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Precision measurement of the mass di�erence
between light nuclei and anti-nuclei
ALICE Collaboration†

The measurement of the mass di�erences for systems bound
by the strong force has reached a very high precision with
protons and anti-protons1,2. The extension of such measure-
ment from (anti-)baryons to (anti-)nuclei allows one to probe
any di�erence in the interactions between nucleons and anti-
nucleons encoded in the (anti-)nuclei masses. This force is a
remnantof theunderlyingstrong interactionamongquarksand
gluons and can be described by e�ective theories3, but cannot
yet be directly derived from quantum chromodynamics. Here
we report a measurement of the di�erence between the ratios
of themassandchargeofdeuterons (d)andanti-deuterons (d̄),
and 3He and 3He nuclei carried out with the ALICE (A Large
Ion Collider Experiment)4 detector in Pb–Pb collisions at a
centre-of-mass energy per nucleon pair of 2.76TeV. Our direct
measurement of the mass-over-charge di�erences confirms
CPT invariance to an unprecedented precision in the sector
of light nuclei5,6. This fundamental symmetry of nature, which
exchanges particles with anti-particles, implies that all physics
lawsare the sameunder the simultaneous reversal of charge(s)
(charge conjugationC), reflectionof spatial coordinates (parity
transformation P) and time inversion (T).

Heavy ions are collided at very high energies at the CERN
Large Hadron Collider (LHC) to study matter at extremely high
temperatures and densities. Under these conditions heavy-ion
collisions are a copious source of matter and anti-matter particles
and thus are suitable for an experimental investigation of their
properties such as mass and electric charge. In relativistic heavy-
ion collisions, nuclei and corresponding anti-nuclei are produced
with nearly equal rates7. Their yields have been measured at the
Relativistic Heavy Ion Collider (RHIC) by the STAR (ref. 8) and
PHENIX (ref. 9) experiments and at the LHC by the ALICE
(ref. 4) experiment. So far, the heaviest anti-nucleus which has been
observed7 is 4He (anti-α); meanwhile, for lighter nuclei and anti-
nuclei, which are more copiously produced, a detailed comparison
of their properties is possible. This comparison represents an
interesting test of CPT symmetry in an analogous way as done
for elementary fermions10,11 and bosons12, and for QED (refs 13,
14) and QCD systems1,2,15–17 (a particular example for the latter
being the measurements carried out on neutral kaon decays18),
with different levels of precision which span over several orders of
magnitude. All these measurements can be used to constrain, for
different interactions, the parameters of effective field theories that
add explicit CPT violating terms to the standard model Lagrangian,
such as the standard model extension19 (SME).

The measurements reported in this paper are based on the
high-precision tracking and identification capabilities of the ALICE
experiment20. The main detectors employed in this analysis are
the ITS (inner tracking system)21 for the determination of the
interaction vertex, the TPC (time projection chamber)22 for tracking

and specific energy loss (dE/dx) measurements, and the TOF (time
of flight)23 detector to measure the time tTOF needed by each track
to traverse the detector. The combined ITS and TPC information is
used to determine the track length (L) and the rigidity (p/z , where p
is themomentum and z the electric charge in units of the elementary
charge e) of the charged particles in the solenoidal 0.5 T magnetic
field of the ALICE central barrel (pseudo-rapidity |η|< 0.8). On
the basis of these measurements, we can extract the squared mass-
over-charge ratio µ2

TOF≡(m/z)
2
TOF=(p/z)2 [(tTOF/L)2−1/c2]. The

choice of this variable is motivated by the fact that µ2 is directly
proportional to the square of the time of flight, allowing to better
preserve its Gaussian behaviour.

The high precision of the TOF detector, which determines the
arrival time of the particle with a resolution of 80 ps (ref. 20), allows
us to measure a clear signal for (anti-)protons, (anti-)deuterons and
(anti-)3He nuclei over a wide rigidity range (1<p/|z|<4GeV/c).
The main source of background, which is potentially of the same
order of the signal, arises from tracks erroneously associated to
a TOF hit. To reduce this contamination, a 2σ cut (where σ is
the standard deviation) around the expected TPC dE/dx signal
is applied. Such a requirement strongly suppresses (to below
4%) this background for rigidities below p/|z|< 2.0 GeV/c for
(anti-)deuterons and for all rigidities for (anti-)3He (to below 1%).
For each of the species under study, the mass is extracted by fitting
the mass-squared distributions in narrow p/|z| and η intervals,
using a Gaussian with a small exponential tail that reflects the
time signal distribution of the TOF detector. Examples of the mass-
squared distributions for (anti-)deuterons and (anti-)3He candidates
are reported in Fig. 1 in selected rigidity intervals.

Using mass differences, rather than absolute masses, allows us
to reduce the systematic uncertainties related to tracking, spatial
alignment (affecting the measurement of the track momentum
and length) and time calibration. Despite that, residual effects
are still present, due to imperfections in the detector alignment
and the description of the magnetic field, which can lead to
position-dependent systematic uncertainties. In terms of relative
uncertainties, the ones affecting themeasurement of themomentum
are the largest and independent of the mass, and are the same
for all positive (negative) particles in a given momentum interval.
It is therefore possible to correct the (anti-)deuteron and the
(anti-)3He masses by scaling them with the ratio between the
(anti-)proton masses recommended by the PDG (particle data
group)24 (µPDG

p(p̄) ) and the ones measured in the analysis presented
here (µTOF

p(p̄)), namely, µA(Ā)=µ
TOF
A(Ā)× (µ

PDG
p(p̄) /µ

TOF
p(p̄)). These correction

factors, which depend on the rigidity, deviate from unity by at
most 1%. Conversely, systematic effects connected to the track-
length measurement are mass dependent and cannot be completely
accounted for using the above correction. However, they are
expected to be symmetric for positive and negative particles when

†A full list of authors and a�liations appears at the end of the paper.
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Figure 1 | Examples of squared mass-over-charge ratio distributions in selected rigidity intervals. Particle and anti-particle spectra for deuterons (left)
and 3He (right) are in the top and bottom plots, respectively. The fit function (red curve) also includes, for the (anti-)deuteron case, an exponential term to
describe the background. In the rigidity intervals shown here the background is about 4% for (anti-)deuterons, whereas it is 0.7% for 3He and 3He . The
error bars display the statistical uncertainty.

inverting the magnetic field. Any residual asymmetry is therefore
indicative of remaining systematic uncertainties related to the
detector conditions. To estimate them, and keep these effects under
control, both nuclei and anti-nuclei measurements are performed
for two opposite magnetic field configurations and then averaged.
Their half-difference is taken as the estimate of this systematic
uncertainty. Other sources of systematic uncertainties are evaluated
by varying energy loss corrections applied to the reconstructed
momentum, the range and the shape of the background function
assumed in the fit of the mass-squared distributions and the track
selection criteria. In particular, TPC dE/dx cuts are varied between
one and four standard deviations to probe the sensitivity of the fit
results on the residual background, and a tracking quality cut on the
distance of closest approach of the track to the vertex is varied to
evaluate the influence of secondary particles on the measurement.
The sources of systematic uncertainties are found to be fully
correlated among all the rigidity intervals, except for those due to the
fit procedure and the TPC selection criteria, where the uncertainties
are uncorrelated. For deuterons and anti-deuterons, the largest
relative systematic uncertainties on 1µ/µ come from the detector
alignment (∼0.7×10−4), the TPC selection criteria (∼0.7×10−4)
and the secondaries (∼1.0× 10−4). For 3He and 3He, they come
from the energy loss corrections (∼0.7× 10−3), the fit procedure
(∼0.5×10−3) and the TPC selection criteria (∼0.4×10−3).

The (anti-)deuteron and (anti-)3He masses are measured as the
peak position of the fitting curves of the mass-squared distribution.
The mass-over-charge ratio differences between the deuteron

and 3He and their respective anti-particle are then evaluated as
a function of the rigidity of the track, as shown in Fig. 2. The
measurements in the individual rigidity intervals are combined,
taking into account statistical and systematic uncertainties
(correlated and uncorrelated), and the final result is shown in
the same figure with one and two standard deviation uncertainty
bands. The measured mass-over-charge ratio differences are

1µdd̄=(1.7±0.9(stat.)±2.6(syst.))×10−4 GeV/c2 (1)

1µ3He3He=(−1.7±1.2(stat.)±1.4(syst.))×10−3 GeV/c2 (2)

corresponding to

1µdd̄

µd
=(0.9±0.5(stat.)±1.4(syst.))×10−4

1µ3He3He

µ3He
=(−1.2±0.9(stat.)±1.0(syst.))×10−3

where µd and µ3He are the values recommended by CODATA
(ref. 25). The mass-over-charge differences are compatible with
zero within the estimated uncertainties, in agreement with CPT
invariance expectations.

Given that zd̄=−zd and z3He=−z3He as for the proton and anti-
proton1,2, the mass-over-charge differences in equations (1) and (2)
and the measurement of the mass differences between proton and
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Figure 2 | d–d (top) and 3He–3He (bottom) mass-over-charge ratio
di�erence measurements as a function of the particle rigidity. Vertical
bars and open boxes show the statistical and the uncorrelated systematic
uncertainties (standard deviations), respectively. Both are taken into
account to extract the combined result in the full rigidity range, together
with the correlated systematic uncertainty, which is shown as a box with
tilted lines. Also shown are the 1σ and 2σ bands around the central value,
where σ is the sum in quadrature of the statistical and
systematic uncertainties.

anti-proton1,2 andbetweenneutron and anti-neutron15,16 can be used
to derive the relative binding energy differences between the two
studied particle species. We obtain

1εdd̄

εd
=−0.04±0.05 (stat.)±0.12 (syst.)

1ε3He3He

ε3He
=0.24±0.16 (stat.)±0.18 (syst.)

where εA = Zmp + (A− Z)mn −mA, with mp and mn being the
proton and neutronmass values recommended by the PDG (ref. 24)
and mA the mass value of the nucleus with atomic number Z and
mass numberA, recommended by CODATA (ref. 25). This quantity
allows one to explicitly isolate possible violations of the CPT sym-
metry in the (anti-)nucleon interaction from that connected to the
(anti-)nucleon masses, the latter being constrained with a precision
of 7× 10−10 for the proton/anti-proton system1,2. Our results and
the comparisons with previous mass difference measurements for
(d–d) (refs 26,27) and (3He–3He) (ref. 28), as well as binding energy
measurements for (d–d) (refs 29,30), are reported in Fig. 3.

We have shown that the copious production of (anti-)nuclei in
relativistic heavy-ion collisions at the LHC represents a unique
opportunity to test the CPT invariance of nucleon–nucleon

interactions using light nuclei. In particular, we have measured
the mass-over-charge ratio differences for deuterons and 3He. The
values are compatible, within uncertainties, with zero and represent
a CPT invariance test in systems bound by nuclear forces. The
results reported here (Fig. 3, left) represent the highest precision
direct measurements of mass differences in the sector of nuclei and
they improve by one to two orders of magnitude analogous results
originally obtained more than 40 years ago26–28, and precisely 50
years ago for the anti-deuteron26,27. Remarkably, such an improve-
ment is reached in an experiment which is not specifically dedicated
to test the CPT invariance in nuclear systems. In the forthcoming
years the increase in luminosity and centre-of-mass energy at the
LHC will allow the sensitivity of these measurements to be pushed
forwards, and possibly extend the study to (anti-)4He. Given the
equivalence between mass and binding energy differences, our
results also improve (Fig. 3, right) by a factor two the constraints
on CPT invariance inferred by existing measurements29,30 in the
(anti-)deuteron system. The binding energy difference has been
determined for the first time in the case of (anti-)3He, with a relative
precision comparable to that obtained in the (anti-)deuteron system.

Received 2 March 2015; accepted 9 June 2015;
published online 17 August 2015
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