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A data-driven method was applied to Au+Au collisions at √sNN = 200 GeV made with the STAR detec-
tor at RHIC to isolate pseudorapidity distance �η-dependent and �η-independent correlations by using 
two- and four-particle azimuthal cumulant measurements. We identified a �η-independent component 
of the correlation, which is dominated by anisotropic flow and flow fluctuations. It was also found to be 
independent of η within the measured range of pseudorapidity |η| < 1. In 20–30% central Au+Au colli-
sions, the relative flow fluctuation was found to be 34% ±2%(stat.) ±3%(sys.) for particles with transverse 
momentum pT less than 2 GeV/c. The �η-dependent part, attributed to nonflow correlations, is found 
to be 5% ± 2%(sys.) relative to the flow of the measured second harmonic cumulant at |�η| > 0.7.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Heavy-ion collisions at ultra-relativistic energies as produced at 
the Relativistic Heavy Ion Collider (RHIC) and at the Large Hadron 
Collider (LHC) provide means to study the Quark Gluon Plasma 
(QGP). In non-central collisions, the overlap region of the collid-
ing nuclei is anisotropic. The energy density gradient converts the 
initial coordinate-space anisotropy into the final momentum-space 
anisotropy, generally called anisotropic flow. As the system ex-
pands, the coordinate-space anisotropy diminishes. Hence, a mea-
surement of flow is most sensitive to properties of the system 
at the early stage of the collision [1]. Through measurements of 
anisotropic flow and comparison with hydrodynamic calculations, 
properties of the early stage of the collision may be extracted. One 
of the important variables, the ratio of the shear viscosity to en-
tropy density of the QGP, was found to be not much larger than 
the conjectured quantum limit of 1/4π [2].

The momentum-space anisotropic flow can be characterized by 
Fourier coefficients, vn , of the outgoing particle azimuthal (φ) dis-
tribution [3]:

dN

dφ
∝ 1 +

∞∑
n=1

2vn cosn(φ − ψn), (1)

where the participant plane is characterized by the angle ψn , given 
by the initial participant nucleon (or parton) configuration [4]. The 
higher harmonics can arise from initial fluctuations such that ψn is 
not necessarily the same for different n. Because ψn is not experi-
mentally accessible, the event plane, constructed from final particle 
momenta, is used as a proxy for the initial state participant plane. 
The determination of the anisotropic flow uses particle correlations 
that are, however, contaminated by intrinsic particle correlations 
unrelated to the participant plane. Those correlations are generally 
called nonflow and are due to jet fragmentation and final state 
interactions, such as quantum statistics, Coulomb and strong inter-
actions, and resonance decays [5].

Similarly, two- and multi-particle correlations are also used to 
measure anisotropy [6,5]. For example, the two-particle correlation 
is given by:

dN

d�φ
∝ 1 +

∞∑
n=1

2Vn{2} cosn�φ, (2)

where �φ is the azimuthal angle between the two particles. In 
the absence of nonflow, Eq. (2) follows from Eq. (1) with Vn{2} =
vn,α vn,β (where α, β stand for the two particles). Otherwise, 
Vn{2} = vn,α vn,β + δn , where δn is the nonflow contribution. Since 
even a small uncertainty in flow can introduce a large error in the 
extracted shear viscosity [7], it is important to separate nonflow 
contributions from flow measurements.

This article describes a method used to separate flow and non-
flow in a data-driven way, with minimal reliance on models. We 
measure two- and four-particle cumulants with different pseudora-
pidity (η) combinations. By exploiting the symmetry of the average 
flow in η at midrapidity in symmetric heavy-ion collisions, we sep-
arate �η-independent and �η-dependent contributions. We asso-
ciate the �η-independent part with flow, while the �η-dependent 
part is associated with nonflow. This is because flow is an event-
wise many-particle azimuthal correlation, reflecting properties on 
the single-particle level [1]. By contrast, nonflow is a few-particle 
azimuthal correlation that depends on the �η distance between 
the particles.

This article is organized as follows: Section 2.1 gives the exper-
imental details and the criteria for the data selection. Section 2.2
gives two- and four-particle cumulant results and the separation of 
�η-independent and �η-dependent components. Section 3 asso-
ciates the �η-independent part with flow and the �η-dependent 
part with nonflow, and further discusses flow, flow fluctuation and 
nonflow.

http://creativecommons.org/licenses/by/4.0/
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2. Data analysis

2.1. Experiment details and data selection

This analysis principally relies on the STAR Time Projection 
Chamber (TPC) [8]. A total number of 25 million Au+Au colli-
sions at 

√
sNN = 200 GeV, collected with a minimum bias trigger 

in 2004, were used. The events selected were required to have a 
primary event vertex within |zvtx| < 30 cm along the beam axis (z) 
to ensure nearly uniform detector acceptance. The centrality def-
inition was based on the raw charged particle multiplicity within 
|η| < 0.5 in TPC. The charged particle tracks used in the analysis 
were required to satisfy the following conditions: the transverse 
momentum 0.15 < pT < 2 GeV/c to remove high pT particles orig-
inating from the jets; the distance of closest approach to the event 
vertex |dca| < 3 cm to ensure that the particles are from the pri-
mary collision vertex; the number of fit points along the track 
greater than 20 out of 45 maximum hit points, and the ratio of 
the number of fit points along the track to the maximum num-
ber of possible fit points larger than 0.51 for good primary track 
reconstruction [9]. For the particles used in this paper, the pseu-
dorapidity region was restricted to |η| < 1.

2.2. Analysis method

In this analysis, the azimuthal anisotropy of the final state par-
ticles was calculated by the two- and four-particle Q-cumulant 
method using unit weight with a non-uniform acceptance correc-
tion [10]. By using the moment of the flow vector, this method 
makes multi-particle cumulant calculation faster without going 
over pair or a higher multiplet loop. The non-uniform acceptance 
correction for 20–30% centrality was 0.7% for the second harmonic 
two-particle cumulant V 2{2}, and 0.5% for the square root of the 
second harmonic four-particle cumulant V 1/2

2 {4}. The largest ac-
ceptance correction was 1.8% for V 2{2} at the most central, and 1% 
for V 1/2

2 {4} at the most peripheral collisions.
The two-particle cumulant, with one particle at pseudorapidity 

ηα and another at ηβ , is [11]:

V {2} ≡ 〈〈ei(φα−φβ)〉〉 = 〈v(ηα)v(ηβ)〉 + δ(�η)

≡ 〈v(ηα)〉〈v(ηβ)〉 + σ(ηα)σ (ηβ) + σ ′(�η)

+ δ(�η,ηα,ηβ), (3)

where �η = |ηβ − ηα |. The double brackets represent the average 
over particle pairs and the average over events, while the single 
brackets are for the average over events only. The harmonic num-
ber n is suppressed to lighten the notation. The average flow, 〈v〉, 
which is the anisotropy parameter with respect to the participant 
plane, and the flow fluctuation, σ , are only functions of η, because 
flow reflects the property on the single-particle level. Both 〈v〉 and 
σ are �η-independent quantities. However, because of the way 
the two-particle cumulant is measured, i.e., by two-particle cor-
relation, there could exist a �η-dependent flow fluctuation com-
ponent. For example, the event planes determined by particles 
at different η’s can be different [12]. In Eq. (3), σ ′ denotes this 
�η-dependent part of the flow fluctuation. The δ is the contribu-
tion from nonflow, which is generally a function of �η, but may 
also depend on η. For simplicity, we write it in the form of δ(�η)

in the discussion below.
For the four-particle cumulant, we take two particles at ηα and 

another two at ηβ . For easier interpretation of the results, we take 
the square root of the four-particle cumulant, which has the same 
order in 〈v〉 as the two-particle cumulant (it is just the same ob-
servable as discussed in the references [16,17]). It is given by:
V
1
2 {4} ≡

√
〈〈ei(φα+φα−φβ−φβ)〉〉

≈ 〈v(ηα)〉〈v(ηβ)〉 − σ(ηα)σ (ηβ) − σ ′(�η), (4)

where the approximation is that the flow fluctuation is relatively 
small compared with the average flow [13]. In V 1/2{4}, the con-
tribution from the two-particle correlations due to nonflow effects 
is suppressed, while the contribution from the four-particle corre-
lations due to nonflow effects ∝ 1/M3 (M is multiplicity) and is, 
therefore, negligible [14,15]. The fluctuation gives negative contri-
bution to V 1/2{4}, while positive to V {2}.

The two- and four-particle cumulants were measured for var-
ious (ηα, ηβ) pairs and quadruplets. Fig. 1 shows the results for 
20–30% central Au+Au collisions. Panels (a) and (b) are the two-
particle second and third harmonic cumulants, V 2{2}(ηα, ηβ) and 
V 3{2}(ηα, ηβ), respectively. Panel (c) is the square root of the 
four-particle second harmonic cumulant, V 1/2

2 {4}(ηα, ηα, ηβ, ηβ). 
We observe from Fig. 1 that V 2{2} decreases as the gap between 
ηα and ηβ increases. Since the track merging (two particles be-
ing identified as one track) affects the region |�η| < 0.05, the 
Vn{2} and Vn{4} points along the diagonal were excluded from 
further analysis. V 3{2} follows the same trend, but the magnitude 
is smaller. V 3{2} decreases more rapidly with �η than V 2{2} does. 
V 1/2

2 {4} is roughly constant and the magnitude is smaller than that 
of V 2{2} which is consistent with our expectation that V 1/2

2 {4} is 
less affected by the nonflow and the flow fluctuation is negative in 
V 1/2

2 {4}.
In order to extract the values of the average flow, 〈v〉, the 

�η-dependent and �η-independent flow fluctuations, σ ′ and σ , 
and the nonflow contribution, δ, we follow an analysis method de-
scribed in Ref. [16].

By taking the difference between cumulants V {2} at (ηα, ηβ)

and (ηα, −ηβ), we have

�V {2} ≡ V {2}(ηα,ηβ) − V {2}(ηα,−ηβ)

≡ V {2}(�η1) − V {2}(�η2) = �σ ′ + �δ, (5)

where ηα < ηβ < 0 or 0 < ηβ < ηα is required. Similarly, this dif-
ference for V 1/2{4} yields

�V
1
2 {4} ≡ V

1
2 {4}(ηα,ηβ) − V

1
2 {4}(ηα,−ηβ)

≡ V
1
2 {4}(�η1) − V

1
2 {4}(�η2) ≈ −�σ ′. (6)

Here �η1 ≡ ηβ −ηα , �η2 ≡ −ηβ −ηα , �σ ′ = σ ′(�η1) −σ ′(�η2), 
and �δ = δ(�η1) − δ(�η2). In symmetric heavy-ion collisions, the 
difference of the two �η-independent terms in Eqs. (3) and (4)
is zero. Therefore the differences in Eqs. (5) and (6) depend only 
on the �η-dependent terms: flow fluctuation �σ ′ and nonflow 
correlations �δ.

Our goal is to parameterize the flow fluctuation �σ ′ and non-
flow �δ. The following part of this section is organized in this 
way: First, we discuss the empirical functional form for

D(�η) = σ ′(�η) + δ(�η), (7)

obtained from �V 2{2} data. Second, we give the σ ′ result from 
�V 1/2

2 {4}. Using D and σ ′ , δ can be determined. Third, we discuss 
how to obtain 〈v〉 and σ .

The behavior of �V 2{2} data suggests that D can be parame-
terized as

D(�η) = a exp

(
−�η

b

)
+ A exp

(
−�η2

2σ 2

)
, (8)

so that
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Fig. 1. The second (a) and third (b) harmonic two-particle cumulants for (ηα, ηβ) pairs and the second harmonic four-particle cumulant for (ηα, ηα, ηβ, ηβ) quadruplets for 
20–30% central Au+Au collisions at √sNN = 200 GeV.

Fig. 2. The (a) V 2{2} and (b) V 3{2} difference between the pairs at (ηα, ηβ) and (ηα, −ηβ). The dashed lines are linear fits for each data set of �η1 value separately. The 
solid curves are a single fit of Eq. (8) to all data points with different �η1. (c) The V 1/2

2 {4} difference between quadruplets at (ηα, ηα, ηβ, ηβ) and (ηα, ηα, −ηβ, −ηβ). The 
dashed line is a linear fit to the data points. The gray band is the systematic error. The data are from 20–30% central Au+Au collisions at √sNN = 200 GeV.
�V {2} = D(�η1) − D(�η2)

=
[

a exp

(−�η1

b

)
+ A exp

(
−�η2

1

2σ 2

)]

−
[

a exp

(−�η2

b

)
+ A exp

(
−�η2

2

2σ 2

)]
, (9)

follows from Eq. (5). Here is how this functional form is chosen. 
The measured two-particle second harmonic cumulant difference 
�V 2{2} is shown in Fig. 2(a). The data for each �η1 value ap-
pears to be linear in �η2 −�η1 except near �η1 = �η2 as shown 
by dashed lines in Fig. 2(a) and (b). Moreover, the magnitude of 
�V 2{2} decreases with increasing �η1. Linear fits indicate that 
the intercept decreases exponentially with increasing �η1, and the 
slopes are all similar. So we can describe this behavior mathemat-
ically as

a exp

(
−�η1

b

)
+ k(�η2 − �η1). (10)

In order to express the measured two-particle cumulant difference 
in the form of

D(�η1) − D(�η2)

= [σ ′(�η1) + δ(�η1)] − [σ ′(�η2) + δ(�η2)]
= [σ ′(�η1) − σ ′(�η2)] + [δ(�η1) − δ(�η2)], (11)

we make two improvements to our initial guess of the D(�η)

function. First, we add a term a exp(−�η2
b ) that is small for all 

data with �η2 significantly larger than �η1. Second, because the 
linear term is unbounded in �η1 and �η2, we choose to replace 
it with the subtraction of two wide Gaussian terms. The Gaussian 
functions tend to zero as the exponents become large, consistent 
with the behavior of nonflow. The measured two-particle cumu-
lant difference can then be described by Eq. (9). There are four 
parameters in Eq. (9), a, A, b, and σ , that were determined by fit-
ting Eq. (9) simultaneously to all measured two-particle cumulant 
difference data points of different �η1. The fit results are shown in 
Fig. 2(a) as the solid curves with χ2/ndf ≈ 1. The χ2/ndf values 
are about 1 for all centrality classes except for the most central 
it is about 2. In the most central collisions, the largest contribu-
tion to χ2/ndf comes from pairs both at acceptance edge of the 
STAR TPC. The parameterization is valid within the fitting errors. 
The same procedure was repeated for the third harmonic V 3{2} as 
shown in Fig. 2(b). The fit results give the �η-dependent part of 
the two-particle cumulant as Eq. (8). Thus, the form of the func-
tion D is data-driven.

We then follow a similar procedure on the measured difference 
of the square root of the four-particle cumulant, Eq. (4). We fit 
the �V 1/2

2 {4} = σ ′(�η1) − σ ′(�η2) by a linear function k′(�η2 −
�η1), as shown in Fig. 2(c). The slope k′ from the fit is (1.1 ±
0.8) ×10−4. In Fig. 2(c), each data point is the average of �V 1/2

2 {4}
for all �η1 at same �η2 − �η1 value. With the σ ′(�η) result, the 
contribution from nonflow, δ, can then also be determined from 
Eq. (7).

Subtracting the parameterized D of Eq. (8) from the measured 
two-particle cumulants, V 2{2} and V 3{2}, yields, from Eq. (3), the 
�η-independent terms 〈v2〉 ≡ 〈v〉2 + σ 2. Employing also V 1/2{4}
from Eq. (4), the values of 〈v〉 and σ may be individually deter-
mined.

2.3. Systematic uncertainties

The systematic errors for V {2} and V 1/2{4} are estimated by 
varying event and track quality cuts: the primary event vertex to 
|zvtx| < 25 cm; the number of fit points along the track greater 
than 15; the distance of closest approach to the event vertex 
|dca| < 2 cm. The systematic errors for events at 20–30% centrality 
were found to be 1% for V 2{2} and 2% for V 1/2

2 {4}, and the same 
order of magnitude for other centralities.
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Fig. 3. The decomposed 〈v2〉 = 〈v〉2 + σ 2 for the second (a) and third (b) harmonics for (ηα, ηβ) pairs. (c): The two- and four-particle cumulants, V 2{2} (solid red squares) 
and V 1/2

2 {4} (solid blue triangles), and the decomposed 〈v2
2〉 (solid green dots) as a function of η for one particle while averaged over η of the partner particle. The cyan 

band on top of V 1/2
2 {4} points present V 1/2

2 {4} + σ ′ . (d): V 3{2} (solid red squares) and 〈v2
3〉 (solid green dots) as a function of η. The dashed lines are the mean value 

averaged over η for 20–30% central Au+Au collisions at √sNN = 200 GeV. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
The fitting error on the parameterized σ ′ from �V 1/2{4} is 
treated as a systematic error, which is 70%, since σ ′ is consistent 
with zero in less than 2-σ standard deviation. Similarly, the fitting 
errors on the parameters used in the �η-dependent correlation 
D are treated as systematic errors that are propagated through to 
the total uncertainty on D . In addition, there is a systematic error 
on D that is associated with the choice of fitting function shown 
as Eq. (8), the magnitude of which was estimated using different 
forms of the fitting function. The forms tried included: an expo-
nential term plus a linear term, a Gaussian function plus a linear 
term, an exponential function only, a Gaussian function only, and 
an exponential function plus a term of the form e− 1

2 (
�η
σ )4

.
The total estimated uncertainty in the second harmonic of 

D(�η) is an average of 40% based on the different sources eval-
uated. This systematic error on D also applies to the decomposed 
flow through 〈v2〉 = V {2} − D .

3. Results and discussion

Fig. 3(a) and (b) shows the decomposed flow with flow fluc-
tuations 〈v(ηα)v(ηβ)〉 (see Eq. (3)) for v2 and v3, respectively. 
The results are found to be independent of η for the measured 
pseudorapidity range |η| < 1. The observed decrease of V {2} in 
Fig. 1 with increasing �η off diagonal is due to contributions from 
nonflow and �η-dependent fluctuations. Note that the analysis 
method does not make any assumption about the η dependence 
of flow; the flow can be �η-independent but η-dependent. The 
observation that the decomposed flow and flow fluctuations are 
independent of η is, therefore, significant.

Fig. 3(c) and (d) shows the projections of 〈v(ηα)v(ηβ)〉 in 
Fig. 3(a) and (b) onto one η variable. The shaded band shows 
the systematic uncertainty, dominated by the systematic errors 
in the subtracted D(�η) term. For comparison, the projection of 
the V 2{2} is also shown, where the shaded band is the system-
atic uncertainty. The projections are the respective quantities as a 
function of η of one particle averaged over all η of the other par-
ticle. The flows with �η-independent fluctuation averaged over η
are 
√

〈v2
2〉 = 6.27% ±0.003%(stat.)+0.08

−0.07%(sys.) and 
√

〈v2
3〉 = 1.78% ±

0.008%(stat.)+0.09
−0.16%(sys.) for our pT range 0.15 < pT < 2 GeV/c in 

the 20–30% collision centrality range. The quoted statistical errors 
are from the V {2} measurements, while the systematic errors are 
dominated by the parameterization of D . The difference between 
V {2} and 〈v2〉 in Fig. 3(c) is the D(η) versus η of one particle av-
eraged over all η of the other particle.

Fig. 3(c) also shows the V 1/2
2 {4} projection as a function of 

η as the solid blue triangles. V 1/2
2 {4} is also independent of η. 

The cyan band shows V 1/2
2 {4} + σ ′ = 〈v〉2 − σ 2, with the system-

atic uncertainty that is dominated by the fitting uncertainty in 
σ ′ . The difference between the decomposed 〈v2〉 = 〈v〉2 + σ 2 and 
V 1/2

2 {4} +σ ′ = 〈v〉2 −σ 2 is the flow fluctuation, which is also inde-
pendent of η within the measured acceptance. The relative elliptic 
flow fluctuation is given by

σ2

〈v2〉 =

√√√√√ 〈v2
2〉 − (V

1
2

2 {4} + σ ′)

〈v2
2〉 + (V

1
2

2 {4} + σ ′)
= 34% ± 2%(stat.) ± 3%(sys.), (12)

where the systematic error is dominated by those in the parame-
terization of D and σ ′ . The measured relative fluctuation is consis-
tent with that from the PHOBOS experiment [18] and the previous 
STAR upper limit measurement [19].

Often, a �η-gap is applied to reduce nonflow contamination 
in flow measurements. The nonflow D̄(|�η|) with the �η-gap is 
calculated as:

D̄(|�η|) =
∫ 2
|�η| d�η′D(�η′)

2 − |�η| . (13)

|�η| = 2 is the acceptance limit in this analysis. D̄ is the aver-
age of D with |�η| larger than a certain value. Fig. 4(a) and (b) 
shows D̄(|�η|) as a function of �η-gap |�η| > x (x is the x-axis 
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Fig. 4. The �η-dependent component of the two-particle cumulant with �η-gap, D̄ in Eq. (13), of the second (a) and third (b) harmonics is shown as a function of �η-gap 
|�η| > x. (x is the x-axis value.) The shaded bands are systematic uncertainties. In (a) the estimated σ ′ is indicated as the straight line, with its uncertainty of ±1 standard 
deviation as the cross-hatched area for 20–30% central Au+Au collisions at √sNN = 200 GeV.

Fig. 5. The nonflow, 
√

D̄2 (solid dots), √δ2 (open stars), 
√

D̄3 (solid triangles) and flow, 
√

〈v2
2〉/2 (open circles), 

√
〈v2

3〉 (open triangles) results are shown as a function of 
centrality percentile for the second (a) and third (b) harmonics, respectively. The statistical errors are smaller than the symbol sizes. The systematic errors are denoted by 
the vertical rectangles.
value) for the second and third harmonics, respectively. The bands 
are the systematic errors estimated from the fitting errors and the 
different fitting functions as described previously. These errors are 
correlated because, for all the points shown, the errors are calcu-
lated from the same parameters in the function D .

As noted above, D̄(|�η|) is comprised of two parts: the contri-
bution from the �η-dependent flow fluctuation, σ ′ , and the term 
representing the nonflow, δ. In Fig. 4(a), these two contributors 
are estimated separately. The straight line is an estimate of σ ′ . The 
cross-hatched area is its uncertainty of ±1 standard deviation. The 
difference between the black solid points D̄(|�η|) and the straight 
line σ ′ is the nonflow contribution. For both the second harmonic 
and the third harmonic shown in Fig. 4(a) and Fig. 4(b), respec-
tively, D̄(|�η|) decreases as the �η-gap between two particles 
increases. When |�η| > 0.6, D̄(|�η|) is reduced to half of its value 
when |�η| > 0.

Fig. 5 shows 
√〈v2〉 and 

√
D̄ for all measured centralities for 

the second harmonic (a) and the third harmonic (b). |�η| > 0.7
[20] is used to present the D̄ result. The errors on 

√〈v2〉 and √
D̄ are anti-correlated. Taking |�η| > 0.7, the relative magnitude 

D̄2/〈v2
2〉 = 5% ± 0.004%(stat.) ± 2%(sys.) for 20–30% centrality. It is 

clear that D̄2 increases as the collisions become more peripheral.
The �η-dependent nonflow contribution is mainly caused by 

near-side (small �φ) correlations. These correlations include jet-
like correlations and resonance decays which decrease with in-
creasing �η. The �η-independent correlation is dominated by 
anisotropic flow. However, there should be a �η-independent con-
tribution from nonflow, such as away-side dijet correlations. This 
contribution should be smaller than the near-side nonflow contri-
bution, because, in part, some of the away-side jets are outside the 
acceptance and, therefore, undetected [21].

Fig. 6 shows σ2/〈v2〉 for all measured centralities. From the 
central to the peripheral collisions, the relative elliptic flow fluc-
Fig. 6. The relative elliptic flow fluctuation σ2/〈v2〉 centrality dependence in √
sNN = 200 GeV Au+Au collisions. The statistical errors are shown by the error 

bars. The systematic errors are denoted by the vertical rectangles.

tuation slightly increases. The statistics are limited in the most 
peripheral centrality bin.

4. Summary

We have analyzed two- and four-particle cumulant azimuthal 
anisotropies between pseudorapidity bins in Au+Au collisions 
at 

√
sNN = 200 GeV from STAR. The �η-dependent and the 

�η-independent azimuthal correlations are isolated in the data by 
exploiting the collision symmetry about midrapidity. The isolated 
�η-independent correlation, 〈v2〉, is dominated by flow and flow 
fluctuations. Without any assumption about the flow η depen-
dence in this data-driven method, the flow and its fluctuation are 
found to be constant over η within the measured range of ±1 unit 
of pseudorapidity for all centrality classes. In the 20–30% central-
ity Au+Au collisions, the elliptic flow fluctuation is further found 
to be σ2/〈v2〉 = 34% ± 2%(stat.) ± 3%(sys.). The �η-dependent cor-
relation, D(�η), which may be attributed to nonflow, is found to 
be D̄2/〈v2〉 = 5% ± 2%(sys.) at |�η| > 0.7 for 0.15 < pT < 2 GeV/c. 
2
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Any comparison with flow data to extract the ratio of the shear 
viscosity to entropy density and to determine the initial condition 
should take into account nonflow contamination in flow measure-
ment.
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