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Abstract Event-by-event fluctuations of the mean trans-
verse momentum of charged particles produced in pp colli-
sions at

√
s = 0.9, 2.76 and 7 TeV, and Pb–Pb collisions at√

sNN = 2.76 TeV are studied as a function of the charged-
particle multiplicity using the ALICE detector at the LHC.
Dynamical fluctuations indicative of correlated particle emis-
sion are observed in all systems. The results in pp collisions
show little dependence on collision energy. The Monte Carlo
event generators PYTHIA and PHOJET are in qualitative
agreement with the data. Peripheral Pb–Pb data exhibit a sim-
ilar multiplicity dependence as that observed in pp. In central
Pb–Pb, the results deviate from this trend, featuring a signif-
icant reduction of the fluctuation strength. The results in Pb–
Pb are in qualitative agreement with previous measurements
in Au–Au at lower collision energies and with expectations
from models that incorporate collective phenomena.

1 Introduction

The study of event-by-event fluctuations was proposed as a
probe of the properties of the hot and dense matter generated
in high-energy heavy-ion collisions [1–9]. The occurrence of
a phase transition from the Quark-Gluon Plasma to a Hadron
Gas or the existence of a critical point in the phase diagram of
strongly interacting matter may go along with critical fluc-
tuations of thermodynamic quantities such as temperature.
This could be reflected in dynamical event-by-event fluctua-
tions of the mean transverse momentum

( 〈pT〉 )
of final-state

charged particles.
Event-by-event 〈pT〉 fluctuations have been studied in

nucleus-nucleus (A–A) collisions at the Super Proton Syn-
chrotron (SPS) [10–14] and at the Relativistic Heavy-Ion
Collider (RHIC) [15–20], where dynamical fluctuations have
been observed. Fluctuations of 〈pT〉 were found to decrease
with collision centrality, as generally expected in a dilution
scenario caused by superposition of partially independent

� e-mail: alice-publications@cern.ch

particle-emitting sources. In detail, however, deviations from
a simple superposition scenario have been reported. In par-
ticular, with respect to a reference representing independent
superposition – i.e. a decrease of fluctuations according to
〈dNch/dη〉−0.5, where 〈dNch/dη〉 is the average charged-
particle density in a given interval of collision centrality
and pseudorapidity (η) – the observed fluctuations increase
sharply from peripheral to semi-peripheral collisions, fol-
lowed by a shallow decrease towards central collisions [18].
A number of possible mechanisms have been proposed to
explain this behavior, such as string percolation [21] or the
onset of thermalization and collectivity [22,23], but no strong
connection to critical behavior could be made. It was recently
suggested [24,25] that initial state density fluctuations [26]
could affect the final state transverse momentum correlations
and their centrality dependence.

Fluctuations of 〈pT〉 arise from many kinds of correlations
among the pT of the final-state particles, such as resonance
decays, jets, or quantum correlations. To account for these
contributions from conventional mechanisms similar stud-
ies can be performed in pp, where such correlations are also
present. The results from pp could thus be used to construct a
model-independent baseline to search for non-trivial fluctu-
ations in A–A which manifest themselves in a modification
of the fluctuation pattern with respect to the pp reference.

In this paper, we present results of a multiplicity-
dependent study of event-by-event 〈pT〉 fluctuations of
charged particles in pp collisions at

√
s = 0.9, 2.76 and

7 TeV, and Pb–Pb collisions at
√

sNN = 2.76 TeV measured
with ALICE at the LHC. The experimental data are compared
to different Monte Carlo (MC) event generators.

2 ALICE detector and data analysis

The data used in this analysis were collected with the ALICE
detector at the CERN Large Hadron Collider (LHC) [27]
during the Pb–Pb run in 2010 and the pp runs in 2010 and
2011.
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For a detailed description of the ALICE apparatus see [28].
The analysis is based on 19 × 106 Pb–Pb events at

√
sNN =

2.76 TeV, and 6.9×106, 66×106 and 290×106 pp events at√
s = 0.9, 2.76 and 7 TeV, respectively. The standard ALICE

coordinate system is used, in which the nominal interaction
point is the origin of a right-handed Cartesian coordinate
system. The z-axis is along the beam pipe, the x-axis points
towards the center of the LHC, ϕ is the azimuthal angle
around the z-axis and θ is the polar angle with respect to
this axis. The detectors in the central barrel of the exper-
iment are operated inside a solenoidal magnetic field with
B = 0.5 T. About half of the Pb–Pb data set was recorded
with negative (Bz < 0) and positive (Bz > 0) field polarity,
respectively.

A minimum bias (MB) trigger condition was applied to
select collision events. In pp, this trigger was defined by at
least one hit in the Silicon Pixel Detector (SPD) or in one of
the two forward scintillator systems VZERO-A (2.8 < η <

5.1) and VZERO-C (−3.7 < η < −1.7). In Pb–Pb, the MB
trigger condition is defined as a coincidence of hits in both
VZERO detectors.

In this analysis, the Time Projection Chamber (TPC) [29]
is used for charged-particle tracking in |η| < 0.8. In the
momentum range selected for this analysis, 0.15 < pT <

2 GeV/c, the momentum resolution σ(pT)/pT is better than
2 %. The tracking efficiency is larger than 90 % for pT >

0.3 GeV/c and drops to about 70 % at pT = 0.15 GeV/c.
Primary vertex information is obtained from both the

Inner Tracking System (ITS) and the TPC. Events are used
in the analysis when at least one accepted charged-particle
track contributes to the primary vertex reconstruction. It is
required that the reconstructed vertex is within ±10 cm from
the nominal interaction point along the beam direction to
ensure a uniform pseudo-rapidity acceptance within the TPC.
Additionally, the event vertex is reconstructed using only
TPC tracks. The event is rejected if the z-position of that ver-
tex is different by more than 10 cm from that of the standard
procedure.

In Pb–Pb, at least 10 reconstructed tracks inside the accep-
tance are required. The contamination by non-hadronic inter-
actions is negligible in the event sample that fulfills the afore-
mentioned selection criteria. The centrality in Pb–Pb is esti-
mated from the signal in the VZERO detectors using the
procedure described in [30,31].

The charged-particle tracks used for this analysis are
required to have at least 70 out of a maximum of 159 recon-
structed space points in the TPC, and the maximum χ2 per
space point in the TPC from the momentum fit must be less
than 4. Daughter tracks from reconstructed secondary weak-
decay topologies (kinks) are rejected. The distance of closest
approach (DCA) of the extrapolated trajectory to the primary
vertex position is restricted to less than 3.2 cm along the beam
direction and less than 2.4 cm in the transverse plane. The

number of tracks in an event that are accepted by these selec-
tion criteria is denoted by Nacc.

Event-by-event measurements of the mean transverse
momentum are subject to the finite reconstruction efficiency
of the detector. While efficiency corrections can be applied on
a statistical basis to derive the inclusive 〈pT〉 of charged parti-
cles in a given kinematic acceptance range, such an approach
is not adequate for event-by-event studies. The event-by-
event mean transverse momentum is therefore approximated
by the mean value MEbE(pT)k of the transverse momenta
pT,i of the Nacc,k accepted charged particles in event k:

MEbE(pT)k = 1

Nacc,k

Nacc,k∑

i=1

pT,i . (1)

Event-by-event fluctuations of MEbE(pT)k in heavy-ion col-
lisions are composed of statistical and dynamical contri-
butions. The two-particle transverse momentum correlator
C = 〈�pT,i ,�pT, j 〉 is a measure of the dynamical compo-
nent σ 2

dyn of these fluctuations and therefore well suited for
an event-by-event analysis [13,18,32]. The correlator Cm is
the mean of covariances of all pairs of particles i and j in the
same event with respect to the inclusive M(pT)m in a given
multiplicity class m and is defined as

Cm = 1
∑nev,m

k=1 N pairs
k

·
nev,m∑

k=1

Nacc,k∑

i=1

Nacc,k∑

j=i+1

(pT,i −M(pT)m) · (pT, j −M(pT)m),

(2)

where nev,m is the number of events in multiplicity class m,
N pairs

k = 0.5 · Nacc,k ·(Nacc,k −1) is the number of particle
pairs in event k and M(pT)m is the average pT of all tracks
in all events of class m:

M(pT)m = 1
∑nev,m

k=1 Nacc,k

nev,m∑

k=1

Nacc,k∑

i=1

pT,i

= 1
∑nev,m

k=1 Nacc,k

nev,m∑

k=1

Nacc,k ·MEbE(pT)k . (3)

By construction, Cm vanishes in the case of uncorrelated par-
ticle emission, when only statistical fluctuations are present.

The results in this paper are presented in terms of the
dimensionless ratio

√
Cm/M(pT)m which quantifies the

strength of the dynamical fluctuations in units of the average
transverse momentum M(pT)m in the multiplicity class m.

The correlator is computed in intervals of the event multi-
plicity Nacc. In pp collisions, intervals of �Nacc = 1 are used
for the calculation of Cm and M(pT)m . In Pb–Pb collisions,
Cm is calculated in the multiplicity intervals �Nacc = 10
for Nacc < 200, �Nacc = 25 for 200 ≤ Nacc < 1000 and
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Table 1 Contributions to the
total systematic uncertainty on√

Cm/M(pT)m in pp and Pb–Pb
collisions. Ranges are given
when the uncertainties depend
on 〈dNch/dη〉 or centrality

Collision system pp pp pp Pb–Pb√
sNN 0.9 TeV 2.76 TeV 7 TeV 2.76 TeV

Vertex z-position cut 0–0.5 % <0.1 % <0.1 % 0.5–1 %

Vertex calculation 0–2 % 0.5–2 % 0.5–2 % <0.1 %

Vertex difference cut 0–1.5 % 0–3 % 0–2 % 0–2 %

Min. TPC space points 1.5–3 % 1–2 % 1–3 % 2–3 %

TPC χ2 / d.o.f. <0.1 % <0.1 % <0.1 % <0.1 %

DCA to vertex 1 % 1–1.5 % 0.5–1 % 0.5–1 %

B-field polarity 0.5 % 0.5 % 0.5 % 0.5 %

Centrality intervals – – – 1–3 %

TPC-only vs. hybrid 4 % 4 % 4 % 1–5 %

MC generator vs. full sim. 0–6 % 0–6 % 0–6 % 0–4 %

Total 4.4–7.7 % 4.4–7.6 % 4.4–7.9 % 4.2–7.4 %

�Nacc = 100 for Nacc ≥ 1000. To account for the steep
increase of M(pT)m with multiplicity in peripheral colli-
sions, the calculation of the correlator in (2) uses values
for M(pT)m which are calculated in bins of �Nacc = 1 for
Nacc < 1000. At higher multiplicities, M(pT) changes only
moderately and M(pT)m is calculated in the same intervals
as Cm , i.e.�Nacc = 100.

Additionally, the Pb–Pb data are also analyzed in 5 %
intervals of the collision centrality. The results are shown in
bins of the mean number of participating nucleons 〈Npart〉 as
derived from the centrality percentile using a Glauber MC
calculation [30]. For the results presented as a function
of the mean charged-particle density 〈dNch/dη〉, the mean
value 〈Nacc〉 in each centrality bin is associated with the
measured value for 〈dNch/dη〉 from [30]. A linear relation
between 〈Nacc〉 and 〈dNch/dη〉 is observed over the full cen-
trality range, allowing interpolation to assign a value for
〈dNch/dη〉 to any interval of Nacc. In pp, 〈dNch/dη〉 is cal-
culated for each interval of Nacc employing the full detector
response matrix from MC and unfolding of the measured
Nacc distributions following the procedure outlined in [33].

The systematic uncertainties are estimated separately for
each collision system (Pb–Pb and pp) and at each collision
energy. The relative uncertainties on

√
Cm/M(pT)m are gen-

erally smaller than those on Cm because most of the sources
of uncertainties lead to correlated variations of M(pT)m and
Cm that tend to cancel in the ratio

√
Cm/M(pT)m . Therefore,

all quantitative results shown below are presented in terms
of

√
Cm/M(pT)m . The contributions to the total systematic

uncertainty on
√

Cm/M(pT)m in pp and Pb–Pb collisions are
summarized in Table 1. Ranges are given when the uncertain-
ties depend on 〈dNch/dη〉 or centrality.

The largest contribution to the total systematic uncertainty
results from the comparison of

√
Cm/M(pT)m from full MC

simulations employing a GEANT3 [34] implementation of
the ALICE detector setup [35] to the MC generator level.

Processing the events through the full simulation chain alters
the result for

√
Cm/M(pT)m with respect to the MC gener-

ator level by up to 6 % in high multiplicity pp collisions.
This includes effects of tracking efficiency dependence on
the transverse momentum. The studies in pp are performed
using the Perugia-0 tune of PYTHIA6 [36,37], similar results
are obtained with PHOJET [38]. HIJING [39] is used for
Pb–Pb collisions, where the differences are slightly smaller,
reaching up to 4 % in most central collisions.

Since these deviations are in general dependent on the
event characteristics assumed in the model, in particular on
the nature of the underlying particle correlations, no cor-
rection of experimental results is performed. Instead, these
deviations are added to the systematic data uncertainties to
allow for a comparison of the experimental results to model
calculations on the MC event generator level.

Another major contribution to the total systematic uncer-
tainty emerges from the difference between the standard
analysis using only TPC tracks and an alternative analysis
employing a hybrid tracking scheme. The hybrid tracking
combines TPC and ITS tracks when ITS detector informa-
tion is available, and thus provides more powerful suppres-
sion of secondary particles (remaining contamination 4–5 %)
as compared to the standard TPC-only tracking (∼12 %).
The TPC, on the other hand, features very stable operational
conditions throughout the analyzed data sets. The differ-
ences between the results from the two analyses reach 5 % in√

Cm/M(pT)m .
At the event level, minor contributions to the total sys-

tematic uncertainty arise from the cut on the maximum dis-
tance of the reconstructed vertex to the nominal interaction
point along the beam axis. In the standard analysis global
tracks that combine TPC and ITS track segments are used
for the vertex calculation. Alternatively, we studied also the
results when only TPC tracks or only tracklets from the SPD
are used to reconstruct the primary vertex. The effect from
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using the different vertex estimators is negligible in Pb–
Pb collisions. In pp collisions, this effect is small with the
exception of the lowest multiplicity bin, where it reaches
2 % in

√
Cm/M(pT)m . Additionally, the cut on the differ-

ence between the z-positions of the reconstructed vertices
obtained from global tracks and TPC-only tracks is varied.
This shows a sizable effect only in peripheral Pb–Pb and
low-multiplicity pp collisions (2–3 % in

√
Cm/M(pT)m).

In addition, variations of the following track quality cuts
are performed: the number of space points per track in the
TPC, the χ2 per degree of freedom of the momentum fit, and
the DCA of each track to the primary vertex, both along the
beam direction and in the transverse plane. Neither of these
contributions to the total systematic uncertainty exceeds 3 %
in

√
Cm/M(pT)m .

The difference between the results obtained from Pb–Pb
data taken at the two magnetic field polarities is included
into the systematic uncertainties. The effect is small (0.5 %
in

√
Cm/M(pT)m). The corresponding uncertainty in pp is

assumed to be the same as in Pb–Pb collisions. Finally, the
effect of finite centrality intervals in Pb–Pb, and the corre-
sponding variation of M(pT) within these intervals, is taken
into account by including the difference between the analyses
in 5 and 10 % centrality intervals [30,31] into the systematic
uncertainty. The total uncertainty on

√
Cm/M(pT)m for each

data set was obtained by adding in quadrature the individual
contributions in Table 1.

3 Results in pp collisions

The relative dynamical fluctuation
√

Cm/M(pT)m as a func-
tion of the average charged-particle multiplicity 〈dNch/dη〉 in
pp collisions at

√
s = 0.9, 2.76 and 7 TeV is shown in Fig. 1.

The non-zero values of
√

Cm/M(pT)m indicate significant
dynamical event-by-event M(pT) fluctuations. The fluctua-
tion strength reaches a maximum of 12–14 % in low mul-
tiplicity collisions and decreases to about 5 % at the high-
est multiplicities. No significant beam energy dependence is
observed for the relative fluctuation

√
Cm/M(pT)m .

The beam energy dependence of relative dynamical
mean transverse momentum fluctuations in pp collisions
was studied at lower collision energies by the Split Field
Magnet (SFM) detector at the Intersection Storage Rings
(ISR). The SFM experiment measured relative fluctua-
tions in inclusive pp collisions at

√
s = 30.8, 45, 52,

and 63 GeV [40]. The fluctuations are expressed by the
quantity R that is extracted from the multiplicity depen-
dence of the event-by-event M(pT) dispersion. The mea-
sure R = [D(MEbE(pT)k)/M(pT)]n→∞ is obtained from
an extrapolation of the multiplicity-dependent dispersion
D(MEbE(pT)k) to infinite multiplicity, normalized by the
inclusive mean transverse momentum. It is an alternative
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Fig. 1 Relative fluctuation
√

Cm/M(pT)m as a function of 〈dNch/dη〉
in pp collisions at

√
s = 0.9, 2.76 and 7 TeV
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Fig. 2 Relative dynamical mean transverse momentum fluctuations in
pp collisions as a function of

√
s. The ALICE results for

√
C/M(pT) are

compared to the quantity R measured at the ISR (see text and [40])

approach to extract dynamical transverse momentum fluc-
tuations in inclusive pp collisions.

To allow for a comparison to ISR results, an inclu-
sive analysis of ALICE pp data is performed. The rela-
tive fluctuation

√
C/M(pT) is computed at each collision

energy as in (2), however, without subdivision into multi-
plicity classes m. Monte Carlo studies of pp collisions at√

s = 7 TeV using PYTHIA8 have shown that results for R
and

√
C/M(pT) agree within 10–15 %. The ALICE results

for the inclusive
√

C/M(pT) as a function of
√

s are shown
in Fig. 2, along with the ISR results for R from [40]. No
significant dependence of the relative transverse momentum
fluctuations on the collision energy is observed over this large
energy range.

The results in pp at
√

s = 7 TeV are compared with results
from different event generators. In particular, PYTHIA6
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Fig. 3 Results for 〈pT〉m as a function of 〈dNch/dη〉 in pp collisions
at

√
s = 7 TeV from different event generators

(tunes Perugia-0 and Perugia-11), PYTHIA8.150 and PHO-
JET have been used.

It has been pointed out that high-multiplicity events in pp
collisions at LHC energies are driven by multi-parton inter-
actions (MPIs) [41]. This picture is also suggested by recent
studies of the event sphericity in pp collisions [42]. MPIs are
independent processes on the perturbative level. However,
the color reconnection mechanism between produced strings
may lead to correlations in the hadronic final state. Color
reconnection is also the driving mechanism in PYTHIA for
the increase of 〈pT〉 as a function of Nch [43,44].

The default PYTHIA6 Perugia-11 tune including the
color-reconnection mechanism is compared to results of
the same tune without color-reconnection (NOCR). Fig-

ure 3 shows model calculations for 〈pT〉m as a function of
〈dNch/dη〉 in 0.15 < pT < 2 GeV/c and |η| < 0.8 in pp col-
lisions at

√
s = 7 TeV. The MC generators yield qualitatively

different results for the multiplicity dependence, in particular
PHOJET and the NOCR version of PYTHIA6 Perugia-11
show only little increase of 〈pT〉m with multiplicity. Good
agreement between PYTHIA8 and ALICE results in pp col-
lisions at

√
s = 7 TeV was demonstrated [44], albeit in a

different η and pT interval.
Results for the relative dynamical fluctuation measure√

Cm/M(pT)m in pp at
√

s = 7 TeV are compared to model
calculations in Fig. 4. The data exhibit a clear power-law
dependence with 〈dNch/dη〉 except for very small multi-
plicities. A power-law fit of

√
Cm/M(pT)m ∝〈dNch/dη〉b

in the interval 5 < 〈dNch/dη〉< 30 yields b = −0.431 ±
0.001 (stat.)±0.021 (syst.). The deviation of the power-law
index from b = −0.5 indicates that the observed multiplic-
ity dependence of M(pT) fluctuations in pp does not follow
a simple superposition scenario, contrary to what might be
expected for independent MPIs. All PYTHIA tunes under
study agree with this finding to the extent that they exhibit
a similar power-law index as the data. This is also true for
the NOCR calculation which excludes the color reconnec-
tion mechanism in its present implementation in PYTHIA
as a dominant source of correlations beyond the independent
superposition scenario.

4 Results in Pb–Pb collisions

Results for the relative dynamical fluctuation√
Cm/M(pT)m in Pb–Pb collisions at

√
sNN = 2.76 TeV

as a function of 〈dNch/dη〉 are shown in Fig. 5. As for
pp collisions, significant dynamical fluctuations as well
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Fig. 4 Left Relative dynamical fluctuation
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Cm/M(pT)m for data and different event generators in pp collisions at
√
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〈dNch/dη〉. Right Ratio models to data. The red error band indicates the statistical and systematic data uncertainties added in quadrature
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√
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shown are results from HIJING and power-law fits to pp (solid line) and
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as a strong decrease with multiplicity are observed. Also
shown in Fig. 5 is the result of a HIJING [39] simulation
(version 1.36) without jet-quenching. A power-law fit in
the interval 30 < 〈dNch/dη〉< 1500 describes the HIJING
results very well, except at low multiplicities, and yields
b = −0.499 ± 0.003 (stat.)±0.005 (syst.). The approximate
〈dNch/dη〉−0.5 scaling reflects the basic property of HIJING
as a superposition model of independent nucleon-nucleon
collisions. The HIJING calculation, in particular the mul-
tiplicity dependence, is in obvious disagreement with the
data.

In peripheral collisions
(〈dNch/dη〉 < 100

)
, the Pb–

Pb results are in very good agreement with the extrapola-
tion of a power-law fit to pp data at

√
s = 2.76 TeV in

the interval 5 < 〈dNch/dη〉< 25, with b = −0.405 ±
0.002 (stat.)±0.036 (syst.). This is remarkable because sig-
nificant differences in 〈pT〉 are observed between pp and
Pb–Pb in this multiplicity range [44]. At larger multiplic-
ities, the Pb–Pb results deviate from the pp extrapolation.
An enhancement in 100 < 〈dNch/dη〉< 500 is followed by
a pronounced decrease at 〈dNch/dη〉>500, corresponding
to centralities <40 %, which indicates a strong reduction of
fluctuations towards central collisions.

Measurements of mean transverse momentum fluctua-
tions in central A–A collisions at the SPS [13] and at
RHIC [18] are compared to the ALICE result in Fig. 6. As
in pp, there is no significant dependence on

√
sNN observed

over a wide range of collision energies.
Figure 7 shows a comparison of the ALICE results for√

Cm/M(pT)m to measurements in Au–Au collisions at√
sNN = 200 GeV by the STAR experiment at RHIC [18].

In the peripheral region, the STAR data show very similar
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Fig. 6 Mean transverse momentum fluctuations in central heavy-ion
collisions as a function of

√
sNN. The ALICE data point is compared

to data from the CERES [13] and STAR [18] experiments. For STAR
only statistical uncertainties are available

scaling with 〈dNch/dη〉 as the ALICE data, as shown on
the left panel of Fig. 7. Also shown are the fit to pp data at√

s = 2.76 TeV from Fig. 5 and the result of a power-law
fit to the STAR data in 〈dNch/dη〉<200 where the power is
fixed to b = −0.405. Good agreement of the ALICE and
STAR data with the fits is observed in peripheral collisions.
The decrease of fluctuations in central collisions is similar in
ALICE and STAR, however, no significant enhancement in
semi-central events is observed in the STAR data. In the right
panel of Fig. 7, the results for

√
Cm/M(pT)m in ALICE and

STAR are shown as a function of the mean number of partic-
ipating nucleons 〈Npart〉. In this representation, the measure-
ments of

√
Cm/M(pT)m from ALICE and STAR are com-

patible within the rather large experimental uncertainties on
〈Npart〉 in STAR. A power-law fit

√
Cm/M(pT)m ∝〈Npart〉b

to the ALICE data in the interval 10 < 〈Npart〉< 40 yields
b = −0.472 ± 0.007 (stat.)±0.037 (syst.). The agreement
between ALICE and STAR data as a function of 〈Npart〉points
to a relation between the observed fluctuation patterns and
the collision geometry.

Transverse momentum correlations and fluctuations may
be modified as a consequence of collective flow in A–A colli-
sions. It should be noted, however, that event-averaged radial
flow and azimuthal asymmetries are not expected to give rise
to strong transverse momentum fluctuations in azimuthally
symmetric detectors [13,16]. On the other hand, M(pT) fluc-
tuations may occur due to fluctuating initial conditions that
are also related to event-by-event fluctuations of radial flow
and azimuthal asymmetries. We compare our results to cal-
culations from the AMPT model [45] which has been demon-
strated to give a reasonable description of inclusive and event-
averaged bulk properties in Pb–Pb collisions at LHC ener-
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√
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gies [46,47], in particular of the measured elliptic flow coef-
ficient v2. Figure 8 shows the ratio of

√
Cm/M(pT)m in data

and models to the result of a fit of A·〈dNch/dη〉−0.5 to the
HIJING simulation in the interval 30 < 〈dNch/dη〉< 1500.
For 〈dNch/dη〉<30, HIJING agrees well with the results
from pp and Pb–Pb. At larger multiplicities, none of the mod-
els shows quantitative agreement with the Pb–Pb data. The
default AMPT calculation gives rise to increased fluctuations
on top of the underlying HIJING scenario exceeding those

observed in the data, except for very peripheral collisions. In
contrast, the AMPT calculation with string melting, where
partons after rescattering are recombined by a hadronic coa-
lescence scheme, predicts smaller fluctuations. On the other
hand, both AMPT versions exhibit a pronounced fall-off in
central collisions which is in qualitative agreement with the
data.

In a recent approach [24], initial spatial fluctuations of
glasma flux tubes have been related to mean transverse
momentum fluctuations of final state hadrons via their cou-
pling to a collective flow field. A comparison of these calcula-
tions to data from ALICE and STAR is shown in [24]. Good
agreement is found in the semi-central and central region,
where the data deviate from the pp extrapolation.

5 Summary and conclusions

First results on event-by-event fluctuations of the mean trans-
verse momentum of charged particles in pp and Pb–Pb col-
lisions at the LHC are presented. Expressed in terms of the
relative dynamical fluctuation

√
Cm/M(pT)m , little energy

dependence of the mean transverse momentum fluctuations
is observed in pp at

√
s = 0.9, 2.76 and 7 TeV. The results

are also compatible with similar measurements at the ISR.
For the first time, mean transverse momentum fluctuations
in pp are studied as a function of 〈dNch/dη〉. A character-
istic decrease of

√
Cm/M(pT)m following a power law is

observed. The decrease is weaker than expected from a super-
position of independent sources. The nature of such sources
in pp is subject to future studies, but a connection to the con-
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cept of multi-parton interactions is suggestive. Model studies
using PYTHIA however indicate that there is no strong sensi-
tivity of transverse momentum fluctuations to the mechanism
of color reconnection.

In peripheral Pb–Pb collisions
( 〈dNch/dη〉 < 100

)
, the

dependence of
√

Cm/M(pT)m on 〈dNch/dη〉 is very similar
to that observed in pp collisions at the corresponding colli-
sion energy. At larger multiplicities, the Pb–Pb data deviate
significantly from an extrapolation of pp results and show
a strong decrease for 〈dNch/dη〉>500. The results for the
most central collisions are of the same magnitude as previous
measurements at the SPS and at RHIC. The centrality depen-
dence of

√
Cm/M(pT)m is compatible with that observed in

Au–Au at
√

sNN = 200 GeV.
The Pb–Pb data can not be described by models based

on independent nucleon-nucleon collisions such as HIJING.
Models which include initial state density fluctuations and
their effect on the development of collectivity in the final
state are in qualitative agreement with the data. This suggests
a connection between the observed fluctuations of transverse
momentum and azimuthal correlations, and their relation to
fluctuations in the initial state of the collision.
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80 Oak Ridge National Laboratory, Oak Ridge, TN, USA
81 Petersburg Nuclear Physics Institute, Gatchina, Russia
82 Physics Department, Creighton University, Omaha, NE, USA
83 Physics Department, Panjab University, Chandigarh, India
84 Physics Department, University of Athens, Athens, Greece
85 Physics Department, University of Cape Town, Cape Town, South Africa

123



3077 Page 14 of 15 Eur. Phys. J. C (2014) 74:3077

86 Physics Department, University of Jammu, Jammu, India
87 Physics Department, University of Rajasthan, Jaipur, India
88 Physik Department, Technische Universität München, Munich, Germany
89 Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
90 Politecnico di Torino, Turin, Italy
91 Purdue University, West Lafayette, IN, USA
92 Pusan National University, Pusan, South Korea
93 Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt,

Germany
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