s distance was used, also referred to as the Pearson correlation

coefficient (PCC), which is a measure of the linear correlation between two variables.

Then, a heatmap with added color label for each intrinsic subtype was drawn to visu-

alize clustering. Heatmap is a color coded table where rows and/or columns are sorted

by hierarchical clustering to visually identify patterns. Gene expression data are often

visualized that way, where rows represent genes and columns of a heatmap represent

samples, and colors represent the intensities of the underlying gene expression.

3.4.2. Principal component analysis

Principal Component Analysis is a dimensionality-reduction method that transforms a

large set of correlated variables into a smaller set of uncorrelated variables called prin-

cipal components. It can be considered as a rotation of the axes of the original variable

coordinate system to new orthogonal axes such that the new axes correspond with di-

rections of maximum variation of the original observations (Campbell and Atchley,

1981). Here, PCA was performed on TCGA data choosing PAM50 genes for the cal-

culation, and the data described by the first two principal components were visualized.

The first principal component is the direction in space along which projections have the

largest variance, and the second is the direction which maximizes variance among all

directions orthogonal to the first. That way, dataset is presented in lower-dimensional

dorm without losing too much information.

3.4.3. Comparison of genefu and Seurat based subtyping

To assess the accuracy genefu subtyping, 10-fold cross validation was performed as

described in section 2.5.5. The accuracy of Seurat subtyping was assessed by sub-

typing human samples with mouse samples excluded from the analysis. FindClusters()

function was used and calculated clusters were compared with clinically determined

PAM50 subtypes downloaded from TCGA, and the results were visualized using t-
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SNE. Mouse breast tumors were subtyped with genefu and Seurat, and the results

were compared.
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4. Results

4.1. Genefu subtyping

In this project, PAM50 molecular subtype classification algorithm from genefu pac-

kage was modified to subtype RNA-Seq data instead of microarray data as an input by

manually calculating PAM50 centroids specific to the set of downloaded human breast

cancer samples from the TCGA. These centroids were used to subtype RNA sequenced

mouse breast tumors in relation to intrinsic subtypes of human breast tumors.

4.1.1. Batch correction

Batch effect in mouse data due to technical differences among samples was detected

after calculating pairwise correlation of quantile normalized gene expression values

(Figure 4.1, left). Regressing out variables that contain the information about library

type and strand specificity, reduced the batch effect between mouse samples from dif-

ferent laboratories (Figure 4.1, right).

The batch effect before correction was greatly present between mouse and human

datasets (Figure 4.2, left) with mouse samples showing much lower gene expression in

comparison to human samples. After merging human and mouse datasets, and correc-

ting it for organism type, the batch effect was successfully removed (Figure 4.2, right)

making the two datasets comparable for biological differences.
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Figure 4.1: Uncorrected (left) and corrected (right) expression values of PAM50 signature in

rows for mouse dataset consisting of 82 samples from 6 different series. Mouse dataset was

corrected for two variables: library type and strand specificity. Hierarchical clustering was

performed using average linkage and Pearson’s distance. High levels of expression are in red,

low levels of expression are in blue.

4.2. Seurat subtyping

Novel package for the analysis of single-cell RNA-Seq data was applied to analyse

bulk RNA-Seq data. CCA was performed to integrate two diverse datasets and mouse

samples were integrated across all human samples (Figure 4.3). Information about

intrinsic subtypes from human TCGA dataset was used to subtype mouse breast tumor

samples (Figure 4.4). Mouse samples are generally not evenly distributed across the

human subtypes, but rather group near the edges of each intrinsic subtype indicating

successful integration of two datasets with removed technical but preserved biological

differences among breast tumors from distinct species.
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Figure 4.2: Uncorrected (left) and corrected (right) expression values of PAM50 signature in

rows for merged dataset consisting of 1186 human TCGA samples and 82 mouse samples.

Merged dataset was corrected for organism type. Hierarchical clustering was performed using

average linkage and Pearson’s distance. High levels of expression are in red, low levels of

expression are in blue.

4.3. Assessment and comparison

4.3.1. TCGA data

Prior to adding mouse dataset to human, clustering of TCGA human dataset based on

PAM50 genes was performed using hierarchical clustering (Figure 4.5). Hierarchi-

cal clustering grouped a great portion of healthy breast tissue samples, basal-like and

HER2-enriched breast tumors in separate clusters. Normal-like tumors are clustered

mostly among healthy samples, but some are grouped with HER2-enriched and basal-

like subtypes. A part of luminal A overlaps with luminal B subtypes (Figure 4.5).

Breast cancer samples from TCGA human dataset were also visualized using PCA and

colored according to their intrinsic subtype. In PCA plot it can be seen how portion
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Figure 4.3: Human and mouse dataset integrated using Canonical Correlation Analysis visu-

alized with dimensionality reduction method t-SNE.

of luminal A and luminal B subtypes overlap. Here, normal-like samples are grouped

together, and basal-like samples as in hierarchical clustering are clearly grouped. It

can be noticed that a portion of healthy samples is similar to normal-like and luminal

A tumors, and a portion of HER2-enriched tumors groups with luminal A subtypes

(Figure 4.6).

4.3.2. Genefu and Seurat subtyping of human tumors

To assess the accuracy of subgrouping human TCGA breast tumors using modified

PAM50 subtyping algorithm from genefu, 10-fold cross-validation was performed and

the accuracy of 82.41% was obtained (Table 4.1) by calculating the percentage of cor-

rectly classified intrinsic subtypes. The accuracy of subtyping with Seurat showed to

be lower, 67.62% (Table 4.2) because a great portion of luminal A subtypes is spread
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Figure 4.4: Human and mouse dataset integrated using Canonical Correlation Analysis visu-

alized with dimensionality reduction method t-SNE. Human breast tumors are colored by the

intrinsic subtype and mouse tumors are subtyped in relation to human tumors by assigning

them to the nearest cluster.

among 3 different clusters, one of them being cluster that represents luminal B sub-

type. Basal-like, HER2-enriched subtypes, and healthy samples are clustered very

accurately, but part of luminal A subtypes here is also grouped as luminal B.

4.3.3. Genefu and Seurat subtyping of mouse tumors

Results of subtyping using two different approaches are presented in Table ??. Sub-

typing with Seurat resulted with each mouse tumor sample subtyping as one of the five

intrinsic subtypes or as a healthy breast tissue. Genefu assigned one of the five intrinsic

subtypes to each mouse sample and additionally calculated the probability to belong to

each subtype. Mouse control samples, which are samples of the healthy breast tissue,

are mostly subtyped as luminal A using both packages. It can be noticed that almost all
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Table 4.1: The accuracy of genefu subtyping assessed using 10-fold cross-validation is

82.41%. TCGA breast tumors were subtyped using modified PAM50 subtyping algorithm from

genefu package and the results were compared to clinically subtyped samples. True subtypes

are column-wise, calculated subtypes are row-wise.

Basal HER2 LumA LumB Normal

Basal 23 1

HER2 6

LumA 6 35 6 7

LumB 3 21

Normal 2 4

Table 4.2: Seurat classification of human RNA sequenced TCGA breast tumor samples and

healthy breast tissue. Obtained accuracy is 67.62%. True subtypes are column-wise, calculated

clusters representing each subtype are row-wise.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6

Basal 184 2 2

Healthy 1 107 5

HER2 80 2

LumA 36 11 245 170 94

LumB 0 0 16 0 186 5

Normal 3 11 4 17 5 0
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samples subtyped as luminal A have more than 30% chance to belong to normal-like

subtype. A portion of samples that are tumor organoids (GSM2284739, GSM2284743,

GSM2284741, GSM2284738, GSM2284742, GSM2284740) were subtyped as heal-

thy breast tissue with Seurat, and those samples genefu subtyped the same as control

samples. There are 39 samples that were subtyped the same with both packages, which

is 52% when excluding samples subtyped as healthy using Seurat to make the two ap-

proaches comparable. Many tumor samples showed the same pattern in values of pro-

babilities to belong to each subtype: they all have probabilities to belong to basal-like,

HER2-enriched, and luminal B subtype, but no probability to belong to luminal A or

normal-like subtype.

Table 4.3: Results of subtyping RNA sequenced mouse breast tumors in relation to human

tumors by adapting PAM50 gene expression signature in R packages genefu and Seurat are

presented in Seurat and genefu columns. Rows colored red are representing samples with

disagreements between two subtyping approaches where one approach subtypes sample as eit-

her luminal A, healthy normal-like, and other approach subtypes sample as basal-like, HER2-

enriched, or luminal B. Probabilities of mouse breast tumor samples to belong to each subtype

calculated with PAM50 molecular subtyping algorithm from genefu are colored green with

higher probabilities having higher color intensity. True subtypes are column-vise, calculated

subtypes are row-vise.

Sample Seurat genefu Basal HER2 LumA LumB Normal

Control_1 LumA Normal 0.00 0.00 0.47 0.00 0.53

Control_2 LumA LumA 0.00 0.00 0.53 0.00 0.47

Control_3 LumA Normal 0.00 0.00 0.50 0.00 0.50

Control_4 LumA LumA 0.00 0.00 0.56 0.00 0.44

Control_5 LumA LumA 0.00 0.00 0.54 0.00 0.46

Control_6 LumA LumA 0.00 0.00 0.50 0.00 0.50

Control_7 LumA LumA 0.00 0.00 0.57 0.00 0.43

Control_8 LumA LumA 0.00 0.00 0.53 0.00 0.47
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Table 4.3 continued from previous page

Control_9 LumA LumA 0.00 0.00 0.54 0.00 0.46

GSM2284739 Healthy Normal 0.00 0.00 0.46 0.00 0.54

GSM2284743 Healthy Normal 0.00 0.00 0.42 0.00 0.58

GSM2284741 Healthy Normal 0.00 0.00 0.20 0.00 0.80

GSM2284738 Healthy Normal 0.00 0.00 0.41 0.00 0.59

GSM2284742 Healthy Normal 0.00 0.00 0.40 0.00 0.60

GSM2284740 Healthy Normal 0.00 0.00 0.48 0.00 0.52

GSM2098346 Basal Normal 0.00 0.11 0.35 0.00 0.54

GSM2098345 Basal Normal 0.00 0.00 0.00 0.00 1.00

GSM2098347 Basal Her2 0.15 0.53 0.00 0.32 0.00

GSM2098348 Basal Her2 0.33 0.35 0.00 0.31 0.00

GSM2178239 Basal LumB 0.35 0.28 0.00 0.37 0.00

GSM2178240 Basal LumB 0.34 0.28 0.00 0.38 0.00

GSM2178241 Basal LumB 0.36 0.24 0.00 0.40 0.00

GSM2370617 LumB LumB 0.36 0.24 0.00 0.40 0.00

GSM2044416 LumA LumA 0.00 0.00 0.89 0.11 0.00

GSM2044417 LumA LumA 0.03 0.00 0.53 0.00 0.44

GSM3057406 Her2 LumB 0.10 0.44 0.00 0.45 0.00

GSM3057407 Her2 Her2 0.18 0.41 0.00 0.40 0.00

GSM3057408 Her2 LumB 0.12 0.40 0.00 0.48 0.00

GSM3057409 Her2 LumB 0.11 0.44 0.00 0.45 0.00

GSM3057410 Her2 LumA 0.00 0.00 0.58 0.00 0.42

GSM3057411 Her2 Her2 0.06 0.47 0.00 0.47 0.00

GSM3057412 Basal LumB 0.27 0.36 0.00 0.37 0.00

GSM3057413 Basal LumB 0.27 0.36 0.00 0.38 0.00

GSM3057414 Basal LumB 0.28 0.34 0.00 0.38 0.00

tumor_HL01 LumB LumB 0.16 0.00 0.18 0.67 0.00

tumor_HL08 LumB LumB 0.22 0.24 0.00 0.54 0.00
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Table 4.3 continued from previous page

tumor_HL100 LumB LumB 0.36 0.19 0.00 0.46 0.00

tumor_HL107 LumA LumA 0.00 0.00 0.66 0.00 0.34

tumor_HL109 Basal LumB 0.41 0.10 0.00 0.50 0.00

tumor_HL116 LumA LumA 0.00 0.00 0.52 0.00 0.48

tumor_HL117 LumA LumA 0.00 0.00 0.50 0.00 0.50

tumor_HL119 Basal Basal 0.50 0.24 0.00 0.27 0.00

tumor_HL120 Healthy LumA 0.00 0.00 0.53 0.00 0.47

tumor_HL121 LumB LumB 0.25 0.25 0.00 0.50 0.00

tumor_HL123 LumB Basal 0.43 0.31 0.00 0.26 0.00

tumor_HL124 LumB LumB 0.33 0.28 0.00 0.39 0.00

tumor_HL125 LumA Basal 0.42 0.30 0.00 0.28 0.00

tumor_HL126 LumA Normal 0.22 0.00 0.26 0.00 0.52

tumor_HL127 LumB Basal 0.54 0.28 0.00 0.19 0.00

tumor_HL128 Basal Basal 0.75 0.15 0.00 0.10 0.00

tumor_HL130 Basal Basal 0.66 0.00 0.00 0.00 0.34

tumor_HL132 LumB LumB 0.31 0.27 0.00 0.42 0.00

tumor_HL133 Basal Normal 0.31 0.20 0.00 0.00 0.49

tumor_HL134 Basal Basal 0.46 0.31 0.00 0.23 0.00

tumor_HL135 Basal Basal 0.57 0.26 0.00 0.17 0.00

tumor_HL136 Basal Basal 0.90 0.00 0.00 0.00 0.10

tumor_HL137 LumB LumB 0.25 0.00 0.00 0.75 0.00

tumor_HL145 LumB Her2 0.27 0.37 0.00 0.36 0.00

tumor_HL147 LumB Her2 0.19 0.40 0.08 0.33 0.00

tumor_HL149 Basal Basal 0.47 0.26 0.00 0.27 0.00

tumor_HL151 Her2 LumA 0.00 0.00 0.69 0.00 0.31

tumor_HL152 LumA Her2 0.19 0.58 0.00 0.00 0.23

tumor_HL156 Basal Normal 0.31 0.19 0.00 0.00 0.50

tumor_HL157 LumB LumA 0.00 0.00 0.85 0.15 0.00
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Table 4.3 continued from previous page

tumor_HL158 LumB LumA 0.00 0.00 0.91 0.09 0.00

tumor_HL160 LumB LumB 0.00 0.00 0.40 0.60 0.00

tumor_HL161 Basal LumB 0.30 0.29 0.00 0.41 0.00

tumor_HL162 LumB LumA 0.00 0.00 0.57 0.43 0.00

tumor_HL163 Her2 Her2 0.32 0.37 0.00 0.32 0.00

tumor_HL166 LumB LumB 0.15 0.20 0.00 0.65 0.00

tumor_HL.167.2 LumB LumB 0.30 0.23 0.00 0.47 0.00

tumor_HL169 LumB Basal 0.64 0.06 0.00 0.30 0.00

tumor_HL170 Basal LumB 0.34 0.25 0.00 0.41 0.00

tumor_HL17 LumB LumB 0.33 0.24 0.00 0.43 0.00

tumor_HL23 LumB LumB 0.16 0.23 0.00 0.61 0.00

tumor_HL40 Basal LumB 0.31 0.30 0.00 0.39 0.00

tumor_HL47 LumB LumB 0.23 0.26 0.00 0.51 0.00

tumor_HL65 LumA LumB 0.37 0.19 0.00 0.45 0.00

tumor_HL70 Basal Basal 0.49 0.23 0.00 0.28 0.00

tumor_HL76 LumB LumB 0.25 0.31 0.00 0.44 0.00

tumor_HL77 Basal Basal 0.50 0.26 0.00 0.24 0.00

tumor_HL80 Basal Normal 0.29 0.00 0.00 0.00 0.71
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Figure 4.5: Hierarchical clustering of TCGA breast tumor samples performed using average

linkage and Pearson’s distance on PAM50 genes. Color coded label representing clinically

determined intrinsic subtypes is added. High levels of expression are in red, low levels of

expression are in blue.
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Figure 4.6: Principal Component Analysis of TCGA breast tumor samples calculated based

on PAM50 genes. Points representing samples are colored according to clinically determined

intrinsic subtypes.
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5. Discussion

Heterogeneity of breast cancer that occurs at the morphological, genomic, transcrip-

tomic and proteomic levels, creates challenges in diagnostics and limits the efficacy

of breast cancer therapy (Turashvili and Brogi, 2017). To simplify the study of the

molecular complexity of breast cancer, mouse tumor models are used, but the extent to

which they model human breast cancer and are reflective of the human heterogeneity

has yet to be demonstrated with gene expression studies on a large scale (Hollern and

Andrechek, 2014). In this research, it was studied how mouse breast tumors reflect

human intrinsic subtypes.

The first challenge was building mouse dataset by combining samples from many

different sources and finding appropriate variables that would correct the batch effect

and preserve biological differences among samples (Goh et al., 2017). We ended up

with 82 samples from 6 different sources which was sufficient for the analysis. All

non-protein coding genes and non-orthologs were discarded from both datasets. It was

crucial to end up with the same number of ortholog genes in both species, where each

gene has its corresponding pair in other species so that human and mouse datasets can

be correctly merged. Although most orthologs were one-to-one, meaning the entry has

only one ortholog in the other species, there were also one-to-many, many-to-one, and

many-to-many orthologs which were selected according to the highest percentage of

homology. Important step prior calculating new PAM50 centroids, from TCGA hu-

man breast cancer data, was to merge human and mouse datasets and correct them

for organism type. Doing that, we accounted for possible differences in gene expre-

ssion due to different physiology between species and make possible to subtype mouse
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breast tumors in relation to human tumors. In contrast to merging datasets and calcu-

lating PAM50 centroids for modification of PAM50 subtyping algorithm, integration

of two different datasets in Seurat did not require previous correction for batch effects

because CCA integration method takes technical differences into account and calcu-

lates correction vectors. In this research, VST method for transforming expression

data was applied. When using Seurat for RNA-Seq data analysis instead of single-cell

RNA-Seq data, it is important to make sure that “normalization.method” parameter in

CreateSeuratObject() function is set to NULL.

It was noticed that some subtypes show more similarity to the others. In 10-fold

cross-validation, although it showed 82.41% accuracy, genefu subtyped few samples

as normal-like, while they were actually luminal A subtype. Luminal A and normal-

like subtypes have the most favorable prognosis among all intrinsic subtypes (Toft

and Cryns, 2010). Additionally, normal-like has gene expression pattern similar to

the ones found in normal breast tissue samples. Hierarchical clustering and principal

component analysis of TCGA breast cancer dataset, showed that portion of luminal

A groups with luminal B subtypes, while basal tumors were clearly separated. The

similarity between a portion of luminal A and luminal B tumors can be explained by

their gene expression pattern similar to the luminal epithelium of the mammary gland

which includes genes such as the estrogen receptor (ER) and progesterone receptor

(PR). They show differences in the expression of HER2 gene, where luminal A subtype

is HER2 negative, and luminal B subtype is HER2 positive (Vallejos et al., 2010). This

HER2 positive characteristic of luminal B subtype can also be noticed while looking at

the results of subtyping (Table ??) where tumors subtyped as luminal B always show

some probability to belong to HER2-enriched subtype.

Seurat based subtyping identified all 9 control samples as luminal A, while genefu

subtyped 2 of them as normal-like and the rest as luminal A subtype. There were 6 sam-

ples downloaded from ARCHS4 that were organoids of breast tumor which subtyped

as healthy breast samples according to Seurat, and as normal-like tumors according to

Seurat. Almost all mouse breast tumors subtype as either luminal B, HER2-enriched or
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basal-like tumors, and have some probability to belong to all three mentioned subtypes.

These are intrinsic subtypes that have worse prognosis than luminal A or normal-like

subtypes (Fan et al., 2006).

Since congruence between intrinsic subtypes of mouse breast tumors determined

with genefu and Seurat is only 52%, we can not draw conclusions about specific sub-

type of particular mouse tumor, but we can confidently distinguish between tumor

and control samples. Both approaches showed the agreement between subtyping non-

tumors as either luminal A or normal-like subtype, and tumors as either luminal B,

HER2-enriched or basal-like. The advantage of PAM50 molecular subtyping algo-

rithm from genefu is calculating the probability of each sample to belong to specific

subtype which can give us an additional information about the tumor heterogeneity.

Using CCA implemented in Seurat is easier and faster approach since it does not requ-

ire prior manipulation of the data such as batch correction. Additionally, it enables

healthy samples to be included in the analysis whereas genefu restricts only to five

intrinsic subtypes. The limitations of this approach include mouse samples being com-

bined from many different sources and the need for their batch correction. The process

of batch correction can unwantedly remove some of the important biological differen-

ces between the samples. This could be avoided if all mouse samples were sequenced

within the same RNA-Seq experiment. Another limitation is the low number of mouse

samples (82) in comparison to human samples (1186). By increasing the number of

mouse breast tumor samples, more confident results can be obtained.
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6. Conclusion

Based on this research, the following can be concluded:

• PAM50 molecular subtype classification algorithm implemented in R package

genefu can be used for the analysis of RNA-Seq data.

• PAM50 molecular subtype classification algorithm implemented in R package

genefu can be used to subtype mouse breast tumors in relation of human tumors

after performing transformation and batch correction for organism type.

• Canonical correlation analysis implemented in R package Seurat can be used

to integrate human and mouse bulk RNA-Seq data.

• Canonical correlation analysis implemented in R package Seurat can be used

to subtype mouse breast tumors in relation to human breast tumors.

• Mouse control samples with both methods subtype as luminal A with probabi-

lity to belong to normal-like subtype.

• Mouse breast tumor samples most often subtype as HER2-enriched, basal-like,

and luminal B subtype.

• The use of more mouse breast tumor samples from the same batch would con-

tribute to better assessment of the two used approaches for breast tumor sub-

typing.
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Appendix A

Data preparation for mouse RNA-Seq data analysis

Ivna Ivanković


Load required paćkages, set working direćtory.

suppressMessages( library(DESeq2) )
suppressMessages( library(Seurat) )
suppressMessages( library(genefu) )
suppressMessages( library(biomaRt) ) 
suppressMessages( library(ggplot2) ) 
suppressMessages( library(dplyr) ) 
suppressMessages( library(data.table) )
suppressMessages( library(preprocessCore) )
suppressMessages( library(dendextend) )
suppressMessages( library(sva) )

setwd("home/R/project")

1. Mouse Data
Mouse dataset is prepared by ćombining samples from three different sourćes: raw 
ćounts of RNA sequenćed mouse tumors available at Sequenće Read Arćhive (SRA) 
with identifier SRP115453, RNA sequenćed healthy breast tissue from DKFZ, and 
mouse breast tumor samples from ARCHS4 (Laćhmann et al., 2018) database.

# raw counts available at Sequence Read Archive (SRA) with identifier 
SRP115453
jonkers <- read.table("jonkers_count.tsv", header = T)

# dkfz controls, healthy breast tissue
dkfz_controls <- read.table("dkfz_controls.tsv", header = T)

# merge mouse tumor samples and controls
mouse_raw_counts <- cbind(jonkers, dkfz_controls)

save(mouse_raw_counts, file = "mouse_raw_counts.RData")



1.1. Download breast tumor samples from ARCHS4 database

The idea is to add more mouse samples for CCA Seurat analysis. I searćhed for 
mouse RNA seq data, ideally for breast tissue. There is a paper about ARCHS4 
database where I found 47 mouse RNA seq breast tissue samples.

ARCHS4 is a web resource that makes the majority of published RNA-seq data from human and mouse 
available at the gene and transcript levels.

After the search is complete, the samples are highlighted and an auto-generated R script is provided for 
downloading the set of highlighted samples. Executing the R script builds a local expression matrix in tab-
separated values format with the samples as columns and the genes as the rows.

Auto-generated R script

Retrieval date 13th February 2019. 

I will only use one batćh of mouse data. Library type for GSE81380 batch is polyA 
aććording to the information obtained from auto generated R sćript: library = 
h5read(destination_file, “meta/Sample_extract_protocol_ch1”)

setwd("/icgc/dkfzlsdf/analysis/B060/Breast_TCGA_ivna/data")

# R script to download selected samples
# Copy code and run on a local machine to initiate download

# Check for dependencies and install if missing
packages <- c("rhdf5")
if (length(setdiff(packages, rownames(installed.packages()))) > 0) {
    print("Install required packages")
    source("https://bioconductor.org/biocLite.R")
    biocLite("rhdf5")
}
library("rhdf5")
library("tools")

destination_file = "mouse_matrix_download.h5"
extracted_expression_file = "Breast_expression_matrix.tsv"
url = "https://s3.amazonaws.com/mssm-seq-matrix/mouse_matrix.h5"

# Check if gene expression file was already downloaded and check 
integrity, if not in current directory download file form repository
if(!file.exists(destination_file)){
    print("Downloading compressed gene expression matrix.")
    download.file(url, destination_file, quiet = FALSE)
} else{
    print("Verifying file integrity...")
    checksum = md5sum(destination_file)
    
    if(destination_file == "human_matrix_download.h5"){
        # human checksum (checksum is for latest version of ARCHS4 

https://www.nature.com/articles/s41467-018-03751-6


data)
        correct_checksum = "f78da4a1855ff20da768eed1b73508be"
    } else{
        # mouse checksum (checksum is for latest version of ARCHS4 
data)
        correct_checksum = "065abb20d2b9d2661e74328de8d23eb3"
    }
    
    if(checksum != correct_checksum){
        print("Existing file looks corrupted or is out of date. 
Downloading compressed gene expression matrix again.")
        download.file(url, destination_file, quiet = FALSE)
    } else{
        print("Latest ARCHS4 file already exists.")
    }
}

checksum = md5sum(destination_file)
if(destination_file == "human_matrix_download.h5"){
    # human checksum (checksum is for latest version of ARCHS4 data)
    correct_checksum = "f78da4a1855ff20da768eed1b73508be"
} else{
    # mouse checksum (checksum is for latest version of ARCHS4 data)
    correct_checksum = "065abb20d2b9d2661e74328de8d23eb3"
}

if(checksum != correct_checksum){
    print("File download ran into problems. Please try to download 
again. The files are also available for manual download at 
http://amp.pharm.mssm.edu/archs4/download.html.")
} else{
    # Selected samples to be extracted
    samp = 
c("GSM2284739","GSM2284743","GSM2284741","GSM2284738","GSM1013599","GSM
2284742","GSM2284740","GSM2098346","GSM2098345","GSM2098347","GSM209834
8","GSM1973811","GSM1973812","GSM2151462","GSM2151459","GSM2151453","GS
M2151467","GSM2151465","GSM2151455","GSM2151452","GSM2151454","GSM21514
56","GSM2151461","GSM2151460","GSM2151466","GSM2151464","GSM2151463","G
SM2151458","GSM2151457","GSM2178239","GSM2178240",
"GSM2178241","GSM2370617","GSM2044416","GSM2044417","GSM2044418","GSM30
16433","GSM3016434","GSM3057406","GSM3057407","GSM3057408","GSM3057409"
,"GSM3057410","GSM3057411","GSM3057412","GSM3057413","GSM3057414","")

    # Retrieve information from compressed data
    samples = h5read(destination_file, "meta/Sample_geo_accession")
    tissue = h5read(destination_file, "meta/Sample_source_name_ch1")
    genes = h5read(destination_file, "meta/genes")
    series = h5read(destination_file, "meta/Sample_series_id")
    library = h5read(destination_file, 



"meta/Sample_extract_protocol_ch1")
    a <- h5read(destination_file, "meta/Sample_extract_protocol_ch1")

    # Identify columns to be extracted
    sample_locations = which(samples %in% samp)
    
    # extract gene expression from compressed data
    expression = h5read(destination_file, "data/expression", 
index=list(1:length(genes), sample_locations))
    H5close()
    rownames(expression) = genes
    colnames(expression) = samples[sample_locations]
    series <- series[sample_locations]
    library <- library[sample_locations]
    
    # this is the batch I decided to use
    batch_samples <- samples[sample_locations][which(series == 
"GSE81380")]
    batch <- expression[, batch_samples]
    aa <- a[sample_locations][which(series == "GSE81380")]

    # Print file
    write.table(expression, file=extracted_expression_file, sep="\t", 
quote=FALSE)
    print(paste0("Expression file was created at ", getwd(), "/", 
extracted_expression_file))
}

setwd("/icgc/dkfzlsdf/analysis/B060/Breast_TCGA_ivna/")

In the auto-generated R script I added few lines to gain the information 
about library preparation and series.
series = h5read(destination_file, "meta/Sample_series_id")
library = h5read(destination_file, "meta/Sample_extract_protocol_ch1")
series <- series[sample_locations]
library <- library[sample_locations]

1.2. Identify outliers

Apply quantile normalization
# plot sample similarity
boxplot(log2(1+expression[,sample(1:ncol(expression), 16)]), main="read
count distribution by sample")

# here we apply quantile normalization that will force the expression 
distribution to be the same for all samples
exp <- normalize.quantiles(log2(1+expression))
dimnames(exp) <- dimnames(expression)



In this ćase outlier is sample GSM2044418 and it it removed from the dataset.

series <- c(rep("ctrl", 6), rep("archs4", 25), rep("tumors", 48))

# calculate pairwise correlation
cc <- cor(exp)
dend <- as.dendrogram(hclust(as.dist(1-cc)))
useries <- unique(series)
series_match <- useries[match(series, useries)]

# set colors to each series
colos <- colorspace::rainbow_hcl(length(useries), c = 160, l  = 50)
names(colos) = useries
series_color <- colos[series_match]

clu = cutree(dend, h=0.15)
labels_colors(dend) <- series_color[order.dendrogram(dend)]
dend <- color_branches(dend, h = 0.15)

par(mar = c(4,1,1,12))
plot(dend, horiz = TRUE)
colored_bars(cbind(clu, series_color), dend, rowLabels = c("Cluster", 
"Series"), horiz = TRUE)
legend("topleft", legend = useries, fill = colos, bg="white", cex=0.6)

# subset largest cluster / drop outliers
largest_cluster = names(rev(sort(table(clu))))[1]
ww = which(clu == largest_cluster)
reduced_expression = exp[,ww]
reduced_series = series[ww]

After removal of the outlier sample, I will also remove series that ćonsist of only one 
or two samples. These are:

• GSE41286; 1 sample
• GSE76075; 2 samples
• GSE110770; 2 samples

From 47 initial samples in 8 series, now there are 41 of them in 5 series.

It is also important to remove samples from batćh GSE8138 bećause those are 
aćtually human tumors transfered to mouse (mouse xenograft), so I might try 
adding those samples to human data and see how those ćlassify. Those are HER2+ 
human breast tumors, harvested from SCID miće 2-days post treatment initiation, 
sourće I will remove those samples from the expression dataset.

# remove series that consist of only one or two samples
rser <- c("GSE41286", "GSE76075", "GSE110770")
series_filtered <- reduced_series[-c(which(reduced_series %in% rser))]
save(series_filtered, file = "series_filtered.RData")

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81380


# remove outlier
expression <- expression[, -which(colnames(expression) == 
"GSM2044418")]
expression <- expression[, -c(which(reduced_series %in% rser))]

# remove mouse xenografts
which(series_filtered == "GSE81380")
xenografts <- colnames(mouse_counts)[29:69][which(series_filtered == 
"GSE81380")]

1.3. Mapping mouse to human genes
BiomaRt using R. Webpage did not work good. Aććording to ARCHS4 artićle 
supported genomes are Ensembl Homo sapiens GRCh38 with the GRCh38.87 
annotation file and Mus Musćulus GRCm38 with the GRCm38.88 annotation file.

ensembl <- useMart(biomart = "ENSEMBL_MART_ENSEMBL",
                   path = "/biomart/martservice", 
                   dataset = "mmusculus_gene_ensembl")

# creating query and downloading human and mouse gene names to do 
mapping
output=getBM(attributes=c("ensembl_gene_id", "external_gene_name"), 
       filters = "external_gene_name",
       values = rownames(expression), 
       mart = ensembl)

expression <- data.frame(expression)
expression$external_gene_name <- rownames(expression)
exp_mouse <- merge(expression, output, by = "external_gene_name")
colnames(exp_mouse)[43] <- "GeneID"

# merge mouse data from all sources (controls, ARCHS4 and Jonkers 
dataset)
mouse_raw_counts$GeneID <- rownames(mouse_raw_counts)
a <- merge(mouse_raw_counts, exp_mouse[,-1], by = "GeneID")
mouse_counts <- a[,-1]
rownames(mouse_counts) <- a[,1]

# save merged mouse data 
save(mouse_counts, file = "mouse_counts.RData")
load(file = "mouse_counts.RData")

https://www.nature.com/articles/s41467-018-03751-6


2. Human data

2.1. Download TCGA raw counts

Downloading raw RNAseq ćounts with TCGAbiolinks: An R/Bioćondućtor paćkage 
for integrative analysis with GDC data. I downloaded tumor and normal samples. 
Read this paper.

if (!requireNamespace("BiocManager", quietly=TRUE))
    install.packages("BiocManager")
BiocManager::install("TCGAbiolinks")
library("TCGAbiolinks")

# preparing query and downloading samples
query <- GDCquery(project = "TCGA-BRCA",
                 data.category = "Transcriptome Profiling",
                 experimental.strategy = "RNA-Seq",
                 workflow.type = "HTSeq - Counts",
                 sample.type = c("Primary solid Tumor", "Solid Tissue 
Normal"))

GDCdownload(query)

expdata <- GDCprepare(query)
expdata <- expdata[!duplicated(expdata)]
save(expdata, file = "expdata.RData")
load(file = "expdata.RData")

# get the sample information, here is also the information about PAM50 
subtypes that I am interested in
sample.info <- SummarizedExperiment::colData(expdata)

# identify healthy samples
which(sample.info$definition == "Solid Tissue Normal")

# add information 
sample.info$subtype_BRCA_Subtype_PAM50[which(sample.info$definition == 
"Solid Tissue Normal")] <- "Healthy"

# omit samples without information about PAM50 subtype
sample.info <- sample.info[-
c(which(is.na(sample.info$subtype_BRCA_Subtype_PAM50))), ]

save(sample.info, file = "sample.info.RData")
load(file = "sample.info.RData")

https://www.nature.com/articles/srep20567


2.2. Identify outliers
# 1190 because it is the number of downloaded human samples
series <- rep("one", 1186)

# calculate pairwise correlation
cc <- cor(exp)
dend <- as.dendrogram(hclust(as.dist(1-cc)))
useries <- unique(series)
series_match <- useries[match(series, useries)]

# set colors to each series
colos <- colorspace::rainbow_hcl(length(useries), c = 160, l  = 50)
names(colos) = useries
series_color <- colos[series_match]

clu = cutree(dend, h=0.25)
labels_colors(dend) <- series_color[order.dendrogram(dend)]
dend <- color_branches(dend, h = 0.25)

par(mar = c(4,1,1,12))
plot(dend, horiz = TRUE)
colored_bars(cbind(clu, series_color), dend, rowLabels = c("Cluster", 
"Series"), horiz = TRUE)
legend("topleft", legend = useries, fill = colos, bg="white", cex=0.6)

# subset largest cluster / drop outliers
largest_cluster = names(rev(sort(table(clu))))[1]
ww = which(clu == largest_cluster)
reduced_expression = exp[,ww]
reduced_series = series[ww]

# outlier detection
outlier_cluster = names(rev(sort(table(clu))))[2]
ww = which(clu == outlier_cluster)
outliers= colnames(exp[,ww])

There were no outliers in human TCGA dataset.

3. Human and mouse orthologs
ensembl <- useMart(biomart = "ENSEMBL_MART_ENSEMBL", 
                   host = "grch37.ensembl.org", 
                   path = "/biomart/martservice", 
                   dataset = "hsapiens_gene_ensembl")

filters <- listFilters(ensembl)
attributes <- listAttributes(ensembl)
attributes[grep("mmusculus", attributes$name),]



output <- c("ensembl_gene_id", 
            "mmusculus_homolog_ensembl_gene",
            "mmusculus_homolog_orthology_type",
            "mmusculus_homolog_perc_id", #%id. target Mouse gene 
identical to query gene
            "mmusculus_homolog_perc_id_r1") #%id. query gene identical 
to target Mouse gene

orthologs <- getBM(output, 
                   filter = "with_mmusculus_homolog",
                   values = TRUE,
                   mart = ensembl)

save(orthologs, file = "./results/orthologs.RData")
load(file = "./results/orthologs.RData")

# choose orthologs which have highest % identity
orthologs <- as.data.table(orthologs)
a <- orthologs[orthologs[, .I[which.max(mmusculus_homolog_perc_id)], 
by=mmusculus_homolog_ensembl_gene]$V1]
b <- a[a[, .I[which.max(mmusculus_homolog_perc_id_r1)], 
by=ensembl_gene_id]$V1]

orthologs_unique <- data.frame(b[, c(1, 2)])

save(orthologs_unique, file = "./results/orthologs_unique.RData")
load(file = "./results/orthologs_unique.RData")

human_orthologs <- expdata[which(rownames(reduced_expdata) %in% 
orthologs_unique$ensembl_gene_id),]
mouse_orthologs <- mouse_counts[which(rownames(mouse_counts) %in% 
orthologs_unique$mmusculus_homolog_ensembl_gene),]

mouse_orthologs$mmusculus_homolog_ensembl_gene <- 
rownames(mouse_orthologs)
mouse_orthologs <- merge(mouse_orthologs, orthologs_unique)
rownames(mouse_orthologs) <- mouse_orthologs$ensembl_gene_id
mouse_orthologs <- mouse_orthologs[, -71]

save(human_orthologs, file = "./results/human_orthologs.RData")
load(file = "./results/human_orthologs.RData")
save(mouse_orthologs, file = "./results/mouse_orthologs.RData")
load(file = "./results/mouse_orthologs.RData")

intersect_orthologs <- intersect(rownames(human_orthologs), 
rownames(mouse_orthologs))
save(intersect_orthologs, file = "./results/intersect_orthologs.RData")

human_intersect_orthologs <- human_orthologs[intersect_orthologs,]



mouse_intersect_orthologs <- mouse_orthologs[intersect_orthologs,]

save(human_intersect_orthologs, file = 
"./results/human_intersect_orthologs.RData")
save(mouse_intersect_orthologs, file = 
"./results/mouse_intersect_orthologs.RData")

load(file = "./results/human_intersect_orthologs.RData")
load(file = "./results/mouse_intersect_orthologs.RData")

4. Variance Stabilizing Transformation
mvst <- 
varianceStabilizingTransformation(as.matrix(mouse_intersect_orthologs[,
-1]), blind = TRUE, fitType = "parametric")
save(mvst, file = "mvst.RData")
load(file = "mvst.RData")

hvst <- 
varianceStabilizingTransformation(assay(human_intersect_orthologs), 
blind = TRUE, fitType = "parametric")
save(hvst, file = "hvst.RData")
load(file = "hvst.RData")

4. PAM50 genes

BiomaRt PAM50 annotation

Aććording to supplementary information For each sample, filter-passed reads were 
aligned to the NCBI build 37 (hg19) human reference sequence (GRCh37-lite) using 
BWA.

To work with older referenće assembly grch37 I am using ćode from [this website] 
(https://davetang.org/muse/2012/04/27/learning-to-use-biomart/).

In mart outputs above, I am getting not perfećt number of genes. In the 
mart_output_name file there are only 47 external_gene_name values. Therefore I 
dećided to use mart_output_id with 51 external_gene_name values and now I will 
fix the annotation to have 50 unique values for ensembl_gene_id, 
external_gene_name and mmusćulus_homolog_ensembl_gene.

At the end of the ćhunk below, I ordered mart_output_id aććording to 
external_gene_name and dropped the first row where external_gene_name was 
AC217779.2 bećause this is not in PAM50 gene list.

mart_output_id file ćontains annotation for PAM50 genes ćolumn with:

• ensembl_gene_id

https://davetang.org/muse/2012/04/27/learning-to-use-biomart/
https://media.nature.com/original/nature-assets/nature/journal/v490/n7418/extref/nature11412-s1.pdf


• external gene name (ćorresponds to name of PAM50 ćentroids)
• mmusćulus_homolog_ensembl_gene
grch37 <- useMart(biomart="ENSEMBL_MART_ENSEMBL",
                  host="grch37.ensembl.org",
                  path="/biomart/martservice")

mart <- useMart(biomart="ENSEMBL_MART_ENSEMBL",
                host="grch37.ensembl.org",
                path="/biomart/martservice",
                dataset="hsapiens_gene_ensembl")

mart_output_id <- getBM(attributes=c("ensembl_gene_id", 
"mmusculus_homolog_ensembl_gene", "external_gene_name"),
                     filters = "entrezgene",
                     values = pam50$centroids.map$EntrezGene.ID,
                     mart = mart)

mart_output_name <- getBM(attributes=c("ensembl_gene_id", 
"mmusculus_homolog_ensembl_gene", "external_gene_name"),
                     filters = "external_gene_name",
                     values = rownames(pam50$centroids.map),
                     mart = mart)

mart_output_id <- 
mart_output_id[order(mart_output_id$external_gene_name),]
mart_output_id <- mart_output_id[-1,]

I need to ćhoose whićh mmusćulus_homolog_ensembl_gene to drop. There are 
duplićates of MIA and triplićates of NAT1. The dropping was done aććording to the 
results of manual searćh of [MGI Mouse Vertebrate Homology database] 
(http://www.informatićs.jax.org/homology.shtml).

Firstly I dropped mouse ENSMUSG00000095538 gene, bećause MIA ortholog is 
ENSMUSG00000089661.

In mouse there are 3 NAT1 homologs (Nat1. Nat2, Nat3) and the one with the 
highest varianće (ENSMUSG00000051147, Nat2) is ćhosen for the further analysis. 
Therefore, rows 30 and 31 were also removed. At the end, the information about 
missing genes were manually added.

# drop mouse ENSMUSG00000095538 gene
rownames(mart_output_id) <- seq(1, 53)
mart_output_id <- mart_output_id[-32,]

# Remove version number in GeneID column
rownames(mouse_raw_counts) <- gsub("\\..*","", mouse_raw_counts$GeneID)

# remove control_1966 (alinment is not okay with this one)
mouse_raw_counts <- mouse_raw_counts[, -7]

http://www.informatics.jax.org/homology.shtml


# NAT1 duplicates, choosing one gene with highest variance
nat <- 
mart_output_id[which(mart_output_id$external_gene_name=="NAT1"),"mmuscu
lus_homolog_ensembl_gene"]
var <- matrixStats::rowVars(as.matrix(mouse_raw_counts[nat,-1]))

# drop mouse ENSMUSG00000025588 and ENSMUSG00000056426 genes
rownames(mart_output_id) <- seq(1, 52)
mart_output_id <- mart_output_id[-c(37,38),]
rownames(mart_output_id) <- seq(1, 50)

Sinće gene synonyms exist, there is some inćonsistenćy in naming. Therefore I 
replaćed NUF2, NDC80 and ORC6 with their synonyms CDCA1, KNTC2 and ORC6L 
respećtively and ordered mart_output_id file alphabetićally aććording to 
external_gene_name.

mart_output_id$external_gene_name[which(mart_output_id$external_gene_na
me == "NUF2")] <- "CDCA1"
mart_output_id$external_gene_name[which(mart_output_id$external_gene_na
me == "NDC80")] <- "KNTC2"
mart_output_id$external_gene_name[which(mart_output_id$external_gene_na
me == "ORC6")] <- "ORC6L"

mart_output_id <- 
mart_output_id[order(mart_output_id$external_gene_name),]
rownames(mart_output_id) <- seq(1:50)

identical(mart_output_id$external_gene_name, rownames(pam50$centroids))

# there are two possible human orthologs to mouse gene  
ENSMUSG00000051147, here manually put ENSG00000156006 instead of 
ENSG00000171428
mart_output_id[39,1] <- "ENSG00000156006"

save(mart_output_id, file = "./results/mart_output_id.RData")
load(file = "./results/mart_output_id.RData")



Appendix B

Genefu modification

Ivna Ivanković


Genefu paćkage was modified to subtype RNA sequenćed mouse breast tumors in 
relation to human tumors by adapting PAM50 gene expression signature.

It was modified to subtype RNA-Seq data instead of mićroarray data as an input by 
manually ćalćulating PAM50 ćentroids spećifić to the set of downloaded human 
breast ćanćer samples from the TCGA. These ćentroids were used to subtype RNA 
sequenćed mouse breast tumors in relation to intrinsić subtypes of human breast 
tumors.

1. Batch correction

Information on series according to GEO (Gene Expression Omnibus)

First, I will ćorrećt for batćh effećt in mouse dataset. Then, I will ćombine human 
and mouse datasets and ćorrećt them for organism type.

Mouse and human data is merged and corrected for organism type.
load(file = "hvst.RData")
load(file = "mvst.RData")

load(file = "mart_output_id.RData")
load(file = "series_filtered.RData")
series_filtered <- series_filtered[-c(which(series_filtered == 
"GSE81380"))]
load(file = "sample.info.RData")

mouse <- Seurat::CreateSeuratObject(raw.data = mvst, min.cells = 0, 



min.genes = 0, 
                            project = "Mouse_RNAseq",
                            normalization.method = NULL)

# add information about library type preparation method into meta.data 
slot
librarytype <- c(rep("ribozero", 9), rep("polya", 25), rep("polya", 
48))
mouse@meta.data$librarytype <- librarytype

# add information about strand specificity into meta.data slot
strandspecificity <- c(rep("non", 9), rep("non", 6), rep("specific", 
4), 
                     rep("non", 4), rep("specific", 2), rep("non", 9), 
rep("non", 48))
mouse@meta.data$strandspecificity <- strandspecificity

mouse <- Seurat::ScaleData(object = mouse, 
                   check.for.norm = FALSE,
                   vars.to.regress = "librarytype", 
"strandspecificity",
                   model.use = "linear")

# merge human and mouse data, and correct for organism type
vst <- cbind(mouse@scale.data, hvst)

both <- Seurat::CreateSeuratObject(raw.data = vst, min.cells = 0, 
min.genes = 0, 
                            project = "Both_RNAseq",
                            normalization.method = NULL)

# add information about organism into meta.data slot
organism <- c(rep("mouse", 82), rep("human", 1186))
both@meta.data$organism <- organism

both <- Seurat::ScaleData(object = both, 
                   check.for.norm = FALSE,
                   vars.to.regress = "organism",
                   model.use = "linear")

2. Calculate centroids
I am loading both.RData file whićh is Seurat objećt made in data.preparation.Rmd
sćript. Short desćription: I used varianće stabilizing transformation to transform 
mouse and human values separately. Then, transformed mouse values were 
ćorrećted for library type and strand spećifićity using Seurat SćaleData funćtion. 
Then, mouse and human data were merged and ćorrećted for organism type again 
using Seurat SćaleData funćtion.



setwd("home/R/project")

# merged, VST, batch corrected human and mouse data
load(file = "both.RData")
# supplementary information for human data contain the information 
about PAM50 subtypes
load(file = "sample.info.RData")
# PAM50 annotation obtained with biomaR
load(file = "mart_output_id.RData")

3. Cross-Validation
# subsetting only human data according to indices from merged dataset
human.data <- both@scale.data[, 83:1268]
sample.info <- sample.info[colnames(trainData), ]

# subset only pam50 genes from the whole dataset
pam50.genes <- human.data[which(rownames(human.data) %in% 
mart_output_id$ensembl_gene_id), ]
# choose only human tumor samples (remove healthy) that have 
information about pam50 subtype in sample.info 
pam50.val <- pam50.genes[,-
c(which(sample.info$subtype_BRCA_Subtype_PAM50 == "Healthy"))]

### 10-fold cross validation 
yourdata <- pam50.val

#Randomly shuffle the data
yourdata <- yourdata[,sample(ncol(yourdata))]
#Create 10 equally size folds
folds <- cut(seq(1,ncol(yourdata)),breaks = 10,labels = FALSE)
#Perform 10 fold cross validation
for(i in 1:10){
  #Segement your data by fold using the which() function 
  testIndexes <- which(folds == i,arr.ind=TRUE)
  testData <- yourdata[, testIndexes]
  trainData <- yourdata[, -testIndexes]
}

4. Manually calculate centroids based on TCGA data

For eaćh subtype ćentroids are ćalćulated by averaging the expression values for 
PAM50 genes. I do that by grouping by subtypes, filtering eaćh subtype and 
ćalćulating means for eaćh gene with ćolMeans funćtion. Every subtype is stored in 
one data.frame, at the end I ćombine them and order genes aććording to alphabetićal
order of gene names. I save the results as tcga.centroids.



# subsetting only human data according to indices from merged dataset
human.data <- both@scale.data[, 83:1268]

human.data <- trainData
sample.info <- sample.info[colnames(trainData), ]

# subset only pam50 genes from the whole dataset
pam50.genes <- human.data[which(rownames(human.data) %in% 
mart_output_id$ensembl_gene_id), ]
# choose only human tumor samples (remove healthy) that have 
information about pam50 subtype in sample.info 
pam50.val <- pam50.genes[,-
c(which(sample.info$subtype_BRCA_Subtype_PAM50 == "Healthy"))]
# add column with subtype
pam50.sub <- cbind(t(pam50.val), 
                   subtype = data.frame(subtype = 
sample.info$subtype_BRCA_Subtype_PAM50[-
c(which(sample.info$subtype_BRCA_Subtype_PAM50 == "Healthy"))]))

basals <-�  pam50.sub  %>%
  group_by(subtype) %>%
  filter(subtype=="Basal") 
basals <- colMeans(basals[,-51])

her2 <- pam50.sub %>%
  group_by(subtype) %>%
  filter(subtype=="Her2") 
her2 <- colMeans(her2[,-51])

lumA <- pam50.sub %>%
  group_by(subtype) %>%
  filter(subtype=="LumA") 
lumA <- colMeans(lumA[,-51])

lumB <- pam50.sub %>%
  group_by(subtype) %>%
  filter(subtype=="LumB") 
lumB <- colMeans(lumB[,-51])

normal <- pam50.sub %>%
  group_by(subtype) %>%
  filter(subtype=="Normal") 
normal <- colMeans(normal[,-51])

tcga.centroids <- t(rbind(Basal=basals, 
                          Her2=her2, 
                          LumA=lumA, 



                          LumB=lumB, 
                          Normal=normal))

# order calculated centroids according to order in mart_output_id
# this order is alphabetical regarding to gene names, the same as in 
genefu pam50 dataset
tcga.centroids <- tcga.centroids[match(mart_output_id[,1], 
rownames(tcga.centroids)),]

# and assign gene names to calculated centroids
# now they look like genefu pam50 centroids
rownames(tcga.centroids) <- mart_output_id[,3]

# and save them
save(tcga.centroids, file = "tcga.centroids.RData")
load(file = "tcga.centroids.RData")

5. Prepare mouse data
To use manually ćalćulated ćentroids I am replaćing default genefu ćentroids stored 
in pam50.robust$centroids with my manually ćalćulated ćentroids 
tcga.centroids. That way I ćan normally use molecular.subtyping funćtion.

# make variable with mouse data for subtyping
pam50.mouse <- both@scale.data[, 1:82][which(rownames(both@scale.data[,
1:82]) %in% mart_output_id$ensembl_gene_id), ]

Ordering genes to matćh the order of PAM50 ćentroids. This step is not nećessary if 
I provide gene IDs in annot argument inside molecular.subtyping funćtion. But I 
dećided to go that way bećause I have all information in mart_output_id file.

pam50.mouse <- pam50.mouse[match(mart_output_id[,1], 
rownames(pam50.mouse)),]
rownames(pam50.mouse) <- mart_output_id[,3]

annotation <- mart_output_id[, c(1,3)]

6. Genefu molecular subtyping

Apply genefu intrinsic.cluster.predict funćtion to ćlassify the subtypes aććording 
to manually ćalćulated ćentroids from TCGA breast ćanćer RNAseq data. I 
transformed my mouse data bećause the funćtion requires samples to be in rows 
and genes in ćolumns.

# replace centroids from genefu with manually calculated centroids 
based on TCGA RNA-Seq data
pam50.robust$centroids <- tcga.centroids
pam50$centroids <- tcga.centroids



# and subtype mouse tumors
preds <- intrinsic.cluster.predict(sbt.model=pam50,data=t(pam50.mouse),
annot=annotation,do.mapping=FALSE, do.prediction.strength=TRUE, 
verbose=TRUE)

table(preds$subtype)
data.frame(preds$subtype)

# probabilities to belong to each subtype
preds$subtype.proba

```



Appendix C

Seurat modification

Ivna Ivanković


Seurat paćkage was modified to integrate human and mouse bulk RNA sequenćed 
data based on the set of PAM50 genes and used to determine intrinsić breast tumor 
subtypes.

1. Make Seurat object

Make separate human and mouse Seurat objećts out of VST data with 
CreateSeuratObject funćtion.

# load requierd packages
library(Seurat)
library(matrixStats)
library(dplyr)
library(DESeq2)
library(gplots)
library(tibble)

# set working directory
setwd("home/R/project")

# human samples, VST values for orthologs
load(file = "hvst.RData")
# information about PAM50 subtypes for human tumors
load(file = "sample.info.RData")

# mouse samples, VST values for orthologs
load(file = "mvst.RData")
# dataframe with PAM50 genes
load(file = "mart_output_id.RData")
# information about mouse samples downloaded from ARCHS4 database
load(file = "./results/series_filtered.RData")
# this series are mouse xenograft models, those are removed:
# since batch GSE81380 are HER2+ human breast tumors, harvested from 
SCID mice 2-days post treatment initiation, 
[source](https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE81380) I
will remove those samples from mouse dataset
series_filtered <- series_filtered[-c(which(series_filtered == 
"GSE81380"))]



# remove healthy samples from human dataset
hvst <- hvst[, -c(which(sample.info$subtype_BRCA_Subtype_PAM50 == 
"Healthy"))]
sample.info <- sample.info[-
c(which(sample.info$subtype_BRCA_Subtype_PAM50 == "Healthy")),]

### CREATE SEURAT OBJECT
mouse <- CreateSeuratObject(raw.data = mvst, min.cells = 0, min.genes =
0, 
                            project = "Mouse_RNAseq",
                            normalization.method = NULL)

human <- CreateSeuratObject(raw.data = hvst, min.cells = 0, min.genes =
0, 
                            project = "Human_RNAseq",
                            normalization.method = NULL)

### MOUSE
mouse <- FindVariableGenes(object = mouse)
length(x = mouse@var.genes)

mouse <- ScaleData(object = mouse, 
                   check.for.norm = FALSE, 
                   model.use = "linear")

### HUMAN
human <- FindVariableGenes(object = human)
length(x = human@var.genes)

human <- ScaleData(object = human, 
                   check.for.norm = FALSE, 
                   model.use = "linear")

2. Merge human and mouse datasets

Human and mouse Seurat objećts are merged in one seurat objećt ćalled merged 
and Canonićal Correlation Analysis is run with funćtion RunCCA. Information about 
PAM50 molećular subtype for human data and phenotype information for mouse 
data are added to @meta.data slot of Seurat objećt.

# subset the list of PAM50 genes
pam50 <- mart_output_id[,1]

# gene selection
mouse_hvg <- rownames(x = head(x = mouse@hvg.info,  n = 10))
human_hvg <- rownames(x = head(x = human@hvg.info, n = 10))
hvg.union <- union(x = mouse_hvg, y = human_hvg)



# adding organism information into meta.data slot
human@meta.data[, "organism"] <- "Human"
mouse@meta.data[, "organism"] <- "Mouse"

# integration of human and mouse dataset based on PAM50 genes
merged <- RunCCA(object = human, 
                 object2 = mouse,
                 genes.use = pam50)

# just change name
sample.info$subtype_BRCA_Subtype_PAM50[sample.info$subtype_BRCA_Subtype
_PAM50 == "Normal"] <- "Normal-like"

# adding information about human subtypes and mouse samples into 
meta.data slot
merged@meta.data$phenoinfo <- c(sample.info$subtype_BRCA_Subtype_PAM50,
rep("Mouse control", 9), rep("Mouse tumor", 73))

3. Canonical Correlation Analysis

The good number of dimensions for my dataset is either 4 or 5. This is determined 
based on DimHeatmap plot. I was doing analysis with only PAM50 genes.

# visualize results of CCA plot CC1 versus CC2 and look at a violin 
plot
p1 <- DimPlot(object = merged, reduction.use = "cca", group.by = 
"organism", pt.size = 0.5, 
              do.return = TRUE)
p2 <- VlnPlot(object = merged, features.plot = "CC1", group.by = 
"organism", 
              do.return = TRUE)
plot_grid(p1, p2)

# determine the number of dimensions to use in further analysis
PrintDim(object = merged, reduction.type = "cca", dims.print = 1:2, 
genes.print = 10)

DimHeatmap(object = merged, reduction.type = "cca", cells.use = 500, 
dim.use = 1:9, 
           do.balanced = TRUE)

# now we align the CCA subspaces, which returns a new dimensional 
reduction called cca.aligned
merged <- AlignSubspace(object = merged, reduction.type = "cca", 
grouping.var = "organism", 
                        dims.align = 1:6)

# visualize the aligned CCA and perform integrated analysis
p1 <- VlnPlot(object = merged, features.plot = "ACC1", group.by = 



"organism", 
              do.return = TRUE)
p2 <- VlnPlot(object = merged, features.plot = "ACC2", group.by = 
"organism", 
              do.return = TRUE)
plot_grid(p1, p2)

# now we can run a single integrated analysis on all cells
merged <- RunTSNE(object = merged, reduction.use = "cca.aligned", 
dims.use = 1:6, 
                do.fast = TRUE)

# SNN clustering
merged <- FindClusters(object = merged, reduction.type = "cca.aligned",
dims.use = 1:6, 
                       resolution = 0.6, force.recalc = TRUE,
                       save.SNN = TRUE, k.param = 25)

# t-SNE plot of calculated centroids, in second plot points are colored
according to subtype
p1 <- TSNEPlot(object = merged, group.by = "organism", do.return = 
TRUE, pt.size = 2)
p2 <- TSNEPlot(object = merged, do.return = TRUE, pt.size = 2, group.by
= "phenoinfo")
plot_grid(p1, p2)

 TSNEPlot(object = merged)

# save plots as one pdf file 
pdf(file = "yyyymmdd_cca_integration.pdf", onefile = TRUE, width=13, 
height=10)
    
    plot(p1)
    plot(p2)
    plot_grid(p1, p2)
    
dev.off()

4. Clusters
Fetćhing the information about ćalćulated ćlusters and produćing a ćross-table.

clusters <- GetClusters(object = merged)
unique(clusters$cluster)

human.clusters <- data.frame(cbind(merged@meta.data$phenoinfo[1:1073], 
merged@meta.data$res.0.6[1:1073]))
table(human.clusters)



# interactive plot
t <- TSNEPlot(merged, pt.size = 2, do.return = T, do.hover =T, 
data.hover = "phenoinfo", group.by = "phenoinfo")
htmlwidgets::saveWidget(t, "tsne.html")
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