
Freeze-out radii extracted from three-pion cumulants
in pp, p–Pb and Pb–Pb collisions at the LHC

(ALICE Collaboration) Abelev, B.; ...; Antičić, Tome; ...; Gotovac, Sven;
...; Mudnić, Eugen; ...; Planinić, Mirko; ...; ...

Source / Izvornik: Physics Letters B, 2014, 739, 139 - 151

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1016/j.physletb.2014.10.034

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:591004

Rights / Prava: Attribution 3.0 Unported / Imenovanje 3.0

Download date / Datum preuzimanja: 2024-08-29

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1016/j.physletb.2014.10.034
https://urn.nsk.hr/urn:nbn:hr:217:591004
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7609
https://dabar.srce.hr/islandora/object/pmf:7609


Physics Letters B 739 (2014) 139–151
Contents lists available at ScienceDirect

Physics Letters B

www.elsevier.com/locate/physletb

Freeze-out radii extracted from three-pion cumulants
in pp, p–Pb and Pb–Pb collisions at the LHC

.ALICE Collaboration �

a r t i c l e i n f o a b s t r a c t

Article history:
Received 17 April 2014
Received in revised form 6 October 2014
Accepted 12 October 2014
Available online 18 October 2014
Editor: L. Rolandi

In high-energy collisions, the spatio-temporal size of the particle production region can be measured 
using the Bose–Einstein correlations of identical bosons at low relative momentum. The source 
radii are typically extracted using two-pion correlations, and characterize the system at the last 
stage of interaction, called kinetic freeze-out. In low-multiplicity collisions, unlike in high-multiplicity 
collisions, two-pion correlations are substantially altered by background correlations, e.g. mini-jets. 
Such correlations can be suppressed using three-pion cumulant correlations. We present the first 
measurements of the size of the system at freeze-out extracted from three-pion cumulant correlations in 
pp, p–Pb and Pb–Pb collisions at the LHC with ALICE. At similar multiplicity, the invariant radii extracted 
in p–Pb collisions are found to be 5–15% larger than those in pp, while those in Pb–Pb are 35–55% 
larger than those in p–Pb. Our measurements disfavor models which incorporate substantially stronger 
collective expansion in p–Pb as compared to pp collisions at similar multiplicity.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The role of initial and final-state effects in interpreting differ-
ences between Pb–Pb and pp collisions is expected to be clarified 
with p–Pb collisions [1]. However, the results obtained from p–
Pb collisions at 

√
sNN = 5.02 TeV [2–10] have not been conclusive 

since they can be explained assuming either a hydrodynamic phase 
during the evolution of the system [11–13] or the formation of a 
Color Glass Condensate (CGC) in the initial state [14,15].

As in Pb–Pb collisions, the presence of a hydrodynamic phase 
in high-multiplicity p–Pb collisions is expected to lead to a fac-
tor of 1.5–2 larger freeze-out radii than in pp collisions at similar 
multiplicity [16]. In contrast, a CGC initial state model (IP-Glasma), 
without a hydrodynamic phase, predicts similar freeze-out radii in 
p–Pb and pp collisions [17]. A measurement of the freeze-out radii 
in the two systems will thus lead to additional experimental con-
straints on the interpretation of the p–Pb data.

The extraction of freeze-out radii can be achieved using identi-
cal boson correlations at low relative momentum, which are dom-
inated by quantum statistics (QS) and final-state Coulomb and 
strong interactions (FSIs). Both FSIs and QS correlations encode 
information about the femtoscopic space–time structure of the 
particle emitting source at kinetic freeze-out [18–20]. The calcu-
lation of FSI correlations allows for the isolation of QS correlations. 

� E-mail address: alice-publications@cern.ch.

Typically, two-pion QS correlations are used to extract the char-
acteristic radius of the source [21–27]. However, higher-order QS 
correlations can be used as well [28–32]. The novel features of 
higher-order QS correlations are extracted using the cumulant for 
which all lower order correlations are removed [33,34]. The maxi-
mum of the three-pion cumulant QS correlation is a factor of two 
larger than for two-pion QS correlations [33–36]. In addition to the 
increased signal, three-pion cumulants also remove contributions 
from two-particle background correlations unrelated to QS (e.g. 
from mini-jets [24,26]). The combined effect of an increased sig-
nal and decreased background is advantageous in low multiplicity 
systems where a substantial background exists.

In this Letter, we present measurements of freeze-out radii 
extracted using three-pion cumulant QS correlations. The invari-
ant radii are extracted in intervals of multiplicity and triplet mo-
mentum in pp (

√
s = 7 TeV), p–Pb (

√
sNN = 5.02 TeV) and Pb–

Pb (
√

sNN = 2.76 TeV) which allows for a comparison of the var-
ious systems. The radii extracted from three-pion cumulants are 
also compared to those from two-pion correlations.

The Letter is organized into 5 remaining sections. Section 2
explains the experimental setup and event selection. Section 3 de-
scribes the identification of pions, as well as the measurement 
of the event multiplicity. Section 4 explains the three-pion cumu-
lant analysis technique used to extract the source radii. Section 5
presents the measured source radii. Finally, Section 6 summarizes 
the results reported in the Letter.

http://dx.doi.org/10.1016/j.physletb.2014.10.034
0370-2693/© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/3.0/). Funded by 
SCOAP3.
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2. Experimental setup and event selection

Data from pp, p–Pb, and Pb–Pb collisions at the LHC recorded 
with ALICE [37] are analyzed. The data for pp collisions were taken 
during the 2010 pp run at 

√
s = 7 TeV, for p–Pb collisions during 

the 2013 run at 
√

sNN = 5.02 TeV, and for Pb–Pb during the 2010 
and 2011 runs at 

√
sNN = 2.76 TeV. For p–Pb, the proton beam 

energy was 4 TeV while for the lead beam it was 1.58 TeV per 
nucleon. Thus, the nucleon–nucleon center-of-mass system moved 
with respect to the ALICE laboratory system with a rapidity of 
−0.465, i.e. in the direction of the proton beam. The pseudora-
pidity in the laboratory system is denoted with η throughout this 
Letter, which for the pp and Pb–Pb systems coincides with the 
pseudorapidity in the center-of-mass system.

The trigger conditions are slightly different for each of the three 
collision systems. For pp collisions, the VZERO detectors [38] lo-
cated in the forward and backward regions of the detector, as well 
as the Silicon Pixel Detector (SPD) at mid-rapidity are used to form 
a minimum-bias trigger by requiring at least one hit in the SPD 
or either of the VZERO detectors [39]. For Pb–Pb and p–Pb colli-
sions, the trigger is formed by requiring simultaneous hits in both 
VZERO detectors. In addition, high-multiplicity triggers in pp and 
p–Pb collisions based on the SPD are used. Two additional triggers 
in Pb–Pb are used based on the VZERO signal amplitude which en-
hanced the statistics for central and semi-central collisions [38]. 
Approximately 164, 115, and 52 million events are used for pp, 
p–Pb, and Pb–Pb collisions, respectively. For pp and p–Pb, the 
high multiplicity triggers account for less than 3% of the collected 
events. For Pb–Pb, the central and semi-central triggers account for 
about 40% and 52% of the collected events, respectively.

The Inner Tracking System (ITS) and Time Projection Chamber 
(TPC) located at mid-rapidity are used for particle tracking [40]. 
The ITS consists of 6 layers of silicon detectors: silicon pixel (lay-
ers 1, 2), silicon drift (layers 3, 4), and silicon strip (layers 5, 6) 
detectors. The ITS provides high spatial resolution of the primary 
vertex. The TPC alone is used for momentum and charge deter-
mination of particles via their curvature in the 0.5 T longitudinal 
magnetic field, since cluster sharing within the ITS causes a small 
momentum bias for particle pairs at low relative momentum.

The TPC additionally provides particle identification capabilities 
through the specific ionization energy loss (dE/dx). The Time Of 
Flight (TOF) detector is also used to select particles at higher mo-
menta. To ensure uniform tracking, the z-coordinate (beam-axis) 
of the primary vertex is required to be within a distance of 10 cm 
from the detector center. Events with less than three reconstructed 
charged pions are rejected, which removes about 25% and 10% of 
the low-multiplicity events in pp and p–Pb, respectively.

3. Track selection and multiplicity intervals

Tracks with total momentum less than 1.0 GeV/c are used to 
ensure good particle identification. We also require transverse mo-
mentum pT > 0.16 GeV/c, and pseudorapidity |η| < 0.8. To ensure 
good momentum resolution a minimum of 70 tracking points in 
the TPC are required. Charged pions are selected if they are within 
2 standard deviations (σ ) of the expected pion dE/dx value [41]. 
For momenta greater than 0.6 GeV/c, high purity is maintained 
with TOF by selecting particles within 2σ of the expected pion 
time-of-flight. Additionally, tracks which are within 2σ of the ex-
pected kaon or proton dE/dx or time-of-flight values are rejected. 
The effects of track merging and splitting are minimized based on 
the spatial separation of tracks in the TPC as described in [42]. 
For three-pion correlations the pair cuts are applied to each of the 
three pairs in the triplet.

Similar as in [10], the analysis is performed in intervals of 
multiplicity which are defined by the reconstructed number of 
charged pions, Nrec

pions, in the above-mentioned kinematic range. 
For each multiplicity interval, the corresponding mean acceptance 
and efficiency corrected value of the total charged-pion multiplic-
ity, 〈Npions〉, and the total charged-particle multiplicity, 〈Nch〉, are 
determined using detector simulations with PYTHIA [43], DPM-
JET [44], and HIJING [45] event generators. The systematic uncer-
tainty of 〈Nch〉 and 〈Npions〉 is determined by comparing PYTHIA 
to PHOJET (pp) [46], DPMJET to HIJING (p–Pb), and HIJING to 
AMPT (Pb–Pb) [47], and amounts to about 5%. The multiplicity in-
tervals, 〈Npions〉, 〈Nch〉, as well as the average centrality in Pb–Pb 
and fractional cross sections in pp and p–Pb are given in Table 1. 
The collision centrality in Pb–Pb is determined using the charged-
particle multiplicity in the VZERO detectors [38]. As mentioned 
above, the center-of-mass reference frame for p–Pb collisions does 
not coincide with the laboratory frame, where 〈Nch〉 is measured. 
However, from studies using DPMJET and HIJING at the generator 
level, the difference to 〈Nch〉 measured in the center-of-mass is ex-
pected to be smaller than 3%.

4. Analysis technique

To extract the source radii, one can measure two- and three-
particle correlation functions as in Ref. [42]. The two-particle cor-
relation function

C2(p1, p2) = α2
N2(p1, p2)

N1(p1)N1(p2)
(1)

is constructed using the momenta pi , and is defined as the ratio 
of the inclusive two-particle spectrum over the product of the in-
clusive single-particle spectra. Both are projected onto the Lorentz 
invariant relative momentum q = √−(p1 − p2)μ(p1 − p2)μ and 
the average pion transverse momentum kT = |�pT,1 + �pT,2|/2. The 
numerator of the correlation function is formed by all pairs of 
particles from the same event. The denominator is formed by tak-
ing one particle from one event and the second particle from 
another event within the same multiplicity interval. The normal-
ization factor, α2, is determined such that the correlation function 
equals unity in a certain interval of relative momentum q. The 
location of the interval is sufficiently above the dominant region 
of QS+FSI correlations and sufficiently narrow to avoid the influ-
ence of non-femtoscopic correlations at large relative momentum. 
As the width of QS+FSI correlations is different in all three colli-
sion systems, our choice for the normalization interval depends on 
the multiplicity interval. For Pb–Pb, the normalization intervals are 
0.15 < q < 0.175 GeV/c for Nrec

pions ≥ 400 and 0.3 < q < 0.35 GeV/c

for Nrec
pions < 400. For pp and p–Pb the normalization interval is 

1.0 < q < 1.2 GeV/c.
Following [48,49], the two-particle QS distributions, NQS

2 , and 
correlations, CQS

2 , are extracted from the measured distributions in 
intervals of kT assuming

C2(q) = N
[(

1 − f 2
c

) + f 2
c K2(q)CQS

2 (q)
]

B(q). (2)

The parameter f 2
c characterizes the combined dilution effect of 

weak decays and long-lived resonance decays in the “core/halo” 
picture [50,51]. In Pb–Pb, it was estimated to be 0.7 ± 0.05 with 
mixed-charge two-pion correlations [42]. The same procedure per-
formed in pp and p–Pb data results in compatible values. The 
FSI correlation is given by K2(q), which includes Coulomb and 
strong interactions. For low multiplicities (Nrec

pions < 150), K2(q)

is calculated iteratively using the Fourier transform of the FSI 
corrected correlation functions. For higher multiplicities (Nrec

pions ≥
150), K2(q) is calculated as in Ref. [42] using the THERMINATOR2
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Table 1
Multiplicity intervals as determined by the reconstructed number of charged pions, Nrec

pions, with all of the track selection cuts (p < 1.0 GeV/c, pT > 0.16 GeV/c, |η| < 0.8). 
〈Npions〉 stands for the acceptance corrected average number of charged pions, and 〈Nch〉 for corresponding acceptance corrected number of charged particles in the same 
kinematic range. The uncertainties on 〈Nch〉 are about 5%. The RMS width of the 〈Nch〉 distribution in each interval ranges from 10% to 35% for the highest and lowest 
multiplicity intervals, respectively. The average centrality for Pb–Pb in percentiles, as well as the fractional cross-sections of the multiplicity intervals for p–Pb and pp are 
also given. The RMS widths for the centralities range from about 2 to 4 percentiles for central and peripheral collisions, respectively.

Nrec
pions Pb–Pb data p–Pb data pp data

〈Cent〉 〈Npions〉 〈Nch〉 Fraction 〈Npions〉 〈Nch〉 Fraction 〈Npions〉 〈Nch〉
[3,5) – – – 0.10 – – 0.23 4.0 4.6
[5,10) – – – 0.20 8.5 9.8 0.31 7.7 8.6
[10,15) – – – 0.18 15 17 0.12 13 15
[15,20) – – – 0.14 20 23 0.05 18 20
[20,30) 77% 26 36 0.17 29 33 0.03 24 27
[30,40) 73% 37 50 0.07 40 45 0.003 34 37
[40,50) 70% 49 64 0.03 51 57 1 × 10−4 44 47
[50,70) 66% 66 84 0.01 63 71 – – –
[70,100) 60% 95 118 – – – – – –
[100,150) 53% 142 172 – – – – – –
[150,200) 48% 213 253 – – – – – –
[200,260) 43% 276 326 – – – – – –
[260,320) 38% 343 403 – – – – – –
[320,400) 33% 426 498 – – – – – –
[400,500) 28% 534 622 – – – – – –
[500,600) 22% 654 760 – – – – – –
[600,700) 18% 777 901 – – – – – –
[700,850) 13% 931 1076 – – – – – –
[850,1050) 7.4% 1225 1413 – – – – – –
[1050,2000) 2.6% 1590 1830 – – – – – –
model [52,53]. B(q) represents the non-femtoscopic background 
correlation, and is taken from PYTHIA and DPMJET for pp and p–
Pb, respectively [24,26]. It is set equal to unity for Pb–Pb, where 
no significant background is expected. In Eq. (2), N is the residual 
normalization of the fit which typically differs from unity by 0.01.

The same-charge two-pion QS correlation can be parametrized 
by an exponential

CQS
2 (q) = 1 + λe−R invq, (3)

as well as by a Gaussian or Edgeworth expansion

CQS
2 (q) = 1 + λE2

w(R inv q)e−R2
invq2

(4)

Ew(R inv q) = 1 +
∞∑

n=3

κn

n!(√2)n
Hn(R inv q), (5)

where Ew(R invq) characterizes deviations from Gaussian behavior, 
Hn are the Hermite polynomials, and κn are the Edgeworth coef-
ficients [54]. The first two relevant Edgeworth coefficients (κ3, κ4) 
are found to be sufficient to describe the non-Gaussian features at 
low relative momentum. The Gaussian functional form is obtained 
with Ew = 1 (κn = 0) in Eq. (4). The parameter λ characterizes an 
apparent suppression from an incorrectly assumed functional form 
of CQS

2 and the suppression due to possible pion coherence [55]. 
The parameter R inv is the characteristic radius from two-particle 
correlations evaluated in the pair-rest frame. The effective intercept 
parameter for the Edgeworth fit is given by λe = λE2

w(0) [54]. The 
effective intercept can be below the chaotic limit of 1.0 for partially 
coherent emission [36,42,55]. The extracted effective intercept pa-
rameter is found to strongly depend on the assumed functional 
form of CQS

2 .
The three-particle correlation function

C3(p1, p2, p3) = α3
N3(p1, p2, p3)

N1(p1)N1(p2)N1(p3)
(6)

is defined as the ratio of the inclusive three-particle spectrum 
over the product of the inclusive single-particle spectra. In anal-
ogy to the two-pion case, it is projected onto the Lorentz invari-

ant Q 3 =
√

q2
12 + q2

31 + q2
23 and the average pion transverse mo-

mentum KT,3 = |�pT,1+�pT,2+�pT,3|
3 . The numerator of C3 is formed by 

taking three particles from the same event. The denominator is 
formed by taking each of the three particles from different events. 
The normalization factor, α3, is determined such that the correla-
tion function equals unity in the interval of Q 3 where each pair qij
lies in the same interval given before for two-pion correlations.

The extraction of the full three-pion QS distribution, NQS
3 , in 

intervals of KT,3 is done as in Ref. [42] by measuring

N3(p1, p2, p3) = f1N1(p1)N1(p2)N1(p3)

+ f2
[
N2(p1, p2)N1(p3) + N2(p3, p1)N1(p2)

+ N2(p2, p3)N1(p1)
]

+ f3 K3(q12,q31,q23)NQS
3 (p1, p2, p3), (7)

where the fractions f1 = (1 − fc)
3 + 3 fc(1 − fc)

2 − 3(1 − fc)(1 −
f 2
c ) = −0.08, f2 = 1 − fc = 0.16, and f3 = f 3

c = 0.59 using 
f 2
c = 0.7 as in the two-pion case. The term N2(pi, p j)N1(pk) is 

formed by taking two particles from the same event and the 
third particle from a mixed event. All three-particle distribu-
tions are normalized to each other in the same way as for α3. 
K3(q12, q31, q23) denotes the three-pion FSI correlation, which in 
the generalized Riverside (GRS) approach [42,56,57] is approx-
imated by K2(q12)K2(q31)K2(q23). It was found to describe the 
π±π±π∓ three-body FSI correlation to the few percent level [42]. 
From Eq. (7) one can extract NQS

3 and construct the three-pion QS 
cumulant correlation

c3(p1, p2, p3) = N3
[
1 + [

2N1(p1)N1(p2)N1(p3)

− NQS
2 (p1, p2)N1(p3)

− NQS
2 (p3, p1)N1(p2) − NQS

2 (p2, p3)N1(p1)

+ NQS
3 (p1, p2, p3)

]
/N1(p1)N1(p2)N1(p3)

]
, (8)

where NQS
2 (pi, p j)N1(pk) = [N2(pi, p j)N1(pk) − N1(pi)N1(p j)×

N1(pk)(1 − f 2
c )]/( f 2

c K2). In Eq. (8), all two-pion QS correlations 
are explicitly subtracted [34]. The QS cumulant in this form has 
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Fig. 1. Demonstration of the removal of the K 0
s decay from three-pion cumulants. 

Mixed-charge three-pion correlations are projected against the relative momentum 
of a mixed-charge pair (q±∓

31 ). The K 0
s decay into a π+ + π− pair is visible as ex-

pected around 0.4 GeV/c. The FSI enhancement of the mixed-charge pair “31” is 
also visible at low q±∓

31 . FSI corrections are not applied. Systematic uncertainties are 
shown by shaded boxes.

FSIs removed before its construction. N3 is the residual normaliza-
tion of the fit which typically differs from unity by 0.02.

The three-pion same-charge cumulant correlations are then 
projected onto 3D pair relative momenta and fit with an expo-
nential

c3(q12,q31,q23) = 1 + λ3e−R inv,3(q12+q31+q23)/2, (9)

as well as a Gaussian and an Edgeworth expansion [54]

c3(q12,q31,q23) = 1 + λ3 Ew(R inv,3 q12)Ew(R inv,3 q31)

× Ew(R inv,3 q23)e−R2
inv,3 Q 2

3 /2
. (10)

R inv,3 and λ3 are the invariant radius and intercept parameters ex-
tracted from three-pion cumulant correlations, respectively. The ef-
fective intercept parameter for the Edgeworth fit is λe,3 = λ3 E3

w(0). 
For an exact functional form of c3, λe,3 reaches a maximum of 2.0 
for fully chaotic pion emission. Deviations below and above 2.0 
can further be caused by incorrect representations of c3, e.g. Gaus-
sian. Eq. (10) neglects the effect of the three-pion phase [33] which 
was found to be consistent with zero for Pb–Pb central and mid-
central collisions [42]. We note that the extracted radii from two-
and three-pion correlations need not exactly agree, e.g. in the case 
of coherent emission [58].

The measured correlation functions need to be corrected for fi-
nite track momentum resolution of the TPC which causes a slight 
broadening of the correlation functions and leads to a slight de-
crease of the extracted radii. PYTHIA (pp), DPMJET (p–Pb) and 
HIJING (Pb–Pb) simulations are used to estimate the effect on the 
fit parameters. After the correction, both fit parameters increase 
by about 2% (5%) for the lowest (highest) multiplicity interval. 
The relative systematic uncertainty of this correction is conserva-
tively taken to be 1%. The pion purity is estimated to be about 
96%. Muons are found to be the dominant source of contamina-
tion, for which we apply corrections to the correlation functions 
as described in Ref. [42]. The correction typically increases the 
radius (intercept) fit parameters by less than 1% (5%). The corre-
sponding systematic uncertainty is included in the comparison of 
the mixed-charged correlation with unity (see below).

5. Results

The absence of two-particle correlations in the three-pion cu-
mulant can be demonstrated via the removal of known two-body 
effects such as the decay of K 0

s into a π+ + π− pair (Fig. 1). 

The mixed-charge three-pion correlation function (C±±∓
3 ) pro-

jected onto the invariant relative momentum of one of the mixed-
charge pairs in the triplet exhibits the K 0

s peak as expected around 
q±∓ = 0.4 GeV/c, while it is removed in the cumulant.

In Fig. 2 we present three-pion correlation functions for same-
charge (top panels) and mixed-charge (bottom panels) triplets in 
pp, p–Pb, and Pb–Pb collision systems in three sample multiplic-
ity intervals. For same-charge triplets, the three-pion cumulant 
QS correlation (c±±±

3 ) is clearly visible. For mixed-charge triplets 
the three-pion cumulant correlation function (c±±∓

3 ) is consis-
tent with unity, as expected when FSIs are removed. Gaussian, 
Edgeworth, and exponential fits are performed in three dimen-
sions (q12, q31, q23). Concerning Edgeworth fits, different values of 
the κ coefficients correspond to different spatial freeze-out pro-
files. In order to make a meaningful comparison of the charac-
teristic radii across all multiplicity intervals and collision systems, 
we fix κ3 = 0.1 and κ4 = 0.5. The values are determined from the 
average of free fits to c±±±

3 for all multiplicity intervals, KT,3 in-
tervals and systems. The RMS of both κ3 and κ4 distributions is 
0.1. The chosen κ coefficients produce a sharper correlation func-
tion which corresponds to larger tails in the source distribution. 
Also shown in Fig. 2 are model calculations of c3 in PYTHIA (pp), 
DPMJET (p–Pb) and HIJING (Pb–Pb), which do not contain QS+FSI 
correlations and demonstrate that three-pion cumulants, in con-
trast to two-pion correlations [24,26], do not contain a significant 
non-femtoscopic background, even for low multiplicities.

The systematic uncertainties on C3 are conservatively estimated 
to be 1% by comparing π+ to π− correlation functions and by 
tightening the track merging and splitting cuts. The systematic 
uncertainty on c±±±

3 is estimated by the residual correlation ob-
served with c±±∓

3 relative to unity. The residual correlation leads 
to a 4% uncertainty on λe,3 while having a negligible effect on 
R inv,3. The uncertainty on fc leads to an additional 10% uncertainty 
on c3 −1 and λe,3. We also investigated the effect of setting fc = 1
and thus f1 = 0, f2 = 0, f3 = 1.0 in Eq. (7) and found a negligible 
effect on R inv,3, while significantly reducing λe,3 as expected when 
the dilution is not adequately taken into account.

Figs. 3(a) and 3(b) show the three-pion Gaussian fit parame-
ters for low and high KT,3 intervals, respectively. The 〈kT〉 values 
for low (high) kT are 0.25 (0.43) GeV/c. The resulting pair kT dis-
tributions in the triplet KT,3 intervals have RMS widths for the 
low (high) KT,3 of 0.12 (0.14) in pp and p–Pb and 0.04 (0.09) 
GeV/c in Pb–Pb collisions. The 〈kT〉 values for low (high) KT,3 are 
0.24 (0.39) GeV/c. We also show the fit parameters extracted from 
two-pion correlations in order to compare to those extracted from 
three-pion cumulants. For Pb–Pb, the Gaussian radii extracted from 
three-pion correlations are about 10% smaller than those extracted 
from two-pion correlations, which may be due to the non-Gaussian 
features of the correlation function. A clear suppression below the 
chaotic limit is observed for the effective intercept parameters in 
all multiplicity intervals. The suppression may be caused by non-
Gaussian features of the correlation function and also by a finite 
coherent component of pion emission [36,42,55].

The systematic uncertainties on the fit parameters are domi-
nated by fit-range variations, especially in the case of Gaussian 
fits to non-Gaussian correlation functions. The chosen fit range 
for c3 varies smoothly between Q 3 = 0.5 and 0.1 GeV/c from the 
lowest multiplicity pp to the highest multiplicity Pb–Pb intervals. 
For C2, the fit ranges are chosen to be 

√
2 times narrower. The 

characteristic width of Gaussian three-pion cumulant QS correla-
tions projected against Q 3 is a factor of 

√
2 times that of Gaus-

sian two-pion QS correlations projected against q [35,36]. As a 
variation we change the upper bound of the fit range by ±30%
for three-pion correlations and two-pion correlations in Pb–Pb for 
Nrec

pions > 50. For Nrec
pions < 50, in Pb–Pb, the upper limit of the fit 
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Fig. 2. Three-pion correlation functions versus Q 3 for 0.16 < KT,3 < 0.3 GeV/c in pp, p–Pb and Pb–Pb collision data compared to PYTHIA, DPMJET and HIJING generator-level 
calculations. Top panels are for same-charge triplets, while bottom panels are for mixed-charge triplets. Two points at low Q 3 with large statistical uncertainties are not 
shown for the pp same-charge correlation function.

Fig. 3. Two- and three-pion Gaussian fit parameters versus 〈Nch〉 in pp, p–Pb and Pb–Pb collision systems for low and high kT and KT,3 intervals. Top panels show the 
Gaussian radii RG

inv and RG
inv,3 and bottom panels show the effective Gaussian intercept parameters λG

e and λG
e,3. The systematic uncertainties are dominated by fit range 

variations and are shown by bounding/dashed lines and shaded boxes for two- and three-particle parameters, respectively. The dashed and dash-dotted lines represent the 
chaotic limits for λG

e and λG
e,3, respectively.
range is increased to match that in p–Pb (i.e. 0.13 to 0.27 GeV/c). 
For pp and p–Pb, owing to the larger background present for two-
pion correlations, we extend the fit range to q = 1.2 GeV/c for the 
upper variation. The non-femtoscopic background in Eq. (2) has 
a non-negligible effect on the extracted radii in the extended fit 

range. The resulting systematic uncertainties are fully correlated 
for three-pion fit parameters for each collision system, since the 
fit-range variations have the same effect in each multiplicity inter-
val. The systematic uncertainties for the two-pion fit parameters 
are largely correlated and are asymmetric due to the different
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Fig. 4. Two- and three-pion Edgeworth fit parameters versus 〈Nch〉 in pp, p–Pb and Pb–Pb collision systems for low and high kT and KT,3 intervals. Top panels show the 
Edgeworth radii R Ew

inv and R Ew
inv,3 and bottom panels show the effective intercept parameters λEw

e and λEw
e,3. As described in the text, κ3 and κ4 are fixed to 0.1 and 0.5, 

respectively. Same details as for Fig. 3.

Fig. 5. Two- and three-pion exponential fit parameters versus 〈Nch〉 in pp, p–Pb and Pb–Pb collision systems for low and high kT and KT,3 intervals. Top panels show the 
exponential radii RExp and RExp scaled down by √π and bottom panels show the effective intercept parameters λExp

e and λExp. Same details as for Fig. 3.
inv inv,3 e,3

fit-range variations. We note that the radii in pp collisions at √
s = 7 TeV from our previous two-pion measurement [26] are 

about 25% smaller than the central values extracted in this analy-
sis although compatible within systematic uncertainties. The large 
difference is attributed to the narrower fit range in this analy-
sis. In [24,26] the chosen Gaussian fit range was q < 1.4 GeV/c, 
while here it is q < 0.35 GeV/c for the lowest multiplicity interval. 
The narrower fit range is chosen based on observations made with 
three-pion cumulants for which two-pion background correlations 
are removed. It is observed in Fig. 2 that even for low multiplic-

ities, the dominant QS correlation is well below Q 3 = 0.5 GeV/c. 
The presence of the non-femtoscopic backgrounds can also bias 
the radii from two-pion correlations in wide fit ranges and is sup-
pressed with three-pion cumulant correlations.

To further address the non-Gaussian features of the correla-
tion functions, we also extract the fit parameters from an Edge-
worth and exponential parametrization as shown in Figs. 4 and 5. 
We observe that the Edgeworth and exponential radii are signifi-
cantly larger than the Gaussian radii. However, they should not be 
directly compared as they correspond to different source profiles. 
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Gaussian radii correspond to the standard deviation of a Gaussian 
source profile whereas exponential radii correspond to the FWHM 
of a Cauchy source. The Edgeworth radii are model independent 
and are defined as the 2nd cumulant of the measured correlation 
function. Note that the exponential radii have been scaled down 
by 

√
π as is often done to compare Gaussian and exponential 

radii [23]. Compared to the Gaussian radii, the two- and three-
pion radii are in much better agreement for the Edgeworth and 
exponential fits. This suggests that the discrepancy between two-
and three-pion Gaussian radii are indeed caused by non-Gaussian 
features of the correlation function. Concerning the effective in-
tercepts, we observe a substantial increase as compared to the 
Gaussian case.

The qualities of the Gaussian, Edgeworth, and exponential fits 
for three-pion cumulant correlations vary depending on the multi-
plicity interval. The χ2/NDF for the 3D three-pion Gaussian, Edge-
worth, and exponential fits in the highest multiplicity Pb–Pb in-
terval is 8600/1436, 4450/1436, and 4030/1436, respectively. The 
χ2/NDF decreases significantly for lower multiplicity intervals to 
about 4170/7785 for peripheral Pb–Pb and 12 400/17 305 for pp 
and p–Pb multiplicity intervals, for all fit types. The Edgeworth 
χ2/NDF is a few percent smaller than for Gaussian fits in low 
multiplicity intervals. The exponential χ2/NDF is a few percent 
smaller than for Edgeworth fits in low multiplicity intervals.

Due to the asymmetry of the p–Pb colliding system, the ex-
tracted fit parameters in −0.8 < η < −0.4 and 0.4 < η < 0.8 pseu-
dorapidity intervals are compared. The radii and the effective inter-
cept parameters in both intervals are consistent within statistical 
uncertainties.

The extracted radii in each multiplicity interval and system 
correspond to different 〈Nch〉 values. To compare the radii in pp 
and p–Pb at the same 〈Nch〉 value, we perform a linear fit to 
the pp three-pion Edgeworth radii as a function of 〈Nch〉1/3. We 
then compare the extracted p–Pb three-pion Edgeworth radii to 
the value of the pp fit evaluated at the same 〈Nch〉. We find that 
the Edgeworth radii in p–Pb are on average 10 ± 5% larger than 
for pp in the region of overlapping multiplicity. The comparison of 
Pb–Pb to p–Pb radii is done similarly where the fit is performed 
to p–Pb data and compared to the two-pion Pb–Pb Edgeworth 
radii. The Edgeworth radii in Pb–Pb are found to be on average 
45 ± 10% larger than for p–Pb in the region of overlapping multi-
plicity. The ratio comparison as it is done exploits the cancellation 
of the largely correlated systematic uncertainties.

To be independent of the assumed functional form for c3, the 
same-charge three-pion cumulant correlation functions are directly 
compared between two collision systems at similar multiplicity. 
Fig. 6(a) shows that while the three-pion correlation functions in 
pp and p–Pb collisions are different, their characteristic widths are 
similar. It is therefore the λe,3 values which differ the most be-
tween the two systems. Fig. 6(b) shows that the correlation func-
tions in p–Pb and Pb–Pb collisions are generally quite different.

6. Summary

Three-pion correlations of same- and mixed-charge pions have 
been presented for pp (

√
s = 7 TeV), p–Pb (

√
sNN = 5.02 TeV) and 

Pb–Pb (
√

sNN = 2.76 TeV) collisions at the LHC, measured with 
ALICE. Freeze-out radii using Gaussian, Edgeworth, and exponen-
tial fits have been extracted from the three-pion cumulant QS 
correlation and presented in intervals of multiplicity and triplet 
momentum. Compared to the radii from two-pion correlations, the 
radii from three-pion cumulant correlations are less susceptible to 
non-femtoscopic background correlations due to the increased QS 
signal and the removal of two-pion backgrounds.

The deviation of Gaussian fits below the observed correlations 
at low Q 3 clearly demonstrates the importance of non-Gaussian 
features of the correlation functions. The effective intercept pa-
rameters from Gaussian (exponential) fits are significantly below 
(above) the chaotic limits, while the corresponding Edgeworth ef-
fective intercepts are much closer to the chaotic limit.

At similar multiplicity, the invariant radii extracted from Edge-
worth fits in p–Pb collisions are found to be 5–15% larger than 
those in pp, while those in Pb–Pb are 35–55% larger than those 
in p–Pb. Hence, models which incorporate substantially stronger 
collective expansion in p–Pb than pp collisions at similar multi-
plicity are disfavored. The comparability of the extracted radii in 
pp and p–Pb collisions at similar multiplicity is consistent with 
expectations from CGC initial conditions (IP-Glasma) without a hy-
drodynamic phase [17]. The smaller radii in p–Pb as compared to 
Pb–Pb collisions may demonstrate the importance of different ini-
tial conditions on the final-state, or indicate significant collective 
expansion already in peripheral Pb–Pb collisions.

Acknowledgements

We would like to thank Richard Lednický, Máté Csanád, and 
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B. Abelev bq, J. Adam ak, D. Adamová by, M.M. Aggarwal cc, M. Agnello da,cj, A. Agostinelli z, N. Agrawal ar, 
Z. Ahammed dt, N. Ahmad r, I. Ahmed o, S.U. Ahn bj, S.A. Ahn bj, I. Aimo da,cj, S. Aiola dy, M. Ajaz o, 
A. Akindinov ba, S.N. Alam dt, D. Aleksandrov cp, B. Alessandro da, D. Alexandre cr, A. Alici l,cu, A. Alkin c, 
J. Alme ai, T. Alt am, S. Altinpinar q, I. Altsybeev ds, C. Alves Garcia Prado di, C. Andrei bt, A. Andronic cm, 
V. Anguelov ci, J. Anielski aw, T. Antičić cn, F. Antinori cx, P. Antonioli cu, L. Aphecetche dc, 
H. Appelshäuser av, N. Arbor bm, S. Arcelli z, N. Armesto p, R. Arnaldi da, T. Aronsson dy, I.C. Arsene cm, 
M. Arslandok av, A. Augustinus ah, R. Averbeck cm, T.C. Awes bz, M.D. Azmi ce, M. Bach am, A. Badalà cw, 
Y.W. Baek bl,an, S. Bagnasco da, R. Bailhache av, R. Bala cf, A. Baldisseri n, F. Baltasar Dos Santos Pedrosa ah, 
R.C. Baral bd, R. Barbera aa, F. Barile ae, G.G. Barnaföldi dx, L.S. Barnby cr, V. Barret bl, J. Bartke df, M. Basile z, 
N. Bastid bl, S. Basu dt, B. Bathen aw, G. Batigne dc, B. Batyunya bi, P.C. Batzing u, C. Baumann av, 
I.G. Bearden bv, H. Beck av, C. Bedda cj, N.K. Behera ar, I. Belikov ax, F. Bellini z, R. Bellwied dk, 
E. Belmont-Moreno bg, R. Belmont dw, V. Belyaev br, G. Bencedi dx, S. Beole y, I. Berceanu bt, A. Bercuci bt, 
Y. Berdnikov ca,i, D. Berenyi dx, M.E. Berger ch, R.A. Bertens az, D. Berzano y, L. Betev ah, A. Bhasin cf, 
I.R. Bhat cf, A.K. Bhati cc, B. Bhattacharjee ao, J. Bhom dp, L. Bianchi y, N. Bianchi bn, C. Bianchin az, 
J. Bielčík ak, J. Bielčíková by, A. Bilandzic bv, S. Bjelogrlic az, F. Blanco j, D. Blau cp, C. Blume av, F. Bock ci,bp, 
A. Bogdanov br, H. Bøggild bv, M. Bogolyubsky db, F.V. Böhmer ch, L. Boldizsár dx, M. Bombara al, J. Book av, 
H. Borel n, A. Borissov cl,dw, F. Bossú bh, M. Botje bw, E. Botta y, S. Böttger au, P. Braun-Munzinger cm, 
M. Bregant di, T. Breitner au, T.A. Broker av, T.A. Browning ck, M. Broz ak, E. Bruna da, G.E. Bruno ae, 
D. Budnikov co, H. Buesching av, S. Bufalino da, P. Buncic ah, O. Busch ci, Z. Buthelezi bh, D. Caffarri ab, 
X. Cai g, H. Caines dy, L. Calero Diaz bn, A. Caliva az, E. Calvo Villar cs, P. Camerini x, F. Carena ah, 
W. Carena ah, J. Castillo Castellanos n, E.A.R. Casula w, V. Catanescu bt, C. Cavicchioli ah, 
C. Ceballos Sanchez i, J. Cepila ak, P. Cerello da, B. Chang dl, S. Chapeland ah, J.L. Charvet n, 
S. Chattopadhyay dt, S. Chattopadhyay cq, V. Chelnokov c, M. Cherney cb, C. Cheshkov dr, B. Cheynis dr, 
V. Chibante Barroso ah, D.D. Chinellato dk, P. Chochula ah, M. Chojnacki bv, S. Choudhury dt, 
P. Christakoglou bw, C.H. Christensen bv, P. Christiansen af, T. Chujo dp, S.U. Chung cl, C. Cicalo cv, 
L. Cifarelli l,z, F. Cindolo cu, J. Cleymans ce, F. Colamaria ae, D. Colella ae, A. Collu w, M. Colocci z, 
G. Conesa Balbastre bm, Z. Conesa del Valle at, M.E. Connors dy, J.G. Contreras k, T.M. Cormier dw, 
Y. Corrales Morales y, P. Cortese ad, I. Cortés Maldonado b, M.R. Cosentino di, F. Costa ah, P. Crochet bl, 
R. Cruz Albino k, E. Cuautle bf, L. Cunqueiro bn, A. Dainese cx, R. Dang g, A. Danu be, D. Das cq, I. Das at, 
K. Das cq, S. Das d, A. Dash dj, S. Dash ar, S. De dt, H. Delagrange dc,ii, A. Deloff bs, E. Dénes dx, 
G. D’Erasmo ae, A. De Caro ac,l, G. de Cataldo ct, J. de Cuveland am, A. De Falco w, D. De Gruttola ac,l, 
N. De Marco da, S. De Pasquale ac, R. de Rooij az, M.A. Diaz Corchero j, T. Dietel aw, P. Dillenseger av, 
R. Divià ah, D. Di Bari ae, S. Di Liberto cy, A. Di Mauro ah, P. Di Nezza bn, Ø. Djuvsland q, A. Dobrin az, 
T. Dobrowolski bs, D. Domenicis Gimenez di, B. Dönigus av, O. Dordic u, S. Dørheim ch, A.K. Dubey dt, 
A. Dubla az, L. Ducroux dr, P. Dupieux bl, A.K. Dutta Majumdar cq, R.J. Ehlers dy, D. Elia ct, H. Engel au, 
B. Erazmus ah,dc, H.A. Erdal ai, D. Eschweiler am, B. Espagnon at, M. Esposito ah, M. Estienne dc, S. Esumi dp, 
D. Evans cr, S. Evdokimov db, D. Fabris cx, J. Faivre bm, D. Falchieri z, A. Fantoni bn, M. Fasel ci, D. Fehlker q, 
L. Feldkamp aw, D. Felea be, A. Feliciello da, G. Feofilov ds, J. Ferencei by, A. Fernández Téllez b, 
E.G. Ferreiro p, A. Ferretti y, A. Festanti ab, J. Figiel df, M.A.S. Figueredo dm, S. Filchagin co, D. Finogeev ay, 
F.M. Fionda ae, E.M. Fiore ae, E. Floratos cd, M. Floris ah, S. Foertsch bh, P. Foka cm, S. Fokin cp, 
E. Fragiacomo cz, A. Francescon ah,ab, U. Frankenfeld cm, U. Fuchs ah, C. Furget bm, M. Fusco Girard ac, 
J.J. Gaardhøje bv, M. Gagliardi y, A.M. Gago cs, M. Gallio y, D.R. Gangadharan bp,s, P. Ganoti bz, 
C. Garabatos cm, E. Garcia-Solis m, C. Gargiulo ah, I. Garishvili bq, J. Gerhard am, M. Germain dc, A. Gheata ah, 
M. Gheata ah,be, B. Ghidini ae, P. Ghosh dt, S.K. Ghosh d, P. Gianotti bn, P. Giubellino ah, 
E. Gladysz-Dziadus df, P. Glässel ci, A. Gomez Ramirez au, P. González-Zamora j, S. Gorbunov am, 
L. Görlich df, S. Gotovac de, L.K. Graczykowski dv, A. Grelli az, A. Grigoras ah, C. Grigoras ah, V. Grigoriev br, 
A. Grigoryan a, S. Grigoryan bi, B. Grinyov c, N. Grion cz, J.F. Grosse-Oetringhaus ah, J.-Y. Grossiord dr, 
R. Grosso ah, F. Guber ay, R. Guernane bm, B. Guerzoni z, M. Guilbaud dr, K. Gulbrandsen bv, H. Gulkanyan a, 
M. Gumbo ce, T. Gunji do, A. Gupta cf, R. Gupta cf, K.H. Khan o, R. Haake aw, Ø. Haaland q, C. Hadjidakis at, 
M. Haiduc be, H. Hamagaki do, G. Hamar dx, L.D. Hanratty cr, A. Hansen bv, J.W. Harris dy, H. Hartmann am, 
A. Harton m, D. Hatzifotiadou cu, S. Hayashi do, S.T. Heckel av, M. Heide aw, H. Helstrup ai, A. Herghelegiu bt, 
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G. Herrera Corral k, B.A. Hess ag, K.F. Hetland ai, B. Hippolyte ax, J. Hladky bc, P. Hristov ah, M. Huang q, 
T.J. Humanic s, D. Hutter am, D.S. Hwang t, R. Ilkaev co, I. Ilkiv bs, M. Inaba dp, G.M. Innocenti y, C. Ionita ah, 
M. Ippolitov cp, M. Irfan r, M. Ivanov cm, V. Ivanov ca, A. Jachołkowski aa, P.M. Jacobs bp, C. Jahnke di, 
H.J. Jang bj, M.A. Janik dv, P.H.S.Y. Jayarathna dk, S. Jena dk, R.T. Jimenez Bustamante bf, P.G. Jones cr, 
H. Jung an, A. Jusko cr, V. Kadyshevskiy bi, S. Kalcher am, P. Kalinak bb, A. Kalweit ah, J. Kamin av, 
J.H. Kang dz, V. Kaplin br, S. Kar dt, A. Karasu Uysal bk, O. Karavichev ay, T. Karavicheva ay, E. Karpechev ay, 
U. Kebschull au, R. Keidel ea, M.M. Khan r,iii, P. Khan cq, S.A. Khan dt, A. Khanzadeev ca, Y. Kharlov db, 
B. Kileng ai, B. Kim dz, D.W. Kim bj,an, D.J. Kim dl, J.S. Kim an, M. Kim an, M. Kim dz, S. Kim t, T. Kim dz, 
S. Kirsch am, I. Kisel am, S. Kiselev ba, A. Kisiel dv, G. Kiss dx, J.L. Klay f, J. Klein ci, C. Klein-Bösing aw, 
A. Kluge ah, M.L. Knichel cm, A.G. Knospe dg, C. Kobdaj ah,dd, M.K. Köhler cm, T. Kollegger am, A. Kolojvari ds, 
V. Kondratiev ds, N. Kondratyeva br, A. Konevskikh ay, V. Kovalenko ds, M. Kowalski df, S. Kox bm, 
G. Koyithatta Meethaleveedu ar, J. Kral dl, I. Králik bb, F. Kramer av, A. Kravčáková al, M. Krelina ak, 
M. Kretz am, M. Krivda cr,bb, F. Krizek by, E. Kryshen ah, M. Krzewicki cm, V. Kučera by, Y. Kucheriaev cp,ii, 
T. Kugathasan ah, C. Kuhn ax, P.G. Kuijer bw, I. Kulakov av, J. Kumar ar, P. Kurashvili bs, A. Kurepin ay, 
A.B. Kurepin ay, A. Kuryakin co, S. Kushpil by, M.J. Kweon ci, Y. Kwon dz, P. Ladron de Guevara bf, 
C. Lagana Fernandes di, I. Lakomov at, R. Langoy du, C. Lara au, A. Lardeux dc, A. Lattuca y, S.L. La Pointe az, 
P. La Rocca aa, R. Lea x, G.R. Lee cr, I. Legrand ah, J. Lehnert av, R.C. Lemmon bx, V. Lenti ct, E. Leogrande az, 
M. Leoncino y, I. León Monzón dh, P. Lévai dx, S. Li g,bl, J. Lien du, R. Lietava cr, S. Lindal u, 
V. Lindenstruth am, C. Lippmann cm, M.A. Lisa s, H.M. Ljunggren af, D.F. Lodato az, P.I. Loenne q, 
V.R. Loggins dw, V. Loginov br, D. Lohner ci, C. Loizides bp, X. Lopez bl, E. López Torres i, X.-G. Lu ci, 
P. Luettig av, M. Lunardon ab, G. Luparello az, C. Luzzi ah, R. Ma dy, A. Maevskaya ay, M. Mager ah, 
D.P. Mahapatra bd, S.M. Mahmood u, A. Maire ci, R.D. Majka dy, M. Malaev ca, I. Maldonado Cervantes bf, 
L. Malinina bi,iv, D. Mal’Kevich ba, P. Malzacher cm, A. Mamonov co, L. Manceau da, V. Manko cp, F. Manso bl, 
V. Manzari ct, M. Marchisone bl,y, J. Mareš bc, G.V. Margagliotti x, A. Margotti cu, A. Marín cm, C. Markert dg, 
M. Marquard av, I. Martashvili dn, N.A. Martin cm, P. Martinengo ah, M.I. Martínez b, G. Martínez García dc, 
J. Martin Blanco dc, Y. Martynov c, A. Mas dc, S. Masciocchi cm, M. Masera y, A. Masoni cv, L. Massacrier dc, 
A. Mastroserio ae, A. Matyja df, C. Mayer df, J. Mazer dn, M.A. Mazzoni cy, F. Meddi v, A. Menchaca-Rocha bg, 
J. Mercado Pérez ci, M. Meres aj, Y. Miake dp, K. Mikhaylov bi,ba, L. Milano ah, J. Milosevic u,v, A. Mischke az, 
A.N. Mishra as, D. Miśkowiec cm, J. Mitra dt, C.M. Mitu be, J. Mlynarz dw, N. Mohammadi az, 
B. Mohanty bu,dt, L. Molnar ax, L. Montaño Zetina k, E. Montes j, M. Morando ab, D.A. Moreira De Godoy di, 
S. Moretto ab, A. Morreale dl, A. Morsch ah, V. Muccifora bn, E. Mudnic de, D. Mühlheim aw, S. Muhuri dt, 
M. Mukherjee dt, H. Müller ah, M.G. Munhoz di, S. Murray ce, L. Musa ah, J. Musinsky bb, B.K. Nandi ar, 
R. Nania cu, E. Nappi ct, C. Nattrass dn, K. Nayak bu, T.K. Nayak dt, S. Nazarenko co, A. Nedosekin ba, 
M. Nicassio cm, M. Niculescu ah,be, B.S. Nielsen bv, S. Nikolaev cp, S. Nikulin cp, V. Nikulin ca, B.S. Nilsen cb, 
F. Noferini l,cu, P. Nomokonov bi, G. Nooren az, A. Nyanin cp, J. Nystrand q, H. Oeschler ci, S. Oh dy, 
S.K. Oh an,vi, A. Okatan bk, L. Olah dx, J. Oleniacz dv, A.C. Oliveira Da Silva di, J. Onderwaater cm, 
C. Oppedisano da, A. Ortiz Velasquez af, A. Oskarsson af, J. Otwinowski cm, K. Oyama ci, P. Sahoo as, 
Y. Pachmayer ci, M. Pachr ak, P. Pagano ac, G. Paić bf, F. Painke am, C. Pajares p, S.K. Pal dt, A. Palmeri cw, 
D. Pant ar, V. Papikyan a, G.S. Pappalardo cw, P. Pareek as, W.J. Park cm, S. Parmar cc, A. Passfeld aw, 
D.I. Patalakha db, V. Paticchio ct, B. Paul cq, T. Pawlak dv, T. Peitzmann az, H. Pereira Da Costa n, 
E. Pereira De Oliveira Filho di, D. Peresunko cp, C.E. Pérez Lara bw, A. Pesci cu, V. Peskov av, Y. Pestov e, 
V. Petráček ak, M. Petran ak, M. Petris bt, M. Petrovici bt, C. Petta aa, S. Piano cz, M. Pikna aj, P. Pillot dc, 
O. Pinazza cu,ah, L. Pinsky dk, D.B. Piyarathna dk, M. Płoskoń bp, M. Planinic dq,cn, J. Pluta dv, 
S. Pochybova dx, P.L.M. Podesta-Lerma dh, M.G. Poghosyan ah, E.H.O. Pohjoisaho ap, B. Polichtchouk db, 
N. Poljak cn, A. Pop bt, S. Porteboeuf-Houssais bl, J. Porter bp, B. Potukuchi cf, S.K. Prasad dw, 
R. Preghenella cu,l, F. Prino da, C.A. Pruneau dw, I. Pshenichnov ay, G. Puddu w, P. Pujahari dw, V. Punin co, 
J. Putschke dw, H. Qvigstad u, A. Rachevski cz, S. Raha d, J. Rak dl, A. Rakotozafindrabe n, L. Ramello ad, 
R. Raniwala cg, S. Raniwala cg, S.S. Räsänen ap, B.T. Rascanu av, D. Rathee cc, A.W. Rauf o, V. Razazi w, 
K.F. Read dn, J.S. Real bm, K. Redlich bs,vii, R.J. Reed dy, A. Rehman q, P. Reichelt av, M. Reicher az, F. Reidt ah, 
R. Renfordt av, A.R. Reolon bn, A. Reshetin ay, F. Rettig am, J.-P. Revol ah, K. Reygers ci, V. Riabov ca, 
R.A. Ricci bo, T. Richert af, M. Richter u, P. Riedler ah, W. Riegler ah, F. Riggi aa, A. Rivetti da, E. Rocco az, 
M. Rodríguez Cahuantzi b, A. Rodriguez Manso bw, K. Røed u, E. Rogochaya bi, S. Rohni cf, D. Rohr am, 
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D. Röhrich q, R. Romita bx, F. Ronchetti bn, P. Rosnet bl, A. Rossi ah, F. Roukoutakis cd, A. Roy as, C. Roy ax, 
P. Roy cq, A.J. Rubio Montero j, R. Rui x, R. Russo y, E. Ryabinkin cp, Y. Ryabov ca, A. Rybicki df, 
S. Sadovsky db, K. Šafařík ah, B. Sahlmuller av, R. Sahoo as, P.K. Sahu bd, J. Saini dt, S. Sakai bp, C.A. Salgado p, 
J. Salzwedel s, S. Sambyal cf, V. Samsonov ca, X. Sanchez Castro ax, F.J. Sánchez Rodríguez dh, L. Šándor bb, 
A. Sandoval bg, M. Sano dp, G. Santagati aa, D. Sarkar dt, E. Scapparone cu, F. Scarlassara ab, 
R.P. Scharenberg ck, C. Schiaua bt, R. Schicker ci, C. Schmidt cm, H.R. Schmidt ag, S. Schuchmann av, 
J. Schukraft ah, M. Schulc ak, T. Schuster dy, Y. Schutz dc,ah, K. Schwarz cm, K. Schweda cm, G. Scioli z, 
E. Scomparin da, R. Scott dn, G. Segato ab, J.E. Seger cb, Y. Sekiguchi do, I. Selyuzhenkov cm, J. Seo cl, 
E. Serradilla j,bg, A. Sevcenco be, A. Shabetai dc, G. Shabratova bi, R. Shahoyan ah, A. Shangaraev db, 
N. Sharma dn, S. Sharma cf, K. Shigaki aq, K. Shtejer y, Y. Sibiriak cp, S. Siddhanta cv, T. Siemiarczuk bs, 
D. Silvermyr bz, C. Silvestre bm, G. Simatovic dq, R. Singaraju dt, R. Singh cf, S. Singha dt,bu, V. Singhal dt, 
B.C. Sinha dt, T. Sinha cq, B. Sitar aj, M. Sitta ad, T.B. Skaali u, K. Skjerdal q, M. Slupecki dl, N. Smirnov dy, 
R.J.M. Snellings az, C. Søgaard af, R. Soltz bq, J. Song cl, M. Song dz, F. Soramel ab, S. Sorensen dn, 
M. Spacek ak, I. Sputowska df, M. Spyropoulou-Stassinaki cd, B.K. Srivastava ck, J. Stachel ci, I. Stan be, 
G. Stefanek bs, M. Steinpreis s, E. Stenlund af, G. Steyn bh, J.H. Stiller ci, D. Stocco dc, M. Stolpovskiy db, 
P. Strmen aj, A.A.P. Suaide di, T. Sugitate aq, C. Suire at, M. Suleymanov o, R. Sultanov ba, M. Šumbera by, 
T. Susa cn, T.J.M. Symons bp, A. Szabo aj, A. Szanto de Toledo di, I. Szarka aj, A. Szczepankiewicz ah, 
M. Szymanski dv, J. Takahashi dj, M.A. Tangaro ae, J.D. Tapia Takaki i,at,viii, A. Tarantola Peloni av, 
A. Tarazona Martinez ah, M.G. Tarzila bt, A. Tauro ah, G. Tejeda Muñoz b, A. Telesca ah, C. Terrevoli w, 
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