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Measurements of multiparticle azimuthal correlations (cumulants) for charged particles in p-Pb at
√

sNN =
5.02 TeV and Pb-Pb at

√
sNN = 2.76 TeV collisions are presented. They help address the question of whether

there is evidence for global, flowlike, azimuthal correlations in the p-Pb system. Comparisons are made to
measurements from the larger Pb-Pb system, where such evidence is established. In particular, the second
harmonic two-particle cumulants are found to decrease with multiplicity, characteristic of a dominance of
few-particle correlations in p-Pb collisions. However, when a |�η| gap is placed to suppress such correlations, the
two-particle cumulants begin to rise at high multiplicity, indicating the presence of global azimuthal correlations.
The Pb-Pb values are higher than the p-Pb values at similar multiplicities. In both systems, the second harmonic
four-particle cumulants exhibit a transition from positive to negative values when the multiplicity increases. The
negative values allow for a measurement of v2{4} to be made, which is found to be higher in Pb-Pb collisions at
similar multiplicities. The second harmonic six-particle cumulants are also found to be higher in Pb-Pb collisions.
In Pb-Pb collisions, we generally find v2{4} � v2{6} �= 0 which is indicative of a Bessel-Gaussian function for the
v2 distribution. For very high-multiplicity Pb-Pb collisions, we observe that the four- and six-particle cumulants
become consistent with 0. Finally, third harmonic two-particle cumulants in p-Pb and Pb-Pb are measured. These
are found to be similar for overlapping multiplicities, when a |�η| > 1.4 gap is placed.

DOI: 10.1103/PhysRevC.90.054901 PACS number(s): 25.75.−q

I. INTRODUCTION

The primary goal of studies with relativistic heavy-ion
collisions is to create the quark gluon plasma (QGP), a unique
state of matter where quarks and gluons can move freely over
large volumes in comparison to the typical size of a hadron.
Studies of azimuthal anisotropy for produced particles have
contributed significantly to the characterization of the system
created in heavy-ion collisions. These studies are based on a
Fourier expansion of the azimuthal distribution given by [1]

dN

dϕ
∝ 1 + 2

∞∑
n=1

vn cos[n(ϕ − �n)], (1)

where ϕ is the azimuthal angle of produced particles. In
heavy-ion collisions, the vn terms generally represent flow
coefficients where n is the flow harmonic and �n is the
corresponding flow angle. The flow coefficients are believed
to reflect the response of the system to spatial anisotropies in
the initial state. Measurements of the second harmonic flow
coefficient (v2, elliptic flow) received keen attention at Rela-
tivistic Heavy Ion Collider (RHIC), where the correspondence
with hydrodynamic calculations in Au+Au

√
sNN = 200 GeV

collisions indicated that an almost perfect liquid had been
produced in the laboratory [2–5]. Larger values of integrated
v2 have been observed at the Large Hadron Collider (LHC)
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in Pb-Pb at
√

sNN = 2.76 TeV collisions, indicating that the
system created at this new energy regime still behaves as an
almost ideal liquid [6]. While the initial state anisotropy is
usually dominated by an elliptical overlap area which gives rise
to v2, measurements of the third harmonic flow (v3, triangular
flow) demonstrated initial state fluctuations modulate the
overlap area, and they provide additional constraints to the
transport coefficients of the system (e.g., the value of the shear
viscosity over entropy ratio η/s) [7–11]. The combination of
the second and higher harmonic flow coefficients manifest
themselves in two-particle correlation structures (along �η)
such as the away-side double hump (�ϕ ∼ π ), and near-side
ridge (�ϕ ∼ 0) observed both at RHIC and the LHC.

The study of p-Pb collisions, which usually provides
baseline measurements for the quantification of cold nuclear
matter effects, led to a number of unexpected results [12–18].
The CMS Collaboration reported the development of a near-
side ridgelike structure in high-multiplicity p-Pb collisions
[12,16]. We discovered a symmetric double ridge structure on
both the near and the away side after subtracting from the
high-multiplicity p-Pb correlation function the dominant jet
contribution using the low multiplicity events [13]. The AT-
LAS Collaboration confirmed the appearance of such structure
using a similar subtraction technique [14]. We extended the
measurements to identified hadrons and reported a mass or-
dering in the pT differential v2 measurements for the different
species, with a crossing of p and π v2 at large pT [17]. Around
a similar time, the CMS and ATLAS Collaborations measured
finite values of v2 from four particle correlations [15,16].

The origin of the ridge structure in p-Pb collisions has been
the subject of speculation within the heavy-ion community
[19–22]. It has been suggested that a high enough energy
density is achieved in p-Pb at

√
sNN = 5.02 TeV collisions
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to induce hydrodynamic flow using a lattice QCD equation
of state [19]. Combined with spatial anisotropies in the initial
p-Pb state, this mechanism would induce global correlations
of soft particles with significant values of v2 and v3. A
second proposal is that the ridge arises from collimated (in
�ϕ) correlated two-gluon production from the color glass
condensate (CGC) [20]. This leads to few-particle correlations,
rather than a global modulation of soft particles. Finally, the
third explanation invokes the CGC initial state with a finite
number of sources that form the eccentricity [21]. In contrast
to the previous explanation, this approach allows for nonzero
values of v2 from four-, six-, and eight-particle correlations in
high multiplicity p-Pb collisions.

Whether the current measurements in high-multiplicity
p-Pb events reveal the onset of collective behavior, or can be
explained in terms of few-particle correlations (i.e., nonflow),
is the main goal of this analysis. We report the multiplicity
dependence of the two-, four-, and six-particle correlations
(cumulants) for charged particles, that can be used as a tool
to investigate multiparticle correlations of various harmonics
[23,24]. We present the results in both p-Pb and Pb-Pb colli-
sions at

√
sNN = 5.02 TeV and

√
sNN = 2.76 TeV respectively.

The multiplicity dependence of these measurements will help
decipher how flow and nonflow contribute. In Sec. II, we will
introduce multiparticle cumulants and discuss their response
to nonflow and flow fluctuations. In Sec. III we will describe
the analysis details. Section IV shows our results, and Sec. V
presents our summary.

II. MULTIPARTICLE CUMULANTS

The measurements of vn in Eq. (1) can be done using a
variety of methods, which have different sensitivities to flow
fluctuations (event-wise variations in the flow coefficients)
and nonflow. Nonflow refers to correlations not related to
the common symmetry plane �n, such as those due to
resonances and jets. Multiparticle cumulants are utilized since
their response to flow fluctuations and nonflow is considered
well understood. For a given harmonic n, the average strength
of two-particle correlations is determined by forming the
following from all pairs:

〈2〉 = 〈ein(ϕ1−ϕ2)〉. (2)

The ϕ values used in the subtraction will originate from
different particles to prevent autocorrelations. The single
angular brackets denote averaging of particle pairs within
the same event. The two-particle cumulant is obtained by
averaging 〈2〉 over an event ensemble, and is denoted as

cn{2} = 〈〈2〉〉. (3)

In the absence of nonflow, cn{2} provides a measure of 〈v2
n〉

without the need to measure �n. Respectively, the average
strength of four particle correlations is determined by forming
the following from all quadruplets:

〈4〉 = 〈ein(ϕ1+ϕ2−ϕ3−ϕ4)〉. (4)

Consequently, the four-particle cumulant is then

cn{4} = 〈〈4〉〉 − 2〈〈2〉〉2. (5)

The subtraction removes nonflow contributions present in
two-particle correlations. In the absence of nonflow, cn{4}

provides a measure of 〈v4
n〉 − 2〈v2

n〉2. Respectively, the average
strength of six-particle correlations is determined by forming
the following from all sextuplets:

〈6〉 = 〈ein(ϕ1+ϕ2+ϕ3−ϕ4−ϕ5−ϕ6)〉. (6)

The six-particle cumulant is then

cn{6} = 〈〈6〉〉 − 9〈〈4〉〉〈〈2〉〉 + 12〈〈2〉〉3 . (7)

In this case, the subtraction removes nonflow contributions
present in two- and four-particle correlations. In the absence
of nonflow, cn{6} provides a measure of 〈v6

n〉 − 9〈v4
n〉〈v2

n〉 +
12〈v2

n〉3. As mentioned earlier, the quantities 〈2〉, 〈4〉, or 〈6〉 can
be determined by averaging over all particles in a given event.
The quantities can also be determined using the Q-cumulants
of different harmonics, which offers a highly efficient method
of evaluating multiparticle correlations without having to con-
sider all combinations [24]. The flow coefficients from two-,
four-, and six-particle cumulants can finally be obtained from

vn{2} =
√

cn{2}, (8)

vn{4} = 4
√

−cn{4}, (9)

vn{6} = 6

√
1

4
cn{6}. (10)

If the value of vn does not fluctuate and there is no nonflow,
vn{2} = vn{4} = vn{6}. A variation in vn on an event by
event basis leads to differences in each of the values. If the
variation is presented with a characteristic standard deviation
σvn

, vn{2} =
√

〈vn〉2 + σ 2
vn

. When σvn
� vn, vn{4} = vn{6} =√

〈vn〉2 − σ 2
vn

[25,26]. Therefore, the difference in vn{2} and
vn{4} can be used to infer the scale of vn fluctuations σvn

.
The presence of nonflow influences the cumulants as follows.
Assuming large multiplicity events are a superposition of
low multiplicity events, the contribution from nonflow (or
few-particle correlations) is expected to be diluted as [25]

cn{m} ∝ 1

Mm−1
, (11)

where M is the multiplicity of the event. Therefore measuring
both cn{2}, cn{4}, and cn{6} as a function of multiplicity will
help determine whether the underlying correlations are global
or few-particle. One can also suppress nonflow by requiring
the particles to have a relatively large separation in η, since
resonances and jets will produce particles with similar rapidity.

III. ANALYSIS DETAILS

The two data sets analyzed were recorded during the
p-Pb (in 2013) and the Pb-Pb (in 2010) runs at a center of
mass energy of

√
sNN = 5.02 TeV and

√
sNN = 2.76 TeV,

respectively. The Pb-Pb run had equal beam energies giving a
nucleon-nucleon center of mass system with rapidity yNN = 0.
However, the p-Pb run had different beam energies per nucleon
for the p and Pb beam, and resulted in a center of mass system
moving in the laboratory frame with yNN = 0.465. All kine-
matic variables are reported in the laboratory frame. Charged
particles are detected using the time projection chamber (TPC),
the primary tracking detector of ALICE. The TPC has an
angular acceptance of 0 < ϕ < 2π , |η| < 0.9 for tracks with
full radial track length (ϕ is the azimuthal angle and η is the
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pseudorapidity), and |η| < 1.5 for tracks of reduced length.
Information from the inner tracking system (ITS) is used to
improve the spatial resolution of TPC tracks, which helps with
the rejection of secondary tracks (i.e., not originating from
the primary vertex). Primary vertex information is provided
by the TPC and the silicon pixel detector (SPD). Two VZERO
counters, each containing two arrays of 32 scintillator tiles and
covering 2.8 < η < 5.1 (VZERO-A) and −3.7 < η < −1.7
(VZERO-C), provide information for triggering and event
class determination. A more detailed description of the ALICE
detector can be found elsewhere [27].

For Pb-Pb collisions, events are selected using a minimum
bias trigger, which requires a coincidence of signals in the two
VZERO detectors. We use minimum bias and high-multiplicity
triggers for p-Pb collisions. As with Pb-Pb, the p-Pb minimum
bias trigger requires a coincidence of two signals from
the VZERO detectors, and accepts 99.2% of the nonsingle
diffractive cross section. The high-multiplicity trigger requires
a large number of hits in the SPD. Pile-up events are rejected
by removing events with multiple vertices, and ensuring the
vertices reconstructed from the TPC and SPD agree within 0.8
cm. After the pile-up rejection procedures, the results are stable
with respect to luminosity. Only events with a reconstructed
primary vertex within ±10 cm from the center of the detector
along the beam axis are used in the analysis to ensure a uniform
acceptance in η. The resulting analyzed event sample consisted
of about 110-M p-Pb and 12-M Pb-Pb minimum bias events.
In p-Pb collisions, the high-multiplicity trigger allowed for
a factor of 10 increase in high-multiplicity events in the top
0.014% of the cross section, compared to the number of min-
imum bias events. The p-Pb high multiplicity events are used
for the last two data points for n = 2, and the last data point
for n = 3. Minimum bias events are used for all other points.

The tracks used to determine the cumulants have kinematic
cuts 0.2 < pT < 3 GeV/c and |η| < 1. The tracks use an
SPD hit if one exists within the trajectory, if not, they are
constrained to the primary vertex. Such a configuration leads to
a flat ϕ acceptance. It was found that residual nonuniformities
influence the cumulant extraction at a level of less than
0.1%. We therefore do not apply acceptance corrections. Track
quality is ensured by requiring tracks to have at least 70 TPC
clusters out of a maximum of 159, and a χ2 per TPC cluster
less than 4 for the track fit. In addition, the distances of closest
approach to the primary vertex in the xy plane and z direction
are required to be less than 2.4 and 3.2 cm respectively [28].

The results in this article are reported as a function of
the corrected multiplicity, 〈Nch〉. The multiplicity corresponds
to the number of charged tracks with 0.2 < pT < 3 GeV/c
and |η| < 1, corrected for tracking efficiencies. The tracking
efficiency is calculated from a procedure using HIJNG (Pb-Pb)
or DPMJET (p-Pb) events [29,30]. GEANT3 is used for
transporting simulated particles, followed by a full calculation
of the detector response (including production of secondary
particles) and track reconstruction done with the ALICE sim-
ulation and reconstruction framework [31,32]. The tracking
efficiency is ∼70% at pT ∼ 0.2 GeV/c and increases to an
approximately constant value of ∼80% for pT > 1 GeV/c.
There are differences on the order of a few percent when
comparing between the two collision systems due to the

change in detector performance between each run. The final
number of particles (〈Nch〉) is extracted by correcting the
raw transverse momentum spectrum with the pT dependent
tracking efficiencies. Tables II and III show multiplicities for
the two systems and the fractional cross section.

To reduce the influence of the tracking efficiency on the
cumulants (cn{m}), we flatten the pT dependent efficiencies
by randomly rejecting high pT particles. These particles have
slightly larger efficiencies compared to the low pT ones, so
the procedure effectively reweights the cumulants in favor of
low pT particles. This decreases the integrated value of vn by
roughly 3%, since vn generally increases with pT. Regarding
the choice of multiplicity bin size, it was previously realized
that event by event multiplicity fluctuations within a class
having a wide multiplicity range can bias the measurement of
cn{4}, particularly in the low multiplicity region [16,26]. We
avoid this by first extracting cn{m} in unit multiplicity bins
(i.e., Nch = 6,7,8 . . .). The number of combinations scheme
[24] or simple unit event weights gives the same values
of cn{m} for unit multiplicity bins. We then average those
values to produce cn{m} for larger bin widths, which have
a better statistical precision. The following relation is used
for averaging procedure: 〈y〉 =

∑
i wiyi∑
i wi

, where yi is the value
of the cumulant in a single multiplicity bin, wi corresponds
to a choice of weight, and 〈y〉 is the average value obtained
from the number of bins in the sum. Monte Carlo studies with
known probability density functions (p.d.f.) show that when
using unit weights (i.e. wi = 1), our result lies within < 0.1%
from the known input 〈y〉 (from the p.d.f.). Other weighting
schemes such as wi = M , where M is the multiplicity of the
event, or wi = 1/σ 2

i where σi is the statistical uncertainty of
the bin, gave differences of around 2%.

Additional sources of systematic uncertainties in the calcu-
lation of cn{m} were extracted by varying the closest approach
to the vertex for the tracks, the cut on the minimum number of
TPC clusters, the position of the primary vertex and, finally,
by analyzing the event sample separately according to the
orientation of the magnetic field.

We also generated events with the AMPT model [33]
(which includes flow correlations) that were used as an
input to our reconstruction simulations. The cumulants

TABLE I. Summary of systematic uncertainties for p-Pb and
Pb-Pb collisions (the acronym n/a stands for nonapplicable).

p-Pb source c2{2} c2{4} c2{6} c3{2}>
Primary vertex position 0.3% n/a n/a 0.7%
Track type 2.2% 4.0% 6.0% 2.6%
No. TPC clusters 0.2% n/a n/a 0.2%
Comparison to Monte Carlo 1.7% 2.9% 4.5% 3.3%
Total 2.8% 4.9% 7.5% 4.3%

Pb-Pb source c2{2} c2{4} c2{6} c3{2}
Primary vertex position 0.5% n/a n/a n/a
Track type 2.9% 6.1% 9.1% 4.0%
Sign of B-field 0.2% n/a n/a 0.2%
Comparison to Monte Carlo 1.7% 2.9% 4.5% 3.3%
Total 3.9% 6.8% 10.2% 5.2%
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| < 1)
lab

η(|chN
0 50 100 150 200

{2
}

2c

0

0.005

0.01

0.015
Charge independent

-0.30.035 M
Like sign
DPMJET

c < 3.0 GeV/
T

p0.2 < 

 = 5.02 TeVNNsALICE p-Pb 

| < 1)
lab

η(|chN
0 50 100 150 200

{2
}

2c

0

0.005

0.01

0.015

 gapηNo 
| > 0.4ηΔ|
| > 1.0ηΔ|
| > 1.4ηΔ|

c < 3.0 GeV/
T

p0.2 < 

 = 5.02 TeVNNsALICE p-Pb 

FIG. 1. (Color online) Midrapidity (|η| < 1) measurements of c2{2} as a function of multiplicity for p-Pb collisions. Only statistical errors
are shown as these dominate the uncertainty. See Table I for systematic uncertainties.

obtained directly from the model were compared to those
from reconstructed tracks. We found small differences, which
are part of the systematic uncertainties. Table I summarizes
the systematic uncertainties for each collision system. The
final systematic uncertainty is calculated by adding all the
individual contributions in quadrature. In the Appendix,
Tables II and III show the multiplicities for the two systems
and the fractional cross section.

IV. RESULTS

A. The second harmonic two-particle cumulant

The results of c2{2} as a function of multiplicity are shown
in Figs. 1 and 2 for p-Pb and Pb-Pb respectively. The left
column presents the results, using the Q-cumulants methods

[24] in the case where no �η gap is applied. Charge indepen-
dent refers to the fact that all available charged tracks are used
to determine the cumulants. The left panel of Fig. 1 shows
that the star symbols (charge independent measurements) in
p-Pb collisions exhibit a decrease with increasing multiplicity,
qualitatively consistent with the expectation of correlations
dominated by nonflow effects. When fitting these data points
with the function a/Mb at large multiplicity, we find b = 0.3.
The value b = 1 is expected if high-multiplicity events are a
linear superposition of low multiplicity events [25]. This devia-
tion from 1 might indicate the existence of another mechanism
that increases c2{2}, or that the relative fraction of few particle
correlations is increasing with multiplicity. In the same plot, we
present measurements of like-sign correlations, calculated by
measuring c2{2} for positive and negative tracks separately, and

| < 1)
lab

η(|chN
10 210 310

{2
}

2c

0

0.005

0.01

0.015
Charge independent
Like sign

HIJING

c < 3.0 GeV/
T

p0.2 < 

 = 2.76 TeVNNsALICE Pb-Pb 

| < 1)
lab

η(|chN
10 210 310

{2
}

2c

0

0.005

0.01

0.015
 gapηNo 

| > 0.4ηΔ|
| > 1.0ηΔ|
| > 1.4ηΔ|

c < 3.0 GeV/
T

p0.2 < 

 = 2.76 TeVNNsALICE Pb-Pb 

FIG. 2. (Color online) Midrapidity (|η| < 1) measurements of c2{2} as a function of multiplicity in Pb-Pb collisions. Only statistical errors
are shown as these dominate the uncertainty. See Table I for systematic uncertainties.
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| < 1)
lab

η(|chN
10 210 310

| >
 1

.4
}

ηΔ
{2

, |
2c

0

0.005

0.01

 = 5.02 TeVNNsp-Pb 

 = 2.76 TeVNNsPb-Pb 

c < 3.0 GeV/
T

p0.2 < 

ALICE

FIG. 3. (Color online) Comparison of c2{2} with |�η| > 1.4 for
p-Pb and Pb-Pb collisions. Only statistical errors are shown as these
dominate the uncertainty. See Table I for systematic uncertainties.

forming the average. The corresponding points, represented by
the diamonds, are lower than the charge independent results for
the majority of the multiplicity ranges. This is expected since
few-particle correlations from jets and resonances conserve
charge, and thus are more likely to be absent in the like-sign
measurements. Conversely, the like-sign measurements are
higher for the lowest multiplicity bin. This can be explained
by a suppression of unlike sign correlations (e.g., multiparticle
jets) induced by the low multiplicity cut. Our results in p-Pb
collisions are compared to predictions from the DPMJET
model [30]. It includes in a phenomenological way the soft
multiparticle production as well as hard scatterings, contains
no collective effects and thus can serve as a benchmark to
study the effect of nonflow on our measurements. It is seen
that the corresponding points for c2{2} in DPMJET fall off
more rapidly compared to data. When carrying out the a/Mb

fit to the model, we find b ∼ 0.8. The data is also significantly
higher than DPMJET at high multiplicity.

The right panel of Fig. 1 presents the multiplicity depen-
dence of the two-particle cumulants in p-Pb collisions in the
case where a �η gap is applied. It is seen that for a given
multiplicity, increasing the gap decreases c2{2}. As mentioned
previously, this is expected since tracks from few-particle
correlations such as jets and resonances have smaller relative
angles, therefore their contribution is suppressed by the applied
pseudorapidity separation. However for large �η values, i.e.,
for |�η| > 1, the data points increase with multiplicity which
is not expected if nonflow dominates. In addition, the |�η|
dependence of c2{2} is less pronounced at higher multiplicities.
This could be a consequence of a flowlike mechanism with no
or little dependence on η, whose relative strength increases
with increasing multiplicity.

The Pb-Pb results of c2{2} in the case of the charge
independent and the like-sign analysis are presented in the left
panel of Fig. 2. They decrease with increasing multiplicity
up to Nch ∼ 100, then increase until midcentral collisions
(i.e., up to Nch ≈ 400). When moving to more central events
where initial state anisotropies decrease, the values of c2{2}
decrease as expected. Predictions from the HIJING model
are also shown in the same plot. This model, similarly to the
DPMJET model, contains only nonflow, and as expected, c2{2}
attenuates more rapidly than the data. Finally, the right panel of
Fig. 2 presents the two-particle results in Pb-Pb collisions after
applying a �η gap to reduce the contribution from nonflow.
It is seen that at multiplicities Nch � 1000, the measurements
with various �η gaps converge, indicating the dominance of
anisotropic flow. The measurements at lower multiplicities
depend on �η gap significantly, indicating nonflow plays a
prominent role.

In Fig. 3, we compare c2{2} for p-Pb and Pb-Pb with |�η| >
1.4 to minimize the contribution from nonflow. Both systems
have similar values of c2{2} at low multiplicity, however the
Pb-Pb data points rise more rapidly for higher multiplicities.

| < 1)
lab

η(|chN
0 50 100 150 200

{4
}

2c

0

0.1

0.2

0.3

0.4
-310×

Charge independent

Like sign
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c < 3.0 GeV/
T

p0.2 < 

 = 5.02 TeVNNsALICE p-Pb 
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}
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-0.01

0

0.01

0.02

0.03
-310×

Charge independent: zoomed in

c < 3.0 GeV/
T

p0.2 < 

 = 5.02 TeVNNsALICE p-Pb 

FIG. 4. (Color online) Midrapidity (|η| < 1) measurements of c2{4} as a function of multiplicity for p-Pb collisions. Only statistical errors
are shown as these dominate the uncertainty. See Table I for systematic uncertainties. The right panel shows a zoomed in version of the solid
points in the left panel.
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}
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FIG. 5. (Color online) Left panel: Midrapidity (|η| < 1) measurements of c2{4} as a function of multiplicity for Pb-Pb collisions. Right
panel: Comparison of c2{4} for p-Pb and Pb-Pb collisions. Only statistical errors are shown as these dominate the uncertainty. See table I for
systematic uncertainties.

This may be explained by higher eccentricities (therefore
higher anisotropies) in Pb-Pb collisions found from a CGC
inspired cluster model for the initial conditions at similar
multiplicities [22] (not shown). We note that other studies
are exploring these correlations with the AMPT model [34].

B. The second harmonic four-particle cumulant

The results of c2{4} as a function of multiplicity are shown
in Fig. 4 for p-Pb collisions, and Fig. 5 for Pb-Pb collisions.
We use the Q-cumulants methods to obtain the results in all
cases. For p-Pb collisions, there are little differences between
the like-sign and the charge independent results. The values of
c2{4} attenuate more rapidly than c2{2} at low multiplicity,
as expected since nonflow contributes significantly in this
region. The predictions from the DPMJET model, represented
by the open squares in Fig. 4, also show a large attenuation.
At Nch � 70, the values of c2{4} become negative, and this
is illustrated in the right panel of Fig. 4. Measurements of
c2{4} below zero allow for real values of v2{4}. We found
that the position of the transition from positive to negative
depends on the η cut applied to the tracks (not shown).
When the η cut is reduced, the transition occurs at a larger
multiplicity, which is presumably due to the larger contribution
of nonflow. The results for Pb-Pb collisions shown in the left
panel of Fig. 5 with the circles exhibit a similar trend. The
values of c2{4} rise at very high multiplicities as the collisions
become central. The charge independent HIJING predictions,
also shown in this plot as open squares, converge to zero for
most multiplicities indicating the contribution from nonflow
is negligible. In the right panel of Fig. 5, we compare c2{4}
for p-Pb and Pb-Pb collisions. Both systems exhibit positive
values for Nch � 70, indicating a dominance of nonflow. At
multiplicities 70 � Nch � 200, c2{4} decreases more rapidly
for Pb-Pb which might be indicative of higher eccentricities
for similar multiplicities.

C. The second harmonic six-particle cumulant

The results of c2{6} as a function of multiplicity are shown
in Fig. 6 for p-Pb and Pb-Pb collisions. We again use the
Q-cumulants methods to obtain c2{6}. In p-Pb collisions,
these measurements are more limited by finite statistics as we
observe fluctuations above and below zero at high multiplicity
(within the statistical uncertainties). The solid black line
indicates v2{6} = 4.5%, which is roughly the value of v2{4} in
this multiplicity region. The p-Pb measurements will benefit
from higher statistics measurements planned for future LHC
running. However, it is clear at multiplicities above 100 that the
values of c2{6} are significantly higher for Pb-Pb compared to
p-Pb. This again may be be explained by higher eccentricities
in the initial state of the colliding nuclei for the former.
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FIG. 6. Comparison of midrapidity (|η| < 1) c2{6} for p-Pb and
Pb-Pb collisions. Only statistical errors are shown as these dominate
the uncertainty. See table I for systematic uncertainties.
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FIG. 7. (Color online) Comparison of c2{m} in very high-
multiplicity Pb-Pb collisions. Only statistical errors are shown
as these dominate the uncertainty. See Table I for systematic
uncertainties.

D. Second harmonic cumulants in very high-multiplicity
Pb-Pb collisions

The nonzero values of c2{4} in high-multiplicity p-Pb
collisions merit a comparison to high-multiplicity Pb-Pb
collisions, which have an impact parameter that becomes
small. In both cases, initial state fluctuations are expected to
dominate the eccentricity since there is no intrinsic eccentricity
from the overlapping nuclei. In Fig. 7, cumulants of different
orders are compared for high-multiplicity Pb-Pb collisions. At
Nch � 2800, c2{4} becomes consistent with zero, which is in
contrast to high-multiplicity p-Pb (where c2{4} is negative).
The measurements of c2{6} also become zero in exactly the
same region, which corresponds to the highest ∼2.5% of the

cross section. Constant fits to c2{4} and c2{6} for Nch > 2800
give 8.5 × 10−6 ± 9.3 × 10−6 and 7.2 × 10−6 ± 2.2 × 10−5

respectively (with χ2/dof ∼ 1 in each case). An explanation
for the difference between p-Pb and Pb-Pb can be found by
considering the number of sources which form the eccentricity.
When this number is small, eccentricity fluctuations have a
power-law distribution which will lead to finite values of c2{4}
and c2{6}, assuming v2 ∝ ε2 [35]. When the number of sources
becomes large enough, the power-law distribution becomes
equivalent to the Bessel-Gaussian distribution [36,37]. In the
special case of very high multiplicity Pb-Pb collisions where
the impact parameter is expected to approach 0, the Bessel-
Gaussian distribution gives values of c2{4} and c2{6} that are
zero. Assuming the number of sources are highly correlated
with the number of participants, the difference between very
high multiplicity p-Pb and Pb-Pb can be explained by the
larger number of sources in the latter. Finally, these results at
the LHC can be compared to those from the STAR Collabora-
tion [38,39]. In Au-Au

√
sNN = 200 GeV collisions, c2{4} also

approaches zero and may become positive which prevented
the extraction of v2{4} in central collisions, while for U-U√

sNN = 193 GeV collisions, c2{4} always remains negative.

E. Second harmonic flow coefficients in p-Pb
and Pb-Pb collisions

A comparison of second harmonic flow coefficients is
shown in Fig. 8. We determine v2{2} with the largest possible
�η gap to minimize the contribution from nonflow. In
p-Pb collisions, we find v2{2} > v2{4} which is indicative
of flow fluctuations, but can also be affected by nonflow.
The same observation is made for Pb-Pb collisions, and we
also find v2{4} � v2{6}. Regarding the functional form of
the v2 distribution, a Bessel-Gaussian function satisfies the
criterium v2{4} = v2{6} [36]. When the Bessel function of the
Bessel-Gaussian becomes 1, v2{4} = v2{6} = 0. A power-law
function gives values of v2{4} and v2{6} which are close, but
not exactly equal [35]. In addition, unfolded measurements of
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FIG. 8. (Color online) Measurements of v2{2}, v2{4}, and v2{6} in p-Pb (left panel) and Pb-Pb (right panel) collisions. The measurements
of v2{2} are obtained with a |�η| > 1.4 gap. Only statistical errors are shown as these dominate the uncertainty. See Table I for systematic
uncertainties.
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FIG. 9. (Color online) Left panel: Measurements of [(v2{2}2 − v2{4}2)/(v2{2}2 + v2{4}2)]1/2 in p-Pb and Pb-Pb collisions. The measure-
ments of v2{2} are obtained with a |�η| > 1.4 gap. Only statistical errors are shown as these dominate the uncertainty. See Table I for systematic
uncertainties. Right panel: σv2/〈v2〉 obtained from the same v2{2} and v2{4} measurements assuming a Bessel-Gaussian distribution.

the v2 distribution have shown Bessel-Gaussian descriptions
work reasonably well for Pb-Pb collisions [40,41]. In the left
panel of Fig. 9, we show the measurement of R2, defined as

Rn =
√

vn{2}2 − vn{4}2

vn{2}2 + vn{4}2
. (12)

As mentioned in Sec. II, when σvn
� 〈vn〉, Rn = σvn

/〈vn〉 in
case nonflow is negligible. In the overlapping multiplicities,
the values for p-Pb appear to be higher than Pb-Pb, demon-
strating the greater role of fluctuations in the former. A similar
observation is reported by the CMS Collaboration [16]. The
trend for R2 in Pb-Pb is similar to observations for Au-Au√

sNN = 200 GeV collisions [38,42]. The value of R2 in mid-
central (midmultiplicity) Pb-Pb collisions (∼0.35) is between
the STAR and PHOBOS results for similar centralities. In the
right panel, we show σv2/〈v2〉 under the assumption that the

v2 distribution is Bessel-Gaussian. Using this assumption, all
the information from distribution can be obtained from just
v2{2} and v2{4}, without the need for the condition σvn

� vn

[36]. The dashed lines denote the σv2/〈v2〉 = √
4/π − 1 limit,

expected when fluctuations dominated the eccentricity [43].
We find that the Bessel-Gaussian σv2/〈v2〉 is close to this limit
for high-multiplicity Pb-Pb collisions.

F. Two-particle cumulants of the third harmonic

In Fig. 10, we show measurements of the third harmonic
two-particle cumulants for p-Pb and Pb-Pb collisions, for
different values of the �η gap. For p-Pb and low Pb-Pb
multiplicities, we generally find a strong dependence on the
�η. The values with small �η gaps decrease with multiplicity
in p-Pb, as expected when nonflow is dominant. This behavior
was also observed by the STAR Collaboration at lower beam

| < 1)
lab

η(|chN
50 100 150

{2
}

3c

0

0.005

c < 3.0 GeV/
T

p0.2 < 

 gapηNo 
| > 0.4ηΔ|
| > 1.0ηΔ|
| > 1.4ηΔ|

 = 5.02 TeVNNsALICE p-Pb 

| < 1)
lab

η(|chN
10 210 310

{2
}

3c

0

0.005

c < 3.0 GeV/
T

p0.2 < 

 gapηNo 
| > 0.4ηΔ|
| > 1.0ηΔ|
| > 1.4ηΔ|

 = 2.76 TeVNNsALICE Pb-Pb 

FIG. 10. (Color online) Third harmonic two-particle cumulants in p-Pb and Pb-Pb collisions. Only statistical errors are shown as these
dominate the uncertainty. See Table I for systematic uncertainties.
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FIG. 11. (Color online) Third harmonic flow coefficients in p-Pb
and Pb-Pb collisions. The measurements of v3{2} are obtained with a
|�η| > 1.4 gap. Only statistical errors are shown as these dominate
the uncertainty. See Table I for systematic uncertainties.

energies [11]. The measurements with larger �η gaps show
an increase with multiplicity, indicating a contribution from
global correlations. For large Pb-Pb multiplicities, measure-
ments with various �η gaps converge indicating a dominance
of flow. Finally, in Fig. 11 we compare the third harmonic flow
coefficients for both systems, again with the largest possible
�η gap. In contrast to measurements of the second harmonic,
we find that p-Pb and Pb-Pb are consistent for the same
multiplicity. This consistency has also been observed by the
CMS Collaboration [16], and points to similar third harmonic
eccentricities for p-Pb and Pb-Pb at the same multiplicity. A
CGC inspired cluster model for the initial conditions is able to
reproduce this observation [22].

V. SUMMARY

We have reported results of c2{2}, c2{4}, and c2{6} as a
function of multiplicity in p-Pb at

√
sNN = 5.02 TeV and

Pb-Pb at
√

sNN = 2.76 TeV collisions for kinematic cuts
0.2 < pT < 3 GeV/c and |η| < 1. Measurements of c2{2}
using all pairs in the event for p-Pb collisions show a decrease
with multiplicity, characteristic of a dominance of few-particle
correlations. However, the decrease is shallower than from the
expectation high-multiplicity events are a superposition of low
multiplicity events. When a |�η| gap is placed to suppress such
nonflow correlations, measurements of c2{2} begin to rise at
high multiplicity. Similar observations are made for Pb-Pb
collisions. The measurements of c2{4} exhibit a transition
from positive values at low multiplicity to negative values
at higher multiplicity for both p-Pb and Pb-Pb. The negative
values allow for a real v2{4}, which is lower than v2{2} at
a given multiplicity. The measurements of c2{6} for p-Pb
collisions are both consistent with zero, and the assumption
v2{4} = v2{6}. In Pb-Pb collisions, we observe v2{4} � v2{6},
which is indicative of a Bessel-Gaussian function for the
v2 distribution in this domain. For very high-multiplicity

Pb-Pb collisions, both v2{4} and v2{6} are consistent with
0. A comparison of p-Pb cumulants to those of Pb-Pb at the
same multiplicity (for Nch � 70) shows stronger correlations
in Pb-Pb for all the cumulants. This may be explained by
higher eccentricities for similar multiplicities. Finally, we
have performed measurements of v3{2} for p-Pb and Pb-Pb
collisions. They are found to be similar for overlapping
multiplicities when a |�η| > 1.4 gap is placed, indicating that
initial state third harmonic eccentricities may be similar for
both systems. We conclude that our measurements indicate
that the (double) ridge observed in p-Pb at

√
sNN = 5.02 TeV

arises from global azimuthal correlations, rather than from
few-particle correlations which decrease with multiplicity.
These measurements provide key constraints to the initial state
and transport properties in p-Pb and Pb-Pb collisions.
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the EPLANET Program (European Particle Physics Latin
American Network); Stichting voor Fundamenteel Onderzoek
der Materie (FOM) and the Nederlandse Organisatie voor
Wetenschappelijk Onderzoek (NWO), Netherlands; Research

054901-9



B. ABELEV et al. PHYSICAL REVIEW C 90, 054901 (2014)

Council of Norway (NFR); Polish Ministry of Science and
Higher Education; National Science Centre, Poland; Ministry
of National Education/Institute for Atomic Physics and CNCS-
UEFISCDI - Romania; Ministry of Education and Science of
Russian Federation, Russian Academy of Sciences, Russian
Federal Agency of Atomic Energy, Russian Federal Agency
for Science and Innovations and The Russian Foundation for
Basic Research; Ministry of Education of Slovakia; Depart-
ment of Science and Technology, South Africa; CIEMAT,

EELA, Ministerio de Economı́a y Competitividad (MINECO)
of Spain, Xunta de Galicia (Consellerı́a de Educación),
CEADEN, Cubaenergı́a, Cuba, and IAEA (International
Atomic Energy Agency); Swedish Research Council (VR)
and Knut & Alice Wallenberg Foundation (KAW); Ukraine
Ministry of Education and Science; United Kingdom Science
and Technology Facilities Council (STFC); The United States
Department of Energy, the United States National Science
Foundation, the State of Texas, and the State of Ohio.

APPENDIX

TABLE II. Relation of charged track multiplicity Nch to the fraction of hadronic cross section in p-Pb at
√

sNN = 5.02 TeV collisions. There
is a 3.5% uncertainty in the cross section values. Nch corresponds to the number of charged tracks with 0.2 < pT < 3 GeV/c and |η| < 1. The
corrected values of Nch have a systematic uncertainty of 6.0%.

Uncorrected Corrected Fractional of hadronic cross section Fraction of hadronic cross section
Nch bin 〈Nch〉 within bin above lower bin edge

[6,12] 12.0 0.154 0.826
[12,18] 19.5 0.138 0.673
[18,24] 27.1 0.122 0.535
[24,30] 34.6 0.105 0.412
[30,40] 44.3 0.132 0.308
[40,50] 56.8 0.0836 0.176
[50,60] 69.2 0.0477 0.0921
[60,70] 81.6 0.0245 0.0444
[70,80] 94.1 0.0116 0.0199
[80,100] 110 0.00712 0.00831
[100,120] 135 0.00106 0.00120
[120,140] 159 0.00012 0.00014
[140,180] 186 0.00001 0.00001

TABLE III. Relation of charged track multiplicity Nch to the fraction of hadronic cross section in Pb-Pb at
√

sNN = 2.76 TeV collisions.
There is a 1% uncertainty in the cross section values. Nch corresponds to the number of charged tracks with 0.2 < pT < 3 GeV/c and |η| < 1.
The corrected values of Nch have a systematic uncertainty of 6.0%.

Uncorrected Corrected Fraction of hadronic cross section Fraction of hadronic cross section
Nch bin 〈Nch〉 within bin above lower bin edge

[6,26] 19.82 0.111 0.928
[26,46] 46.7 0.0616 0.817
[46,76] 79.0 0.0615 0.755
[76,106] 118 0.0446 0.694
[106,150] 166 0.0504 0.649
[150,200] 227 0.0453 0.599
[200,250] 292 0.0377 0.553
[250,300] 358 0.0326 0.516
[300,350] 423 0.0289 0.483
[350,400] 488 0.0261 0.454
[400,450] 552 0.0238 0.428
[450,500] 618 0.0221 0.404
[500,600] 714 0.0397 0.382
[600,700] 843 0.0351 0.342
[700,800] 973 0.0316 0.307
[800,900] 1103 0.0286 0.276
[900,1000] 1233 0.0262 0.247
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TABLE III. (Continued.)

Uncorrected Corrected Fraction of hadronic cross section Fraction of hadronic cross section
Nch bin 〈Nch〉 within bin above lower bin edge

[1000,1200] 1425 0.0466 0.221
[1200,1400] 1684 0.0402 0.174
[1400,1600] 1944 0.0352 0.134
[1600,1800] 2203 0.0307 0.0990
[1800,2000] 2462 0.0268 0.0683
[2000,2400] 2819 0.0388 0.0415
[1900,1950] 2497 0.00656 0.0544
[1950,2000] 2562 0.00635 0.0478
[2000,2050] 2627 0.00617 0.0415
[2050,2100] 2692 0.00594 0.0353
[2100,2150] 2757 0.00570 0.0293
[2150,2200] 2822 0.00544 0.0236
[2200,2250] 2886 0.00502 0.0182
[2250,2300] 2951 0.00445 0.0132
[2300,2350] 3015 0.00353 0.00873
[2350,2400] 3079 0.00249 0.00520
[2400,2450] 3143 0.00151 0.00271
[2450,2500] 3206 0.00074 0.00120
[2500,2550] 3270 0.00031 0.00045
[2550,2600] 3334 0.00010 0.00014
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F. Bossú,68 M. Botje,69 E. Botta,55 S. Böttger,70 P. Braun-Munzinger,27 M. Bregant,25 T. Breitner,70 T. A. Broker,33

T. A. Browning,71 M. Broz,2 E. Bruna,6 G. E. Bruno,45 D. Budnikov,72 H. Buesching,33 S. Bufalino,6 P. Buncic,5 O. Busch,28

Z. Buthelezi,68 D. Caffarri,5,73 X. Cai,74 H. Caines,14 L. Calero Diaz,62 A. Caliva,59 E. Calvo Villar,75 P. Camerini,76 F. Carena,5

W. Carena,5 J. Castillo Castellanos,42 E. A. R. Casula,77 V. Catanescu,26 C. Cavicchioli,5 C. Ceballos Sanchez,78 J. Cepila,2

P. Cerello,6 B. Chang,79 S. Chapeland,5 J. L. Charvet,42 S. Chattopadhyay,10 S. Chattopadhyay,80 V. Chelnokov,20

M. Cherney,81 C. Cheshkov,82 B. Cheynis,82 V. Chibante Barroso,5 D. D. Chinellato,83,51 P. Chochula,5 M. Chojnacki,49

S. Choudhury,10 P. Christakoglou,69 C. H. Christensen,49 P. Christiansen,84 T. Chujo,61 S. U. Chung,67 C. Cicalo,85

L. Cifarelli,8,18 F. Cindolo,19 J. Cleymans,37 F. Colamaria,45 D. Colella,45 A. Collu,77 M. Colocci,8 G. Conesa Balbastre,86

Z. Conesa del Valle,87 M. E. Connors,14 J. G. Contreras,88,2 T. M. Cormier,36,53 Y. Corrales Morales,55 P. Cortese,89

I. Cortés Maldonado,90 M. R. Cosentino,25 F. Costa,5 P. Crochet,40 R. Cruz Albino,88 E. Cuautle,91 L. Cunqueiro,62,5

A. Dainese,31 R. Dang,74 A. Danu,92 D. Das,80 I. Das,87 K. Das,80 S. Das,93 A. Dash,83 S. Dash,9 S. De,10 H. Delagrange,32,*
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B. Sahlmuller,33 R. Sahoo,129 P. K. Sahu,43 J. Saini,10 S. Sakai,62 C. A. Salgado,34 J. Salzwedel,103 S. Sambyal,41

V. Samsonov,57 X. Sanchez Castro,50 F. J. Sánchez Rodrı́guez,123 L. Šándor,112 A. Sandoval,52 M. Sano,61 G. Santagati,44
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41Physics Department, University of Jammu, Jammu, India
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054901-14



MULTIPARTICLE AZIMUTHAL CORRELATIONS IN p- . . . PHYSICAL REVIEW C 90, 054901 (2014)

53Wayne State University, Detroit, Michigan, USA
54Moscow Engineering Physics Institute, Moscow, Russia

55Dipartimento di Fisica dell’Università and Sezione INFN, Turin, Italy
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89Dipartimento di Scienze e Innovazione Tecnologica dell’Università del Piemonte Orientale and Gruppo Collegato INFN, Alessandria, Italy
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