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Low-mass vector-meson production at forward rapidity
in p + p collisions at /s = 200 GeV
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The PHENIX experiment at the Relativistic Heavy lon Collider has measured low-mass vector-meson, o, p,
and ¢, production through the dimuon decay channel at forward rapidity (1.2 < |y| < 2.2)in p + p collisions
at+/s = 200 GeV. The differential cross sections for these mesons are measured as a function of both p; and
rapidity. We also report the integrated differential cross sectionsover 1 < py <7 GeV/cand 1.2 < |y| < 2.2:
do/dy(w+p— puu) =80+6(stat) £ 12(syst)nb and do/dy(¢p— puu) =27+ 3(stat) +4(syst)nb. These

results are compared with midrapidity measurements and calculations.

DOI: 10.1103/PhysRevD.90.052002

I. INTRODUCTION

Low-mass vector-meson (LVM) production in p + p
collisions is an important tool to study QCD, providing data
to tune phenomenological soft QCD models and to com-
pare to hard perturbative QCD calculations. Various experi-
ments [1-6] have studied LVM at different colliding
energies and in different kinematic regions.

In addition, LVM production in p + p collisions pro-
vides a reference for high-energy heavy-ion-collision
measurements. LVM studies provide key information on

"Deceased

"PHENIX Co-Spokesperson.
morrison@bnl.gov

*PHENIX Co-Spokesperson.
jamie.nagle @colorado.edu

PACS numbers: 13.20.Jf, 25.75.Dw

the hot and dense state of the strongly interacting matter
produced in such collisions. Among them, strangeness
enhancement [7], a phenomenon associated with soft
particles in bulk matter, can be accessed through the
measurements of ¢-meson production [8—13] and the
¢/(p + @) ratio. The measurement of the p spectral
function can be used to reveal in-medium modifications
of the hadron properties close to the QCD phase boundary
linked to chiral symmetry restoration [14—16]. However,
measuring the p spectral function in the two-muon channel
requires better mass resolution than is provided by the
muon spectrometers of the PHENIX experiment at the
Relativistic Heavy Ion Collider.

Having two muon spectrometers covering the rapidity
range 1.2 < |y| < 2.2, PHENIX is able to study vector-
meson production via the dimuon decay channel. Because
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there is no similar measurement in this kinematic regime at
this energy, the forward rapidity measurements are a
valuable addition to the database and are complementary
to previously published midrapidity results [1,2]. We report
the differential cross section as a function of py and
rapidity of (w+p) and ¢ mesons for 1 < p; <7GeV/c
and 1.2 < |y| < 2.2. Results presented in this paper are
based on the data sample collected in 2009 using the
PHENIX muon spectrometers in p + p collisions at
/s =200 GeV. The sampled luminosity of the data used
in this analysis corresponds to 14.1 pb~!.

II. EXPERIMENT

The PHENIX apparatus is described in detail in
Ref. [17]. This analysis uses the dimuon decay channel
of the low-mass vector mesons. The detectors relevant for
reconstruction and triggering are the two muon spectrom-
eters [18] and the two beam-beam counters (BBCs) in the
forward and backward rapidities.

The muon spectrometers, located behind an absorber
composed of 19 cm copper and 60 cm iron, include the
muon tracker (MuTr), which is in a radial magnetic field
with an integrated bending power of 0.8 Tesla-meter,
followed by the muon identifier (MulD). The muon
spectrometers cover the range 1.2 < |n| < 2.2 over the full
azimuth. The MuTr comprises three sets of cathode strip
chambers while the MulD comprises five planes of larocci
tubes interleaved with steel absorber plates. The composite
momentum resolution, ép/p, of particles in the analyzed
momentum range is about 5%, independent of momentum
and dominated by multiple scattering. The LVM mass
resolution is 85 MeV/c?. Muon candidates are identified
by reconstructed tracks in the MuTr matched to MulD
tracks that penetrate through to the last MulD plane. The
minimum momentum of a muon to reach the last MulD
plane is ~2 GeV/c.

The BBC, comprising two arrays of 64 Cerenkov
counters covering the pseudorapidity range 3.1 <|y|<3.9,
were used to measure the collision vertex along the beam
axis (zyy) with 2-cm resolution in addition to providing a
minimum-bias (MB) trigger.

III. DATA ANALYSIS

The data set for this analysis was recorded in 2009 using
a MB trigger that required at least one hit in each of the
BBCs. Additionally, the MulD Level-1 dimuon trigger was
used which required that at least two tracks penetrate
through the MulD to its last layer.

A set of quality assurance cuts is applied to the data to
select good muon candidates and improve the signal-to-
background ratio. The BBC collision z vertex is required to
be within +30 cm of the center of the interaction region
along the beam direction. The MuTr tracks are matched to
the MulD tracks at the first MulD layer in both position and
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angle. In addition, the track trajectory is required to have at
least 8 of 10 possible hits in the MulD.

The invariant mass distribution is formed by combining
muon candidate tracks of opposite charge. In addition to
low-mass vector mesons, the invariant mass spectra contain
uncorrelated and correlated backgrounds. The uncorrelated
backgrounds arise from random combinatoric associations
of unrelated muon candidates while the correlated back-
grounds arise from open charm decay (e.g., DD where both
decay semileptonically to muons), open bottom decay,
and @ Dalitz decays and the Drell-Yan process. The
correlated heavy-flavor background is small (see Sec. IV).

Traditionally, the uncorrelated background is estimated
and subtracted by two methods. The first method uses the
mass spectra of the like-sign pairs that are reconstructed
within the same event. The other forms unlike-sign and
like-sign pairs from different events and is often referred to
as the “mixed-event method.” In the like-sign method, the
like-sign pairs are expected to originate from combinatorial
processes; in addition there can be correlated pairs within a
single event [19]. In the case of the mixed-event method,
unlike-sign pairs are formed from tracks from different
events which provide purely combinatorial pairs [19,20].
The results of using these two methods are shown in Fig. 1.

It is clear from Fig. 1 that the two methods are not able to
reproduce the background in the low-mass region. Hence,
we introduce a new data-driven technique to extract the
background in the low-mass region.

It was established from simulation that the background
in the low-mass region is dominated by 1) K/z — u*/~
decays that occur before reaching the absorber, 2) punch-
through hadrons with high p; that are misidentified as
muons and 3) muons that result from decays in the muon
tracker volume. The track pairs from these backgrounds
produce a broader distribution of y2, which allows the
subtraction of these backgrounds utilizing the y2,, variable.

000 [ —o— unlike sign - like sign &

— 5 -

N§ [ —=a— unlike sign — mixed s

g 4000 | —*— unlike-sign :

8 -

8 3000 -
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= - . : 8
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ke) C 0'." 230 -

< 1000 -6, ® @@"““""“-“Zg 8
. I3
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FIG. 1 (color online). The unlike-sign dimuon invariant mass
spectra before background subtraction (solid black points), after
subtracting mixed-events background (empty red triangles) and
after subtracting like-sign background (empty blue circles).
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The y2,, is the result of a simultaneous fit of the two muon
tracks with a common vertex that comes from the BBC
measured event vertex position. This procedure separates
the foreground and background spectra by applying a cut
of y2, < 3.6 to extract foreground spectra and a cut of
22 > 3.6 to extract background spectra. The value,
)(%tx,cm = 3.6, was selected such that we retain as much
of the signal as possible while still allowing enough
statistics in our background sample.

Figure 2(a) shows the unlike-sign pairs y2,
distribution, which is narrower in the resonance region
dominated by prompt dimuons (e.g., in the J/y region,
25 <M, <37 GeV/ ¢?), and wider in the nonreso-
nance regions. However, the y2, distribution for the like-
sign pairs is the same in both mass regions. In addition, the
unlike-sign y2,, distribution agrees very well with that of
the like-sign in the nonresonance region. These observa-
tions help support the hypothesis that higher-valued y2,
entries in both the unlike-sign and like-sign spectra are
coming primarily from hadronic backgrounds.
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FIG. 2 (color online). The y2, distributions for the nonreso-
nance mass region (red), and signal (J/y) mass region (blue).
The unlike-sign pairs are shown in panel (a) while the like-sign
pairs are shown in panel (b). In each panel, the histograms are
normalized to the total number of events.
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To extract the LVM signal, we first select the foreground
(unlike-sign pairs with y2,, < 3.6) and a subset of unlike-
sign background events by selecting pairs with y2, > 3.6.
We then renormalize this subset of background events to
obtain a spectrum which represents the unlike-sign back-
ground in the foreground spectra with y2, < 3.6. The
renormalization is done using two methods: one uses
unlike-sign pairs and the other uses like-sign pairs. In
the first method, which uses the unlike-sign pairs, the ratio
of the spectra of y2,, < 3.6 and y2,, > 3.6 pairs is fitted by a
polynomial in the nonresonance region and the unlike-sign
22« > 3.6 spectra are then multiplied by the fit function. In
the second method, the ratio of the spectra of y2,, < 3.6 and
12« > 3.6 from like-sign pairs is used directly to give the
shape of the background in the resonance region but is then
further multiplied by another normalization factor which
accounts for small differences between the like-sign and
unlike-sign distributions. This second normalization factor
(C) is derived by forcing the integrated signal to be zero in
the nonresonance mass range:

2.5 4
[N

3

2.5

—Cx [ TN (M) <N+2+/" (M)/NH (M)) ~0

13 Xix Xin<3.6 Z%{x>3'6
(1)

where N*~(M) and N**/==(M) are the number of unlike-
sign and like-sign pairs, respectively, with the indicated y2,
cut. Background estimates using these two methods are
shown in Fig. 3. Both estimates of the background match
the nonresonance region of the unlike-sign spectrum.
However, because the second method includes a two-step
normalization which introduces higher statistical fluctua-
tions on the background subtraction, the second method is
only used for a cross check. The insert in Fig. 3(b) shows
that the acceptance and reconstruction efficiency drops
quickly at low mass which explains the higher J/y yield
compared to the low-mass vector mesons.

The unlike-sign dimuon spectra, with )(3“ < 3.6, in the
region of interest (0 < M,+,- <2 GeV/c?), have contri-
butions from three mesons, @, p, and ¢. The ¢ meson is
partly resolved while @ and p mesons are completely
merged; hence, the combined yield for w and p mesons was
extracted. It was found that the reconstructed mass spectra
of the simulated @ and ¢ are fitted well by Gaussian
distributions, while in the case of p, a Breit-Wigner
distribution matched the mass spectrum, which motivated
using these distributions to fit the invariant mass spectra.

The background-subtracted dimuon spectra in the low-
mass region, 0.3 < M,:,- < 2.5 GeV/c?, are fitted with
two Gaussian distributions and a Breit-Wigner distribution.
Note that the Breit-Wigner form is used as an empirical fit
function; I" is not meant to reflect the actual width of p.
Other forms, such as a Gaussian distribution, were used for
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FIG. 3 (color online). The unlike-sign dimuon invariant mass
spectrum (solid red points) and the background spectrum (empty
blue circles) normalized using the first normalization method in
panel (a), and using the second normalization method in panel
(b). The insert in panel (b) shows the muon arms acceptance and
reconstruction efficiency.

p with less than a 2% change in the yield of ¢. The means
and widths (I" for a Breit-Wigner distribution) of the
reconstructed @, p and ¢ were extracted using the
PHENIX simulation chain and used as a first approxima-
tion in fitting the data. The masses and widths are free
parameters in the fit to account for small detector effects
which result in < 2% variations with respect to the Particle
Data Group values. It is important to note that the
parameters from data and simulation converged to the
same values within uncertainties without any systematic
shifts.

To ensure the robustness of the yield extraction, an
additional yield extraction procedure is employed. The
background is fitted with a polynomial and the result of the
fit is added to two Gaussian distributions and a Breit-
Wigner distribution which are then fitted to the dimuon
invariant mass spectrum while constraining the added
function with the background spectra fit parameters. The
background normalization is a free parameter.

Figure 4 shows an example of the different yield
extraction methods. Figure 4(a) shows the unlike-sign
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dimuon invariant mass spectrum (solid black circles) and
the background spectrum (empty blue circles), while
Fig. 4(b) shows the same background spectrum fitted with
a fourth-order polynomial. Figure 4(c) shows the unlike-
sign dimuon invariant mass spectrum after subtracting the
normalized background spectrum, shown in Fig. 4(b), fitted
by two Gaussian distributions and a Breit-Wigner distri-
bution. As a cross check, a first-order polynomial was
added to the fit and the yields re-extracted and the resulting
yields changed by less than 1%. Figure 4(d) shows the
unlike-sign dimuon invariant mass spectrum without back-
ground subtraction fitted by two Gaussian distributions, a
Breit-Wigner distribution and a fourth-order polynomial
constrained from the fit results shown in Fig. 4(b).
The yields extracted using the two methods illustrated in
Figs. 4(c) and 4(b) gave consistent results, well within
uncertainties.

The data are binned as a function of py over the range
1 < pr<7GeV/c for the rapidities 1.2 < |y| <2.2.
In addition, the data integrated over the p; range
1 < py <7 GeV/c were studied as a function of rapidity.
The raw yields in this measurement were extracted
using background subtraction as well as background fit
methods, and in the case of the background fit, several
polynomials of different orders were attempted. As an
example, the invariant mass spectra are fitted by the
function that includes a fourth-order polynomial, as defined
below:

f(x) =058 xN, x BW(x,M,,,,.T,)

N, Ny
+\/EO- G()C,Merp,O'w) +\/2_TG¢G(X,M¢,G¢)
+ pold (2)

where BW and G are Breit-Wigner and Gaussian functions,
respectively, and pol4 is a fourth-order polynomial. N, and
N are the yields of w and ¢, and M, , and M, are their
mean values. The fit functions of @ (Gaussian) and p
(Breit-Wigner) are constrained to have the same mean
value and the ratio of their yields, N,/N,, is set to 0.58.
The factor 0.58 is the ratio of p and @ cross sections,
0,/0, = 1.15£0.15 [21], multiplied by the ratio of their
branching ratios [22]. As a cross check, the ratio N,/N,,
was unconstrained in the fit and the yield of ¢ changed by
less than 3%. The results of fitting the invariant mass
spectra for different p; bins at 1.2 < y < 2.2 are listed in
Table 1.

The extracted yields of w + p and ¢ were consistent
among all fits. Therefore, the yields and the uncertainties of
the fit with the best > are used in the differential cross
section calculations. The variations among the yields of the
fit with the best ¥ and those of the other fits are considered
as systematic uncertainties on the yield extraction.
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Raw unlike-sign dimuon spectra (solid black circles) along with normalized background (empty blue circles)

separated by yZy oy in panel (a). Panel (b) shows the normalized background spectrum fitted with a fourth-order polynomial. Panels
(c) and (d) show the fitted spectra with (left) and without (right) background subtraction.

The acceptance and reconstruction efficiency (Ag,.) of
the muon spectrometers, including the MulD trigger effi-
ciency, is determined by individually running PYTHIA 6.421
(Default) [23] generated w, p, and ¢ through a full GEANT

simulation of the PHENIX detector. The simulated vertex
distribution was tuned to match that of the 2009 data. The
simulated events are reconstructed in the same manner as the
data and the same cuts are applied as in the real data analysis.

TABLE 1. The results of fitting the foreground spectrum by a function that includes two Gaussian distributions, a Breit-Wigner
distribution and a fourth-order polynomial, over the mass range 0.3 < M,,, < 2.0 GeV/ c? for the listed p; bins.

pr(GeV/c) 1.0-2.0 2.0-2.5 2.5-3.0 3.0-4.5 4.5-7.0

N, (68 £ 5) x 10! (63 +8) x 10! (39 £ 4) x 10! (36 £ 5) x 10! (4.8 £1.2) x 10!
M, ,(GeV/c?) (774 1) x 1072 (77 +1) x 1072 (7741) x 1072 (76 +1) x 1072 (80 42) x 1072
I,(GeV/c?) (18 4+4) x 1072 (22 +4) x 1072 (22 4+2) x 1072 (18 +-4) x 1072 (19 4+2) x 1072
6,(GeV/c?) (8.8 +1.3) x 1072 (85+8) x 1073 (8.8 4+ 1.2) x 1072 (8.1 +1.3)x 1072 (724 1.6) x 1072
Ny (39 £ 8) x 10! (53 +£6) x 10! (32 +4) x 10! (28 £3) x 10! 38+ 10

My (GeV/c?) (100 £ 1) x 1072 (99 + 1) x 1072 (100 £ 1) x 1072 (100 £2) x 1072 (106 £ 6) x 1072
6,4(GeV/c?) (75+14)x1072 (88+13)x 1072 (884 1.1)x 102  (8.8+£1.0)x 1072  (72+1.1)x 1072
p0 (20 £+ 4) x 10! (5.9 +3.8) x 10! (13 4 3) x 10! (9.5 +2.8) x 10! 8.6+ 1.3

pl (3.8 +£2.0) x 10? (3.0 + 1.8) x 10? (=25+13)x 102 (-1.8 4 1.3) x 10? —-15+£22

p2 (6.2 +£3.1) x 10 (—4.9 £2.5) x 102 (3.4 £ 1.8) x 10? (2.2 4+ 1.8) x 10? 39+£15

p3 (3.6 £2.0) x 10? (2.6 + 1.4) x 10? (=2.1+£1.0) x 10> (=13 4+ 1.0) x 10? -35+1

p4 (6.7 +4.3) x 10! (=4.7£2.9) x 10! (4.6 £2.1) x 10! (2.6 £2.1) x 10! 9.2+ 0.4
7*/d.of 432/33 28.1/33 24.7/33 29.2/33 39.7/33

052002-7



A. ADARE et al.

10p 107
9; - Agrec
8;* - 102
7;7 .. -

S 6f amm- -

8 sf ﬁ- 1o°

v.\ 4; |

Q E =
3 N el 10
i —
1§ | N | | | | 10-5
%2 1 0 1 2 3

y

FIG. 5 (color online).
and pr (y axis) for w.

The Ae,. as a function of rapidity (x axis)

The p7 and rapidity distributions of the generated events
match the measured ones very well. The insert in Fig. 3
shows the Ag . as a function of invariant mass, while Fig. 5
shows the Ag,.. as a function of p; and rapidity for w, as an
example; the Aeg,.. for p and ¢ look very similar. The py-
dependent Ae.. drops quickly at lower pr which is the
reason for limiting this study to pr > 1 GeV/c.

IV. RESULTS

The differential cross section is evaluated according to
the following relation:

do 1 N o
N €)

BR =
dydpr AyApr Agrceppe Ny

where oppc is the PHENIX BBC sampled cross section,
23.0+2.2 mb at \/E = 200 GeV, which is determined
from the van der Meer scan technique [24]. BR is
the branching ratio to dimuons [BR(w — uu) =
(9.043.1) x 107>, BR(p — pu) = (4.55+0.28) x 1073,
and BR(¢p — pp) = (2.87 £0.19) x 107*] [22]. egpc =
0.795 £ 0.02, is the BBC efficiency for hard scattering
events [25]. NBEC is the number of MB events, and N is the
number of the observed mesons. In the pr-dependent study,
the LVM yields were extracted for each arm separately and
the weighted average of the two arms was used in the
differential cross section calculations. Ae,.. is the accep-
tance and reconstruction efficiency.

The @ and p yields are measured together and the
pr-dependent and rapidity-dependent differential cross
sections are reported as BR(w — uu) x d*c/dydpr(w) +
BR(p — uu) x d*c/dydpr(p) and BR(w — pp) x do/
dy(w) + BR(p — uu) x do/dy(p), respectively, to mini-
mize the contribution of uncertainties from branching
ratios and total cross sections needed to calculate the
absolute (w + p) differential cross section. The Ag,. for
w + p is taken as the weighted average of the individual

PHYSICAL REVIEW D 90, 052002 (2014)

Ag,., where the averaging is done based on w and p
branching ratios.

The systematic uncertainties associated with this
measurement can be divided into three categories based
upon the effect each source has on the measured results.
All uncertainties are reported as standard deviations.
Type-A: point-to-point uncorrelated uncertainties allow
the data points to move independently with respect to
one another and are added in quadrature with statistical
uncertainties, and include a 3% signal extraction uncer-
tainty. The 3% signal extraction uncertainty is the average
variation between the results from the different yield
extraction fits. Type-B: point-to-point correlated uncertain-
ties allow the data points to move coherently together,
though not by a simple single multiplicative factor. These
systematic uncertainties include a 4% uncertainty from
MulD tube efficiency and 2% from MuTr overall effi-
ciency. An 8% uncertainty on the yield is assigned to
account for a 2% absolute momentum-scale uncertainty,
which was estimated by measuring the J/w mass.
A 9% (7%) uncertainty is assigned to the —2.2 <y <
—1.2(1.2 < y < 2.2) rapidity due to the uncertainties in the
Ag,.. determination method itself. The Ag,.. at the lowest-
pr bin is small, as shown in Fig. 5, and sensitive to
variations in the slope of the input p; distribution which
affects the differential cross section calculations at this py
bin. To understand this effect, the py-dependent cross
section is fitted by three commonly used fit functions
(Hagedorn [26], Kaplan [27], and Tsallis [2]) over the py
range, 2 < pr <7 GeV/c, and the fitted functions are
extrapolated to the lowest-p; bin, 1 < py < 2 GeV/c. The
differences between the values extracted from these fits and
the measured one at the lowest-py bin is within 8%, and
hence a 8% systematic uncertainty is assigned to the
lowest-pr bin to account for these differences. For the
integrated and rapidity-dependent cross sections the 8%
uncertainty is assigned to all data bins because the lowest-
pr bin is dominant. Type-B systematic uncertainties are
added in quadrature and are shown as shaded bands on the
associated data points. Finally, type-C: an overall normali-
zation uncertainty of 10% was assigned for the BBC cross
section and efficiency uncertainties, which allow the data
points to move together by a common multiplicative factor.
These systematic uncertainties are listed in Table II.

The open charm contribution to the signal is a possible
source of systematic uncertainty. Even though the back-
ground-subtracted dimuon spectrum in Fig. 4(c) shows no
evidence of a remaining background, a Monte Carlo
simulation was carried out to verify that the open charm
contribution to the signal is negligible after background
subtraction. A single-particle PYTHIA simulation of open
charm was generated and run through the PHENIX
simulation chain. The charm differential cross section at
forward rapidity, do.:/dy|,_;¢ = 0.243 £ 0.013(stat) &
0.105(data syst)'004> (PYTHIA syst) mb [28], is used with
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TABLE II. Systematic uncertainties included in the invariant
yield and differential cross section calculations, where S (N) is for
the —2.2 <y < —1.2(1.2 < y < 2.2) rapidity. As explained in
the text, there is a 8% type-B systematic uncertainty due to small
acceptance that impacts the low-py region only which is not
listed below.

Type Origin Value (S/N)
A Signal extraction 3%

B MulD efficiency 4%

B MuTr efficiency 2%

B Aépee 9% /7%
B Absolute momentum scale 8%
Total Quadratic sum of (B) 13%/12%
C BBC efficiency (Global) 10%

an inclusive branching ratio, BR(D — u+ X) =0.176
[22]. The simulated events were then reconstructed
using identical code to that used in the real data analysis,
and after applying all cuts used in the analysis, the
surviving rate of open charm was negligible in comparison
to the low-mass vector-meson Yyields. Additionally, a
similar study of the # and w Dalitz decays showed that
they were negligible.

The differential cross sections for @ +p and ¢ as a
function of py are shown in Figs. 6 and 7, respectively, and
listed in Table III. The appropriate p; value where each
point was plotted is chosen such that the fit function, a
function selected to fit the py distribution, is equal to its
mean value [29]. The results are listed in the first column
in Table III. Figures 6 and 7 also include some standard
tunes of PYTHIA (ATLAS-CSC [30], default [23] and
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FIG. 6 (color online). (Top) pr-dependent differential cross
section vs py of w + p at rapidity, 1.2 < |y| < 2.2. The error bars
represent the statistical uncertainties, and the gray shaded band
represents the quadratic sum of type-B systematic uncertainties.
The data are compared with the PYTHIA ATLAS-CSC, default and
PRUGIA-11 tunes and PHOJET. (Bottom) Ratio between data and
models.
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FIG. 7 (color online). (Top) pr-dependent differential cross
section vs pr of ¢ at rapidity, 1.2 < |y| < 2.2. The error bars
represent the statistical uncertainties, and the gray shaded band
represents the quadratic sum of type-B systematic uncertainties.
The data are compared with the PYTHIA ATLAS-CSC, default and
PERUGIA-11 tunes and PHOJET. (Bottom) Ratio between data and
models.

PERUGIA-11 [31]) and PHOJET [32]. The bottom panels in
Figs. 6 and 7 show the ratio between the measurement
and the model predictions. The default PYTHIA tune was
based on eTe~ and pp data and we used CTEQSL parton
distribution functions. The PERUGIA-11 tune takes into
account the MB and underlying-event data at /s = 0.9
and 7 TeV from the Large Hadron Collider and the ATLAS-
csc was tuned on the Tevatron data for pp collisions at
\/E = 1.8 TeV. In addition, the transverse distribution for
the partons in the proton is described by a double-Gaussian
in the ATLAS-CSC tune while PERUGIA-11 uses a smoother
proton form factor which decreases the multiplicity fluc-
tuations. The PHOJET model investigates photon-photon
collisions in the framework of the two-component dual
parton model. The model contains contributions from
direct, resolved soft and hard interactions. However, it
only includes leading-order QCD processes (no W/Z, etc.)
and neither heavy-quark production nor dedicated high-p;
physics options.

These model predictions were also tested against pre-
viously published midrapidity data [2] as shown in Figs. 8
and 9. PYTHIA ATLAS-CSC and PERUGIA-11 tunes reproduce
the differential cross section at both midrapidity and
forward rapidity for @ and w + p, respectively, while
PHOJET under predicts the data in both cases. The
PYTHIA ATLAS-CSC tune reproduces the ¢ differential cross
sections at forward rapidities. The PYTHIA ATLAS-CSC and
PERUGIA-11 tunes and PHOJET fail to match the data below
1 GeV/c. Generally, PYTHIA and PHOJET seem to do a
better job reproducing w + p than ¢.

Figure 10 and Table IV show the differential cross
section as a function of rapidity for @ + p in Fig. 10(a)
and ¢ in Fig. 10(b), along with PYTHIA tunes (ATLAS-CSC,
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TABLE III.  Differential cross sections in b/(GeV/c) and py in (GeV/c¢) of w + p and ¢ at 1.2 < |y| < 2.2 with
statistical and type-A systematic uncertainties added in quadrature and type-B systematic uncertainties.

pr BR 0uipy BR &0y

2zpr  dydpy 2zpr dydpr

(GeV/e) [b/(GeV/c)] [b/(GeV/c)]

1.38 (8.41 4+ 0.67 £ 1.26) x 107" (2.76 +0.35 £ 0.41) x 1077
2.17 (7.19 £0.71 £0.93) x 10710 (3.19£0.36 £ 0.41) x 10710
2.65 (1.95 +£0.19 £ 0.25) x 10710 (8.16 £0.93 £ 1.06) x 107!
3.58 (2.68 £0.29 £ 0.35) x 107! (1.09 £0.14 £0.14) x 107!
5.40 (1.104+0.16 £0.14) x 1072 (471 +£0.90 £0.61) x 1073

default, and PERUGIA-11) and PHOJET. It can be seen in
Fig. 10 that default and PERUGIA-11 tunes reproduce the
@ + p results, while the ATLAS-CSC tune matches the ¢
forward-rapidity results.
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FIG. 8 (color online). (Top) pr-dependent differential cross
sections of @ at rapidity, |y| < 0.35 [2]. The data are compared
with the PYTHIA ATLAS-CSC, default and PERUGIA-11 tunes and
PHOJET. (Bottom) Ratio between data and models.
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FIG. 9 (color online). (Top) pr-dependent differential cross
sections of ¢ at rapidity, |y| < 0.35 [2]. The data are compared
with the PYTHIA ATLAS-CSC, default and PERUGIA-11 tunes and
PHOJET. (Bottom) Ratio between data and models.

The acceptance at low pz is very small in the low-mass
region which prevents us from extracting the differential
cross sections, do/dy, summed over all p; directly from the
data. Instead, we report do/dy integrated over the measured
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FIG. 10 (color online). Rapidity dependent differential cross
section of w + p (a) and ¢ (b) along with previous PHENIX
results [2] summed over the p; range, 1 < py <7 GeV. The
error bars represent the quadratic sum of the statistical uncer-
tainties and type-A systematic uncertainties, and the gray shaded
band represents the quadratic sum of type-B systematic uncer-
tainties. The data are compared with the PYTHIA ATLAS-CSC and
PERUGIA-11 tunes and PHOJET.
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TABLE IV. Differential cross sections in b and rapidity of @ +
p and ¢ at 1 < py <7 GeV/c with statistical and type-A
systematic uncertainties added in quadrature and type-B system-
atic uncertainties.
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TABLE V. N,/(N,+ N,) and py in (GeV/c) with statistical
and type-A systematic uncertainties added in quadrature and
type-B systematic uncertainties.

y BR 7"""‘;;&” (nb) BR‘IGL;% (nb)

~2.10 61.1+6.7+92 215437432
—1.84 67.9+5.6+10.2 233428435
—1.54 81.0+7.1+122 28.1+3.8+42
1.54 803+7.6+ 112 263+32+37
1.85 669 +54+94 21.0+2.8+29
2.14 58.4+7.4+82 189422426

pr(GeV/c) Ny/(No +N,)

1.38 0.33 +£0.04 £0.03
2.17 0.44 £0.05 £ 0.04
2.65 0.43 £0.05 +£0.04
3.58 0.40 £ 0.05 £ 0.04
5.40 0.45 4+ 0.09 £0.04

pr range, do/dy(w+p—puu)(1<pr<7GeV/c,1.2<|y|<
2.2)=80+6(stat)£12(syst)nb and do/dy(¢p— pu)(1<
pr<7GeV/c,1.2<|y|<2.2)=27+3(stat) +4(syst) nb.

The ratio N,/(N,, +N,) = BR(¢ — uu)o,/(BR(w —
pp)o,, + BR(p — pp)o,), corrected for acceptance and
efficiency, was determined for 1<p;<7GeV/c and
1.2<|y|<2.2, giving 0.390 + 0.021(stat) 4= 0.035(syst),
as shown in Fig. 11 and listed in Table V. Systematic
uncertainties including MulD and MuTr efficiencies, abso-
lute momentum scale and BBC efficiency cancel out when
taking the yield ratio.

Figure 11 also shows PYTHIA (ATLAS-CSC, default, and
PERUGIA-11 tunes) and PHOJET. The ATLAS-CSC tune
reproduces the ratio while the other models underestimate
it. The ALICE experiment also measured this ratio in p + p
collisions at /s = 7 TeV in the dimuon rapidity region
2.5 <y < 4. The reported value is 0.416 + 0.032(stat) +
0.004(syst) [5] over the pr range 1 < py <5 which is
consistent with our result.

-

1 pp-Ys=200Gev e PYTHIA Default
0.8 1.2<lyl<22 -=- PYTHIA ATLAS-CSC
—_ 1 4 This work -+=:- PYTHIA Perugia11
T Phojet
+
2 ]
< 04
2 ]
0.2
0 T T T T T
1 2 3 4 5 6 7

P, (GeV/c)

FIG. 11 (color online). N,/(N,, + N,) as a function of py. The
error bars represent the quadratic sum of the statistical uncer-
tainties and type-A systematic uncertainties, and the gray shaded
band represents the quadratic sum of type-B systematic
uncertainties.

V. SUMMARY AND CONCLUSIONS

In summary, we studied the low-mass vector-meson, w,
p, and ¢, production in p + p collisions at /s = 200 GeV
for 1.2 < |y| <2.2 and 1.0 < p;y < 7.0 GeV/c, through
the dimuon decay channel. We measured @ + p, and ¢
differential cross sections as a function of p; as well as a
function of rapidity.

The differential cross sections, do/dy of @+ p and
¢, were evaluated over the measured p; range,
do/dy(w+p—uu)(1 < pr<7GeV/ec,12<|y|<2.2)=
80+ 6(stat) £ 12(syst) nb and do/dy(¢p — pu)(1 < pr <
7GeV/c,1.2 <|y| <2.2) =27+ 3(stat) £ 4(syst) nb. The
ratio  Ny/(N,+N,), at 1<pyr<7GeV/c and
1.2 <|y| <22, was also determined, and is 0.390+
0.021(stat) + 0.035(syst), which is consistent with the
ALICE measurement at larger rapidity and higher
energy. This agreement with the ALICE result at
N,/(N,+N,)~0.4, which is higher than PYTHIA default at
~0.3, suggests a higher g 4 g contribution to ¢ production.

The data were compared to some commonly used
PYTHIA tunes and PHOJET. Overall, the PYTHIA ATLAS-
csc and default tunes describe forward rapidity data
except for the ¢ rapidity distribution and describe mid-
rapidity data above 1 GeV/c. The PYTHIA PERUGIA-11 tune
describes the w + p differential cross section while it
underestimates the ¢ differential cross section. Generally,
all these leading-order perturbative QCD-based event gen-
erators successfully describe the shape of the LVM pr
distribution.
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