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Newton-Cartan gravitacija

Sažetak

Geometrijskim reformulacijama nerelativističke gravitacije, poput Newton-

Cartanove, narasla je popularnost zbog njihovih primjena u holografiji i fizici

čvrstog stanja. Ovaj diplomski rad bavi se konstrukcijom Newton-Cartanove

gravitacije baždarenjem Bargmannove algebre, koja je centralno proširena

Galileieva algebra. Da bismo to postigli, prvo se prisjećamo vielbein forma-

lizma opće teorije relativnosti te kako se baždarenjem Poincaréove algebre

dobije navedena formulacije van ljuske. Ista procedura koristi se za nerelati-

vistički slučaj te daje pravila transformacije svih baždarnih polja i pripadnih

zakrivljenosti.

Ključne riječi: gravitacija, Newton-Cartan, tenzori, baždarenje, Poincaré

algebra, Bargmann algebra



Newton-Cartan Gravity

Abstract

Geometrical reformulations of non-relativistic gravity, such as Newton-

Cartan, have seen a surge in popularity due to their applications in holo-

graphy and condensed matter physics. In this thesis, we discuss the construc-

tion of Newton-Cartan gravity through a gauging procedure of the Bargmann

algebra, which is the central extension of the Galilei algebra. In order to ac-

hieve this goal, we recall the vielbein formalism of general relativity and

how a gauging of the Poincare algebra results in its off shell formulation.

The procedure is then generalized in the non-relativistic case and it yields

the transformation rules for all fields and the corresponding curvatures.

Keywords: gravity, Newton-Cartan, tensors, gauging, Poincaré algebra,

Bargmann algebra
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1 Introduction

Gravity is omnipresent and the most common force we experience, and as such has

perplexed even the earliest scientists. Aristotle, a Greek philosopher, attempted to

explain the effects of gravity by claiming that objects were drawn from one place

to another because they inherently belong there. He also believed that the speed at

which objects fall is proportional to their weight, which was proven false by Galileo

Galilei’s famous Pisa experiment that showed that the gravitational acceleration is

the same for all objects. The first man to actually give a mathematical description of

gravity was Sir Isaac Newton, who hypothesized the inverse-square law of universal

gravitation. Together with his laws of motion, it formed a system of gravity and

motion that would remain uncontested for over two centuries.

A major step to our understanding of gravity was made when Albert Einstein for-

mulated the general theory of relativity, reconciling Newton’s laws of gravity and

special relativity. With it, he provided a unified and coordinate independent descrip-

tion of gravity as a geometric property of spacetime. Spacetime is no longer a static

arena on which physics takes place, but a dynamical background whose dynamics

depend on its content.

The question arises whether there exists a coordinate independent description of

Newton’s gravity. This problem was solved by the French mathematician Cartan, and

the theory is consequently named Newton-Cartan gravity and it is the primary subject

of this thesis. However, the motivation to study this geometrical reformulation of

non-relativistic gravity is not purely academic, as interest in non-relativistic gravity is

rekindled in recent years due to its useful applications. One of them is holography or

gauge/gravity duality that allows us to establish a connection between a theory with

gravity and a gauge theory without gravity in one dimension less. The most famous

example of this is AdS/CFT correspondence [1] which allows a study of strongly

coupled theories in terms of its weakly coupled dual and has also found applicati-

ons in condensed matter physics. Since the physical systems under study may often

be non-relativistic, a non-relativistic theory of gravity, such as Newton-Cartan or an

extension thereof, is used as the gravity dual [2] [3] [4] [5] [6] [7]. Newton-Cartan

gravity is also used in studying thermal transport in a resistive medium. It has been

argued [8] that a varying gravitational field produces energy flows and temperature
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fluctuations just like a varying external electric potential produces electric currents

and density variations. In case of working with a non-relativistic system, one would

couple matter to non-relativistic gravity, and Newton-Cartan gravity has been proven

to be a good formulation for this use. It has been used to construct effective field

theories for the quantum Hall effect [9] [10] and chiral superfluids [11].

To work our way towards Newton-Cartan gravity, we will first go over the basics

of differential geometry in the second chapter. In the third chapter we introduce the

vielbein formalism and show how to obtain Einstein’s gravity by gauging the Poincaré

algebra.
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2 Gravity and differential geometry

2.1 From Newtonian Gravity to General Relativity

Newton’s law of gravitation states that every object in the universe attracts every

other object in the universe with a force proportional to the mass of each object and

inversely proportional to the square of the distance between them. The mathematical

expression for universal gravitation in vector form is

F21 = −Gm1m2

|r12|2
r̂12, (2.1)

where F21 is the attracting gravitational force applied on object 2 and exerted by

object 1, m1 and m2 are the objects’ masses, |r12| = |r2 − r1| is the distance between

them, r̂12 = r2−r1
|r2−r1| is the unit vector from object 1 to 2, andG = 6.674×10−11m3kg−1s−2

is the gravitational constant.

The gravitational field

g(r) = −Gm1

|r|2
r̂ (2.2)

is a conservative field so it can be written as a gradient of a scalar potential

g = −∇φ. (2.3)

Substituting this into differential form of Gauss’ law for gravity

∇ · g = −4πGρ, (2.4)

where ρ is mass density, gives Poisson’s equation for gravity,

∇2φ = 4πGρ. (2.5)

Newton’s laws, however, do not hold in all frames of reference, as they are stated

only for inertial frames. Galilean transformation is used in Newtonian mechanics for

the transformation between inertial frames which differ by constant relative velocity.

On the other hand, Einstein’s theory of special relativity, which also postulates the

equivalence of all inertial frames, also postulates that the speed of light in free space

is invariant. Because of that, the transformation between inertial frames in special
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relativity is the Lorentz transformation.

The guiding principle for generalizing special relativity to include gravity was the

equivalence principle. Let’s define a gravitational test particle as a test particle which

experiences a gravitational field but does not itself alter the field or contribute to

the field. The strong form of the principle of equivalence states that the motion of a

gravitational test particle in a gravitational field is independent of its mass and com-

position. This is the embodiment of the empirical result of the Pisa experiments into a

principle. The weak form of the principle of equivalence states that the gravitational

field is coupled to everything.

The principle of special relativity states that all inertial observers are equivalent.

Arguing that all observers, inertial or not, should be capable of discovering the laws

of physics, Einstein proposed the principle that all observers are equivalent. This is

known as the principle of general relativity.

If any observer can discover the laws of physics, it means that any coordinate

system can be used. This is different from special relativity, where the metric is

flat and a canonical or preferred coordinate system exists, specifically Minkowski

coordinates. In a curved spacetime, i.e. a manifold with a non-flat metric, there is

no canonical coordinate system. However, in some situations, there are preferred

coordinate systems in a way that they yield simpler descriptions of what’s going on.

When a problem possesses a symmetry, it is best to adapt the coordinate system to

the underlying symmetry. But the theory should be invariant under a coordinate

transformation, which leads to the principle of general covariance which states that

the equations of physics should have tensorial form.

2.2 Tensors

A tensor is an object defined on a geometric entry called a differential manifold,

which is a manifold that is locally similar enough to a linear space to allow one to do

calculus. We will simply take an n-dimensional manifold M to be a set of points such

that each point possesses a set of n coordinates (x1, x2, . . . , xn). A coordinate system

that covers only a portion of a manifold is called a coordinate patch, and a point in a

manifold can be covered by many different coordinate patches. Consider the passive
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change of coordinates xa → x′a given by n equations

x′a = fa(x1, x2, . . . , xn) (a = 1, 2, . . . , n), (2.6)

where the f ’s are single-valued continuous differentiable functions, at certain ranges

of their arguments. The equation can be written more simply as

x′a = x′a(x), (2.7)

where x′a(x) denote the n functions fa(x).

Differentiating the above equation with respect to each of the coordinates produ-

ces the n× n transformation matrix of coefficients:

[
∂x′a

∂xb

]
=


∂x′1

∂x1
∂x′1

∂x2
· · · ∂x′1

∂xn

∂x′2

∂x1
∂x′2

∂x2
· · · ∂x′2

∂xn

...
∂x′n

∂x1
∂x′n

∂x2
· · · ∂x′n

∂xn

 . (2.8)

The determinant of this matrix is called the Jacobian of the transformation:

J ′ =

∣∣∣∣∂x′a∂xb

∣∣∣∣ . (2.9)

The total differential is

dx′a =
∂x′a

∂xb
dxb. (2.10)

A contravariant vector or a contravariant tensor of rank 1 is a set of quantities,

written Xa in the xa-coordinate system, associated with a point P , which transforms

under a change of coordinates according to

X ′a =
∂x′a

∂xb
Xb, (2.11)

where the transformation matrix is evaluated at P .

A contravariant tensor of rank 2 is a set n2 quantities associated with a point P ,

denoted by Xab in the xa-coordinate system, which transforms according to

X ′ab =
∂x′a

∂xc
∂x′b

∂xd
Xcd. (2.12)
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The definitions of third- and higher-order contravariant tensors are analogous.

Tensor of zero rank is called a scalar or a scalar invariant, and it transforms ac-

cording to

φ′ = φ (2.13)

at P .

A covariant vector or covariant tensor of rank 1 is a set of quantities, written Xa

in the xa-coordinate system, associated with a point P , which transforms under a

change of coordinates according to

X ′a =
∂xb

∂x′a
Xb. (2.14)

Again, covariant tensors of higher ranks are defined similarly.

Mixed tensors are tensors that are neither strictly covariant nor strictly contrava-

riant. For example, a mixed tensor of rank 2, with one contravariant rank and two

covariant ranks, transforms according to

X ′abc =
∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Xd
ef . (2.15)

A mixed tensor with contravariant rank p and covariant rank q is said to have type or

valence (p, q).

The importance of tensors in mathematical physics lies in the fact that tensor equ-

ations that hold in one coordinate system, necessarily hold in all coordinate systems.

A tensor field defined over some region of the manifold is an association of a

tensor of the same valence to every point of the region

P → T a···b··· (P ). (2.16)

The transformation of a contravariant vector field is given by

X ′a(x′) =

[
∂x′a

∂xb

]
Xb(x) (2.17)

at each point P in the region.

We introduce notation

∂a ≡
∂

∂xa
(2.18)
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and define X as the operator

X = Xa∂a (2.19)

so that

Xf = (Xa∂a)f = Xa(∂af) (2.20)

for any real-valued function f . It can be shown that operating on f by X will be the

same irrespective of the coordinate system

X ′a∂′a = Xa∂a. (2.21)

Partial differentiation of tensors is not tensorial because it does not transform like

a tensor:

∂′cX
′a =

∂x′a

∂xb
∂xd

∂x′c
∂dX

b +
∂2x′a

∂xb∂xd
∂xd

∂x′c
Xb. (2.22)

The core reason for this behavior is that the differentiation involves comparing a

quantity evaluated at two neighbouring points P and Q, in our case

lim
δu→0

[Xa]P − [Xa]Q
δu

(2.23)

for some parameter δu. When transforming the tensors Xa
P and Xa

Q to another coor-

dinate system, each of them are evaluated at different points, from which it should

be clear that Xa
P −Xa

Q is not a tensor.

2.2.1 Lie derivative

We define a congruence of curves as a set of curves such that only one curve goes

through each point in the manifold. Given any one curve of the congruence,

xa = xa(u), (2.24)

the tangent vector field dxa/du along the curve can be defined.

Conversely, a congruence of curves can be obtained from a non-zero vector field

Xa(x) defined on the manifold by solving the ordinary differential equations

dxa

du
= Xa(x(u)). (2.25)
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Solution is guaranteed by the existence and uniqueness theorem for ordinary diffe-

rential equations.

Suppose that Xa has been given and a local congruence of curves obtained from

it. The idea behind the Lie derivative of some tensor T a···b··· (x) is to use the congruence

of curves to drag the tensor at some point P , T a···b··· (P ), along the curve passing through

P to some neighbouring point Q, and compare this tensor with the tensor already

there, T a···b··· (Q). The derivative will be defined by subtracting the two tensors at Q in

the limiting process as Q tends to P .

The Lie derivative of a general tensor field T a···b··· is given by [19]:

LXT
a···
b··· = Xc∂cT

a···
b··· − T c···b··· ∂cX

a − · · ·+ T a···c··· ∂bX
c + · · · . (2.26)

Some important properties of Lie differentiation are:

• It is linear.

• It is Leibniz:

LX(Y aZbc) = Y a(LXZbc) + (LXY
a)Zbc (2.27)

• It is type preserving. The Lie derivative of a tensor of type (p,q) is again a tensor

of type (p,q).

• It commutes with contraction, for example

δbaLXT
a
b = LXT

a
a (2.28)

• The Lie derivative of a scalar field φ is given by

LXφ = Xφ = Xa∂aφ (2.29)

• The Lie derivative of a contravariant vector field Y a is given by

LXY
a = Xb∂bY

a − Y b∂bX
a (2.30)
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• The Lie derivative of a covariant vector field Ya is given by

LXYa = Xb∂bYa + Yb∂aX
b (2.31)

2.2.2 Covariant differentiation

Covariant derivative of a contravariant vector field Xa(x) is defined by the limiting

process

∇cX
a = lim

δxc→0

1

δxc
{Xa(x+ δx)− [Xa(x) + δ̄Xa(x)]} (2.32)

where δ̄Xa(x) denotes a difference vector between Xa(x) at point P and a vector at

point Q, with coordinates xa+ δxa, that is in some general sense ’parallel’ to Xa(x) at

P . It is natural to require that δ̄Xa(x) vanishes whenever Xa(x) or δxa does, which

means that there exist multiplicative factors Γabc where

δ̄Xa(x) = −Γabc(x)Xb(x)δxc, (2.33)

which, along with Taylor’s theorem

Xa(x+ δx) = Xa(x) + δxb∂bX
a, (2.34)

gives

∇cX
a = ∂cX

a + ΓabcX
b. (2.35)

If we require that ∇cX
a is a tensor of type (1, 1), then Γabc must transform accor-

ding to

Γ′abc =
∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef −

∂xd

∂xb
∂xe

∂xc
∂2xa

∂xd∂xe
. (2.36)

The transformation law shows that Γabc is not a tensor because of the presence

of the second term. Any quantity that transforms according to 2.36 is called an

affine connection, or simply connection or affinity. A manifold with a continuous

connection prescribed on it is called an affine manifold.

The covariant derivative of a scalar field is defined to be the same as its ordinary

derivative

∇cφ = ∂cφ. (2.37)
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The covariant derivative of a covariant vector is given by

∇cXa = ∂xXa − ΓbacXb. (2.38)

The name covariant derivative originates from the fact that the derivative of a

tensor of type (p, q) has one extra covariant rank, and is of type (p, q + 1). The

covariant derivative of a general tensor is

∇cT
a···
b··· = ∂cT

a···
b··· + ΓadcT

d···
b··· + · · · − ΓdbcT

a···
d··· − · · · . (2.39)

It is obvious from the transformation law that the sum of two connections is

not a connection or a tensor. However, in the difference of two connections the

inhomogeneous term cancels out and the result is a tensor of valence (1, 2). The

anti-symmetric part of Γabc,

T abc = Γabc − Γacb (2.40)

is a tensor called the torsion tensor. The connection is symmetric if the torsion tensor

vanishes.

2.2.3 Affine geodesics

We introduce notation

∇XT
a···
b··· = Xc∇cT

a···
b··· (2.41)

for any tensor T a···b··· . Then we define the absolute derivative of a tensor along a curve

C of the local congruence determined by the vector X, by

D

Du
{T a···b··· } = ∇XT

a···
b··· . (2.42)

The tensor T a···b··· is parallely propagated or transported along curve C if

D

Du
{T a···b··· } = 0. (2.43)

Affine geodesic is defined as a privileged curve along which the tangent vector is

propagated parallel to itself:

∇XX
a = λXa, (2.44)
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or equivalently
d2xa

du2
+ Γabc

dxb

du

dxc

du
= λ

dxa

du
(2.45)

If λ vanishes, the tangent vector is transported into itself, and the geodesic equ-

ation is reduced to

∇XX
a = 0. (2.46)

2.2.4 The Riemann tensor

Covariant differentiation is not in general commutative. For any tensor T a···b··· , we

define its commutator as

∇c∇dT
a···
b··· −∇d∇cT

a···
b··· . (2.47)

In case of a vector Xa and its covariant derivative

∇cX
a = ∂cX

a + ΓabcX
b, (2.48)

we obtain the result

∇c∇dX
a −∇d∇cX

a = Ra
bcdX

b + (Γecd − Γedc)∇eX
a, (2.49)

where Ra
bcd is defined by

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed (2.50)

If the connection is symmetric (torsion-free), the last term in 2.49 vanishes and

we obtain

2 (∇c∇dX
a −∇d∇cX

a) = ∇[c∇d]X
a =

1

2
Ra

bcdX
b. (2.51)

Because the left hand side of 2.62 is a tensor, it follows that Ra
bcd is a tensor of

type (1, 3). This tensor is called the Riemann tensor. For a symmetric connection,

the commutator of any tensor can be expressed in terms of the tensor itself and the

Riemann tensor, and consequently, the vanishing of the Riemann tensor is a necessary

and sufficient condition for the vanishing of the commutator of any tensor.
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2.2.5 Geodesic coordinates

At any point P in a manifold, a geodesic coordinate system can be introduced in

which

[Γabc]P = 0. (2.52)

This can easily be proven by choosing P to be at the origin of coordinates xa = 0

and considering a transformation to a new coordinate system

xa → x′a = xa +
1

2
Qa
bcx

bxc, (2.53)

where Qa
bc = Qa

cb are constants that can be chosen to be

Qa
bc = [Γabc]P (2.54)

in order to obtain the result.

It can be shown that a coordinate system can be obtained in which the connection

vanishes along a curve, but not in general over the whole manifold. If there exists

a coordinate system in which the connection vanishes everywhere, the manifold is

called affine flat or simply flat.

2.2.6 Affine flatness

Parallely transporting a vector in a general affine manifold from one point to another

along two different curves yields two different vectors. However, if the transported

vector is independent of the path taken, the connection is called integrable.

2.2.7 The metric

Any symmetric covariant tensor field of rank 2, for example gab(x), defines a me-

tric, and a manifold endowed with a metric is called a Riemann manifold. The line

element is given by

ds2 = gab(x)dxadxb, (2.55)

and the square of the length or norm of a contravariant vector Xa is defined by

X2 = gab(x)XaXb. (2.56)
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The metric is positive definite or negative definite if for all vectors X, X2 > 0 or

X2 < 0, respectively. It is indefinite otherwise.

Vectors Xa and Y a are orthogonal if

gabX
aY b = 0. (2.57)

If the metric is indefinite, then there exist vectors which are orthogonal to them-

selves called null vectors:

gabX
aXb = 0. (2.58)

If the metric is non-singular (g 6= 0), the inverse of gab, gab, is given by

gabg
bc = δca. (2.59)

The metric gab and the contravariant metric gab can be used to lower and raise

tensorial indices by defining

T ··· ······a··· = gabT
···b···
··· ··· (2.60)

and

T ···a······ ··· = gabT ··· ······b··· (2.61)

Since indices can be freely raised and lowered, the order in which the contrava-

riant and covariant indices are written is important. In general, X b
a is different from

Xb
a.

2.2.8 Metric flatness

At any point P , gab is a symmetric matrix of real numbers, so there exists a transfor-

mation which reduces the matrix to a diagonal form whose terms are either -1 or +1.

The prevalence of plus signs over negative signs is called the signature of the metric.

The signature is invariant under the assumption that that the metric is continuous

over the manifold and non-singular. If there exists a coordinate system in which the

metric is reduced to this diagonal form everywhere, then the metric is called flat. The

necessary and sufficient condition for a metric to be flat is that its Riemann tensor

vanishes.
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2.2.9 The curvature tensor

The curvature tensor or Riemann tensor is given by

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed (2.62)

and Γabc is the Levi-Civita connection, given by

Γabc =
1

2
gad(∂bgdc + ∂cgdb − ∂dgbc). (2.63)

From the definition it is easy to deduct that Ra
bcd is anti-symmetric on its last pair of

indices

Ra
bcd = −Ra

bdc, (2.64)

which, together with the fact that the connection is symmetric, leads to identity

Ra
bcd +Ra

dbc +Ra
cdb ≡ 0. (2.65)

By using geodesic coordinates, it can be easily shown that the Riemann tensor

with lowered indices is symmetric under interchange of the first and last pair of

indices

Rabcd = Rcdab, (2.66)

which, after combining with (2.64), gives that the lowered tensor is anti-symmetric

on its first pair of indices, too:

Rabcd = −Rbacd. (2.67)

It can also be shown that the curvature tensor satisfies so-called Bianchi identities:

∇eRabcd +∇cRabde +∇dRabec. (2.68)

The Ricci tensor is given by contraction

Rab = Rc
acb, (2.69)
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and a second contraction gives the curvature scalar or Ricci scalar

R = gabRab. (2.70)

These are used to define the Einstein tensor

Gab = Rab −
1

2
gabR, (2.71)

which satisfies the contracted Bianchi identities

∇bG
b
a = 0. (2.72)

Einstein’s equation that relate local spacetime curvature with the local energy and

momentum within the spacetime is given by

Gab + Λgab = κTab, (2.73)

where Λ is the cosmological constant which today we know is positive and has value

of 1.1056×10−52m−2, κ = 8πGc−4 is the Einstein constant and Tab is the stress-energy

tensor. It is acquired by minimizing the Hilbert action

S =
1

2κ

∫
R
√
− det gabd

4x. (2.74)

3 The vielbein and gauging of the Poincaré algebra

3.1 Vielbein formulation

Consider first a classical case of a particle in a constant gravitational field

mI
d2r

dt2
= mGg, (3.1)

where mI is the inertial mass of the particle, ~r(t) its position vector, mG its gravita-

tional mass and ~g the acceleration due to the external constant gravitational field.

Assuming that the inertial and gravitational masses are the same (mI = mG = m),
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we get

m
d2

dt2

[
r(t)− 1

2
gt2
]

= 0, (3.2)

which means that when viewed from a freely falling frame

r(t)→ r′(t) = r(t)− 1

2
gt2 (3.3)

the particle experiences no gravity.

Gravitational fields are generally not constant. To account for this, Einstein pos-

tulated that at each point in spacetime gravitational fields can be transformed away

by choosing an appropriate set of coordinates. Hence to include gravity, one should

take any local quantity and identify the coordinates with the ”freely falling” coordi-

nates. The interaction with gravity will be generated when expressed in arbitrary

coordinates. For clarity, Latin tensor indices m,n, p, q, · · · will be used in the freely

falling frame and Greek tensor indices µ, ν, ρ, σ, · · · in arbitrary coordinates.

Take for an example a self-interacting scalar field φ(x). Its behavior, in the absence

of gravity, is described by the action

S[φ] =

∫
d4xL =

∫
d4x

[
1

2
∂µφ∂

νφ− V (φ)

]
. (3.4)

The derivative operators are given by

∂µ =
∂

∂xµ
=

(
∂

∂t
,∇
)
, (3.5)

xµ = (t, ~x) are the coordinates and V (φ) is the potential density. In the action, local

quantities are the Lagrangian L and the volume element dx4 = dx0dx1dx2dx3.

To include gravity, we have to interpret the variable xµ and its derivative as being

the ”free fall” coordinates, so we identify

{xµ} → {ξm}, m = 0, 1, 2, 3 (3.6)

as the ”flat” coordinates. In the flat system, the line element is

ds2 = ηmndξmdξn, (3.7)
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where ηmn is the metric of Special Relativity: η00 = −ηii = −1, ηij = 0 for i 6= j. It

satisfies

ηmnη
np = δpm. (3.8)

The new Lagrangian is now

L → 1

2
ηmn∂mφ∂nφ− V (φ), (3.9)

where ∂m ≡ ∂/∂ξm, and the volume element becomes the volume in terms of the flat

coordinates

d4x→ dξ0dξ1dξ2dξ3. (3.10)

We can now write the new action that is generalized to include the effects of

gravitation [12]:

S[φ] =

∫
d4ξ

[
1

2
ηmn∂mφ∂nφ− V (φ)

]
. (3.11)

Although this looks like the action we started with, the difference lies in the inte-

gration, as this is to be integrated over a manifold which is labeled by the arbitrary

coordinate system {xµ}. The information about the gravitational field is contained in

the change of the flat coordinates from point to point.

We can express ξm as a local function of any non-inertial coordinates xµ:

dξm =
∂ξm

∂xµ
dxµ, (3.12)

where the derivatives are evaluated at the point of interest. The transformation

matrix between the flat and arbitrary coordinates is called the vielbein

emµ (x) ≡ ∂ξm

∂xµ
. (3.13)

The inverse operation is

dxµ =
∂xµ

∂ξm
dξm ≡ eµmdξm. (3.14)

The vielbein satisfies the following equations:

emµ e
µ
n = δmn (3.15)

eµme
m
ν = δµν . (3.16)
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The transformation of the derivative operators are given by

∂

∂ξm
=
∂xµ

∂ξm
∂

∂xµ
= eµm∂µ. (3.17)

The Lagrangian rewritten in an arbitrary system becomes

L =
1

2
ηmneµme

ν
n∂µφ∂νφ− V (φ) (3.18)

from which we can identify the inverse metric

gµν(x) = ηmneµm(x)eνn(x). (3.19)

The new metric appears in the line element in an arbitrary system

ds2 = ηmne
m
µ (x)enν (x)dxµdxν , (3.20)

hence it’s defined as

gµν(x) = ηmne
m
µ (x)enν (x). (3.21)

It is easy to prove that

gµνgνρ = δµρ . (3.22)

The volume element in an arbitrary system is

d4ξ = J(ξ, x)d4x, (3.23)

where it is easy to show that J(ξ, x) =
√
− det gµν or J(ξ, x) = det emµ .

Finally, the action for a scalar field in a gravitational field is given by

S =

∫
d4x
√
− det gµν

[
1

2
gµν∂µφ∂νφ− V (φ)

]
. (3.24)

It is important to note that, unlike the derivatives ∂µ, the derivatives ∂m obey a

non trivial algebra:

[∂m, ∂n] = [∂me
µ
n − ∂neµm]epµ∂p. (3.25)
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3.2 Gauge theory

Symmetries in physics are described by groups G. Here we will focus on Lie groups

that describe continuous symmetries. The elements g ∈ G are then generated by a

Lie algebra g. If TA are the elements of g, where A = {1 . . . N} for some N , then

g = span{TA} and a general group element g is given by

g = eθ
ATA , (3.26)

where {θA} are parameters that can be real or complex, depending on the algebra.

One of the group axioms is closure: if g1 ∈ G and g2 ∈ G, then g1g2 ∈ G. The group

multiplication structure is given by the Lie bracket:

[TA, TB] = fCABTC . (3.27)

The structure constants fCAB of the algebra g are evidently antisymmetric in {AB}.

In gauge theory, we promote a global symmetry on a set of fields {φ} to a local

symmetry, which brings up gauge fields B A
µ on which the Lie algebra g is realized.

These gauge fields usually come from the kinetic terms of the fields {φ} because the

kinetic terms are not invariant under the local transformations and need compensa-

tion. If the fields {φ} transform as

δεφ = εATAφ, (3.28)

where εA is the transformation parameter, we can replace the ordinary derivative ∂µφ

in the kinetic terms by the covariant derivative

Dµφ = ∂µφ−B A
µ TAφ, (3.29)

which transforms just like the field:

δεDµφ = εATADµφ, (3.30)
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and the gauge fields transform as

δεB
A
µ = ∂µε

A + εBBC
µ f

A
BC , (3.31)

where summation over {BC} is understood, so that the transformation 3.30 holds.

Gauge fields are mathematically connections, and the curvature of a gauge field

is also called field strength:

R A
µν = 2∂[µB

A
ν] +B B

µ B C
ν f A

BC , (3.32)

and it transforms in a covariant way, without a derivative on the transformation

parameter εA,

δεR
A

µν = εBR C
µν fABC . (3.33)

The gauge fields carry both a spacetime index µ and an internal index A, which

means that they transform under general coordinate transformations and the gauge

transformations. The following relation holds [14]:

δgct(ξ
λ)BA

µ + ξλRA
µλ −

∑
{C}

δ(ξλBC
λ )BA

µ = 0. (3.34)

The gauge parameters in this relation are constructed out of the gauge fields B A
µ and

the parameter ξλ of the general coordinate transformation.

3.3 Gauging of the Poincaré algebra

The goal of this section is to show how to obtain the basic ingredients of Einstein gra-

vity by gauging the Poincaré algebra. The commutation relations of a D-dimensional

Poincaré algebra iso(D − 1, 1) are

[Pa, Pb] = 0, (3.35)

[Mbc, Pa] = −2ηa[bPc], (3.36)

[Mcd,Mef ] = 4η[c[eMf ]d], (3.37)

where Pa, Mab (a = 0, 1, . . . , D − 1) are the generators for translations and Lorentz

transformations, respectively. To the local P-transformations we associate a gauge
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field e aµ with spacetime dependent parameters ξa(x), and to the local Lorentz tran-

sformations we associate a gauge field ω ab
µ with spacetime dependent parameters

λab(x). Firstly we choose a connection that takes values in the adjoint of the gauge

group:

Aµ = e aµ Pa +
1

2
ω ab
µ Mab. (3.38)

The gauge transformation of Aµ is given by

δAµ = ∂µζ + [ζ,Aµ], (3.39)

where ζ is the gauge parameter:

ζ = ζaPa +
1

2
λabMab (3.40)

Using this along with the commutation relations of the algebra, we get the following

transformation rules:

δe aµ = ∂µζ
a − ω ab

µ ζb + λabe bµ , (3.41)

δω ab
µ = ∂µλ

ab + 2λc[aω b]c
µ . (3.42)

The curvatures are given by:

R a
µν (P ) = 2∂[µe

a
ν] − 2ω ab

[µ e b
ν] , (3.43)

R ab
µν (M) = 2∂[µω

ab
ν] − 2ω ac

[µ ω cb
ν] . (3.44)

We want to interpret the gauge fields e aµ and ω ab
µ as the vielbein and the spin-

connection. Consider the general identity for a gauge algebra

0 = δgct(ξ
λ)BA

µ + ξλRA
µλ −

∑
{C}

δ(ξλBC
λ )BA

µ . (3.45)

The index A labels the gauge fields and the corresponding curvatures. We set A = a

for the P -transformations and choose the parameter ξλ to be ξλ = e λa ζ
a and obtain

δP (ζb)e aµ = δgct(ξ
λ)e aµ + ξλR a

µν (P )− δM(ξλω ab
λ )e aµ . (3.46)
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The difference between a P -transformation and a general coordinate transformation

is a curvature term and a Lorentz transformation. By imposing a constraint

R a
µν (P ) = 0, (3.47)

the P -transformation of the vielbein, which is the only field that transforms under

the P -transformations, can be replaced by a general coordinate transformation plus

other symmetries of the algebra. This constraint allows us to solve for the Lorentz

gauge field ω ab
µ in terms of the vielbein, its derivatives and the inverse. Writing

R a
µν e

a
ρ +R a

ρµ e
a
ν −R a

νρ e
a
µ = 0, (3.48)

we get

ω ab
µ (e, ∂e) = −2eλ[a∂[µe

b]
λ] + e cµ e

λaeρb∂[λe
c

ρ] . (3.49)

Now we are left with vielbein e aµ as the only independent field transforming under

the local Lorentz transformations and general coordinate transformations and with

ω ab
µ as the dependent spin connection field.

Next, we impose the vielbein postulate

∇µe
a
ν = ∂µe

a
ν − Γρνµe

a
ρ − ω ab

µ e bν = 0. (3.50)

From the anti-symmetric part of the equation, together with the curvature cons-

traint, we deduce that the anti-symmetric part of the Γ-connection is zero, i.e. there

is no torsion. We can also solve 3.50 for the Γ-connection in terms of the vielbein

and its inverse:

Γρνµ = eρaDµe
a
ν , (3.51)

where Dµ is the Lorentz-covariant derivative. Lastly, a non-degenerate metric and its

inverse are defined as

gµν = e aµ e
b
ν ηab, gµν = e µa e

ν
b η

ab. (3.52)

The basic ingredients of off-shell Einstein gravity and the Poincaré algebra are

an independent non-degenerate metric gµν and a dependent Γ-connection, or an in-
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dependent vielbein e aµ and a dependent spin-connection ω ab
µ in the presence of flat

indices.

4 Newton-Cartan Gravity

Newton-Cartan gravity is a geometric reformulation of Newtonian gravity. Consi-

der the classical equations for the trajectories of massive particles, in Galilean space

coordinates and the universal time t:

d2xi

dt2
+
∂φ

∂xi
= 0, (4.1)

where φ is the Newtonian potential. Instead of interpreting these equations as descri-

bing the ”curved paths” xi(t) along which particles fall in Euclidean space, we have

to think of those trajectories as geodesics [t(λ), xi(λ)] in curved spacetime.

The Newtonian clocks always read the universal time or some multiple λ = at+ b

of it, and the equation 4.1 can be rewritten as

d2t

dλ2
= 0,

d2xi

dλ2
+
∂φ

∂xi

(
dt

dλ

)2

= 0 (4.2)

If we compare it to the geodesic equation

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0, (4.3)

we can identify the only non-vanishing connection coefficients as

Γi00 =
∂φ

∂xi
. (4.4)

Using 2.62 we see that the only non-vanishing components of the Riemann tensor

are

Ri
0k0 = −Ri

00k =
∂2φ

∂xi∂xk
. (4.5)

The only non-vanishing coefficient of the Ricci tensor is

R00 =
∑
i

∂2φ

∂xi2
. (4.6)
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With it, we can rewrite the Poisson equation

∇2φ = 4πGρ (4.7)

in the geometric form

R00 = 4πGρ. (4.8)

By writing the equation 4.4 for Γαβγ, equation 4.5 for Rα
βγδ, equation 4.8 for Rαβ

and the law of geodesic motion 4.3, we have effectively rewritten the full content of

Newtonian gravity in geometric language.

A way to understand fitting the absolute space and the absolute time into Cartan’s

”Newtonian spacetime” is stratification [15]. We have to regard time as a function,

or a scalar field, defined once and for all in Newtonian spacetime as its intrinsic

property. Then the slices of constant t define the layers of spacetime and all of these

”space slices” have an identical geometric structure: the old absolute space. The

space slices are also endowed with a three-dimensional metric and an orthonormal

Galilean coordinate basis. So what is the point of curvature and geodesic equation

if we are dealing with flat space slices? These are actually properties of spacetime.

Parallel transport of a vector around a closed curve that lies on a single space slice

would actually return it to its starting point unchanged. However, transporting it in

time by ∆t, in space by ∆xk, back in time by −∆t and back in space by −∆xk to its

starting point, would actually change the vector by

δAj = −Rj
00kA

0(∆t)(∆xk) =
∂2Φ

∂xj∂xk
A0(∆t)(∆xk). (4.9)

4.1 Newton-Cartan as the non-relativistic limit

Consider the relativistic Minkowski metric and its inverse

ηµν/c
2 =

−1 0

0 I3/c2

 , ηµν =

−1/c2 0

0 I3

 . (4.10)

The limit c → inf leads to a degenerate covariant temporal metric τµν with three

zero eigenvalues and a degenerate contravariant spatial metric hµν with one zero

eigenvalue. Because τµν is effectively a 1 × 1 matrix, we can use its vielbein version
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τµ defined by τµν = τµτν . The degeneracy implies that

hµντν = 0. (4.11)

In order to introduce a symmetric connection Γρµν that depends on these metrics, we

first impose metric compatibility:

∇ρh
µν = 0, ∇ρτµ = 0, (4.12)

where the covariant derivative is with respect to a connection Γρµν . The second con-

dition implies that

τµ = ∂µf(xν) (4.13)

where f(xν) is a scalar function. In Newton-Cartan theory it is chosen to be the

absolute time t

f(xν) = t. (4.14)

Our goal here is to write down the connection in terms of the metrics and their

derivatives. First of all, the connection Γρµν is not uniquely determined by the metric

compatibility conditions 4.12, as the conditions are preserved by the shift

Γρµν → Γρµν + hρλKλ(µτν) (4.15)

for an arbitrary two-form (antisymmetric tensor with two indices) Kµν . We also

need to introduce the spatial inverse metric hµν and the temporal inverse vielbein τµ

defined by the following properties:

hµνhνρ = δµρ − τµτρ, τµτµ = 1,

hµνtν = 0, hµντ
ν = 0.

(4.16)

With these conditions, we can prove that ∇ρhµν does not vanish in general. By

deriving covariantly the last relation in 4.16 and multiplying with τσ, we get

∇ρhµντ
ντσ + hµν∇ρτ

ντσ = 0. (4.17)

The rest of this proof is just a matter of manipulation using the relations in ∇ρhµν .
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The final result is

∇ρhµν = −2τ(µHν)σ∇ρτ
σ. (4.18)

The most general connection that satisfies the metric compatibility condition is

Γσµν = τσ∂(µτν) +
1

2
hσρ (∂νhρµ + ∂µhρν − ∂ρhµν) + hσλKλ(µτν), (4.19)

which can be proven by inserting it into equations 4.12.

In order to reproduce Newtonian gravity with the metric connection above, we

will need to impose some extra conditions. From now on, we will use adapted coor-

dinates x0 = t. The conditions 4.16 imply

τµ = δ0µ, τµ = (1, τ i),

hµ0 = 0, hµ0 = −hµiτ i.
(4.20)

These conditions are preserved by the coordinate transformations

x0 → x0 + ξ0,

xi → xi + ξi(xµ),
(4.21)

where ξ0 is a constant and the spatial transformation generated with ξi(xµ) is inver-

tible. The connection coefficients 4.19 rewritten using the adapted coordinates are

Γi00 = hij
(
∂0hj0 −

1

2
∂jh00 +Kj0

)
≡ hijΦj,

Γi0j = hik
(

1

2
∂0hjk + ∂[jhk]0 −

1

2
Kjk

)
≡ hik

(
1

2
∂0hjk + ωjk

)
,

Γijk =
1

2
hil(∂khlj + ∂jhlk − ∂lhjk),

Γ0
µν = 0.

(4.22)

We will now replace the equation of motion 4.8 with the following covariant

ansatz:

Rµν = 4πGρτµτν (4.23)

and show that this leads to Newtonian gravity. In adapted coordinates this means
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that

Rij = Ri0 = 0. (4.24)

The fact that Rij is zero implies that the spatial hypersurfaces are flat and a coordi-

nate frame can be chosen with Γijk = 0 so that the spatial metric is given by

hij = δij, hij = δij. (4.25)

This implies

Γi0j = hikωjk ↔ ωij = hk[jΓ
k
i]0,

Γi00 = hijΦj ↔ Φi = hijΓ
j
00,

(4.26)

where we made sure that ωij is antisymmetric as it should be per definition in 4.22.

The choice of a flat metric reduces the allowed coordinate transformations 4.21 to

x0 → x0 + ξ0, xi → Aij(t)x
j + ai(t), (4.27)

where Aij is an element of SO(3).

We must impose two additional conditions in order to derive the Poisson equation

from the ansatz 4.23, the first of which is the Trautman condition:

hσ[λR
µ]
(νρ)σ = 0. (4.28)

Solving for ν = 0, ρ = 0 and using the relations given in 4.26 gives

∂0ωmi − ∂[mΦi] = 0, (4.29)

while solving for ν = 0, ρ = i gives

∂[kωmi] = 0. (4.30)

Although Φi and ωij are not tensors, equations 4.29 and 4.30 are covariant under

transformation 4.27. Using the definitions for Φi and ωij in 4.22, we can rewrite the

two equations above as

∂[ρKµν] = 0, (4.31)
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which indicates that

Kµν = 2∂[µmν], (4.32)

where mµ is a vector field determined up to the derivative of some scalar field.

The second condition we need to impose is that ωij depends only on time and not

on space coordinates. There are three possible conditions called Ehlers conditions

that lead to the desired restriction on ωij:

hρλRµ
νρσR

ν
µλα = 0

or τ[λR
µ
ν]ρσ = 0

or hσ[λRµ]
νρσ = 0.

(4.33)

Each of these conditions leads to ∂kωij = 0 in adapted coordinates, which leaves ωij

to be a function of time only ωij = ωij(t). For example, consider the last possible

condition in 4.33. Keeping in mind that h00 = 0, and R0
µνρ = 0 because Γ0

µν = 0, we

can rewrite the condition as

hi[jR
k]
νρi = 0. (4.34)

Solving for ν = 0, ρ = m, which means that Rk
0pi = ∂pΓ

k
0p − ∂iΓk0p, and using 4.26,

with renamed indices we get

∂jωki − ∂kωji − ∂jωik + ∂iωjk = 0. (4.35)

The first three terms are equal to zero according to 4.30, which leads the desired

result ∂iωjk = 0. By a time-dependent rotation x′i = Aij(t)x
j to a new coordinate

system, we can set ωij = 0, which also implies that ∂′[iΦ
′
j] = 0 from 4.29. It follows

that Φ′i = ∂′iφ for some scalar field φ, and

Γ′i00 = δij∂′jφ (4.36)

in the new coordinate system. Finally, the covariant ansatz 4.23 gives the Poisson

equation

R00 = ∂iΓ
i
00 = δij∂i∂jφ = 4πGρ. (4.37)

Equations of motion can be recovered from the geodesic equation 4.3 by using adap-
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ted coordinates and performing the time-dependent rotation above:

ẍ′0(t) = 0, ẍ′i(t) + ∂′iφ = 0. (4.38)

With this we have finished showing how the equations of Newtonian Gravity can

be obtained from the Newton-Cartan gravity formulated in terms of two degenerate

metrics and supplied with the Trautman and the Ehlers conditions.

5 Gauging the Bargmann Algebra

5.1 The Bargmann algebra

The Bargmann algebra is the Galilean algebra centrally extended with the mass ge-

nerator M , such that the new generator commutes with everything and hence lies in

the center. It can be obtained by extending the Poincaré algebra iso(D − 1, 1) to the

direct sum of the Poincaré algebra and a commutative subalgebra gM spanned by M :

iso(D − 1, 1)→ iso(D − 1, 1)⊕ gM . (5.1)

We contract the algebra

P0 →
1

ω2
M +H, Pi →

1

ω
Pi, Ji0 →

1

ω2
Gi, ω → 0, (5.2)

where the contraction of P0 is motivated by the non-relativistic approximation of P0

for a massive free particle

P0 =
√
c2PiP i +M2c4 ≈Mc2 +

PiP
i

2M
, (5.3)

where c is the speed of light. The resulting algebra is called Bargmann algebra

b(D − 1, 1) and its non-vanishing commutation relations are

[Jij, Jkl] = 4δ[i[kJl]j], [Jij, Pk] = −2δk[iPj],

[Jij, Gk] = −2δk[iGj], [Gi, H] = −Pi,

[Gi, Pj] = −δijM.

(5.4)
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5.2 Gauging the Bargmann algebra

The procedure is the same as the one we used for gauging the Poincare algebra. We

associate a gauge field e iµ and a parameter ξi to the generator of spatial translations

Pi, e 0
µ = τµ and ξ0 = τ to the generator of time translations H, ω ij

µ and λij to the

generator of rotations Jij, ω i0
µ and λi0 to the generator of Galilean boosts Gi, and

finally mµ and σ to the generator M.

We choose a connection

Aµ = e iµPi + τµH +
1

2
ω ij
µ Jij + ω i0

µ Gi +mµM (5.5)

and a gauge parameter

ζ = ζ iPi + τH +
1

2
λijJij + λi0Gi + σM, (5.6)

so the gauge transformation of the connection is given by

δAµ = ∂µζ + [ζ,Aµ]. (5.7)

From this, the variations of the gauge fields are given by

δe iµ = Dµζ
i + λije jµ − λi0τµ + τω i0

µ ,

δτµ = ∂µτ,

δω ij
µ = Dµλ

ij,

δω i0
µ = Dµλ

i0 + λijω j0
µ ,

δmµ = ∂µσ + ζ iω i0
µ − λi0e iµ ,

(5.8)

where the derivative Dµ is covariant with respect to the J transformations and con-
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taints only the ω ij
µ field. The curvatures of the gauge fields are

Rµν(P ) = 2(D[µe
i

ν] − ω i0
[µ τν]), (5.9)

Rµν(H) = 2∂[µτν], (5.10)

Rµν(G) = 2D[µω
i0

ν] , (5.11)

Rµν(J) = 2(∂[µω
i0

ν] ), (5.12)

Rµν(M) = 2(∂[µmν] + e j
[µ ω

j0
ν] ). (5.13)

We introduce the inverse spatial vielbein eλi and the inverse temporal vielbein τλ

defined by conditions

e iµe
µ
j = δij, τµτµ = 1,

τµe iµ = 0, τµe
µ
i = 0,

e iµe
ν
i = δνµ − τµτ ν ,

(5.14)

which are just the vielbein version of the conditions in 4.16.

Only the gauge fields e iµ , τµ and mµ transform under the P and H transformations

and those are the fields that we want to be independent, while the spin connections

should be dependent fields. This is achieved by imposing following constraints:

R i
µν (P ) = Rµν(H) = Rµν(M) = 0. (5.15)

Note that these constraints are conventional constraints, meaning that they do not

reduce the fields of the theory, but they allow us to solve the dependent fields in

terms of independent ones. Using 5.9 the following relations can be obtained:

R ij
[λµ (J)e j

ν] = −R i0
[λµ (G)τν], e i

[λ R
i0

µν] (G) = 0. (5.16)

The constraint Rµν(H) = 0 gives the condition ∂[µτν] = 0 which means we can take

τµ as in 4.13. Using other conditions, we will solve for the spin connections ω ij
µ ,

ω i0
µ in terms of other gauge fields, which leaves us with only e iµ , τµ and mµ as the

independent fields.
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To solve for ω ij
µ , we begin by writing

R i
µν (P )e iρ +R i

ρµ (P )e iν −R i
νρ (P )e iµ = 0. (5.17)

This equation is solved for ω ij
µ by contracting with eνl and eρk:

ω kl
µ = ∂[µe

k
ν] e

νl − ∂[µe l
ν] e

νk + e iµ∂[νe
i

ρ] e
νkeρl − τµeρ[kω l]0

ρ . (5.18)

To solve for ω i0
µ , we first substitute 5.18 into R i

µν (P ) = 0 and contract it with eµj and

τ ν to get the following condition:

eµ(iω j)0
µ = 2eµ(i∂[µe

j)
ν] τ

ν . (5.19)

By contracting Rµν(M) = 0 with eµi we get

eµ[iω j]0
µ = eµieνj∂[µmν], (5.20)

while contracting the same equation with τµ gives

τµω i0
ν = 2τµeνi∂[µmν]. (5.21)

To solve for ω i0
µ , one of the ways is to start from equation Rµν(M) = 0 and use the

equation for eµiω j0
µ obtained from adding 5.19 and 5.20, and just contract with eµ

ω i0
µ = eνi∂[µmν] + eνiτ ρe jµ ∂[νe

j
ρ] + τµτ

νeρi∂[νmρ] + τ ν∂[µe
i

ν] (5.22)

We have achieved our goal of having e iµ , τµ and mµ as the independent fields. All

that is left to do now is to impose equations of motion.

To show that gauging the Bargmann algebra leads to the formulation of Newton-

Cartan gravity, we need to introduce a Γ connection. We will do this by imposing the

vielbein postulate for the spatial vielbein

∂µe
i
µ − ω ij

µ e jν − ω i0
µ τν − Γρνµe

i
ρ = 0 (5.23)

32



and the vielbeing postulate for the temporal vielbein

∂µτν − Γλνµτλ = 0. (5.24)

From these equations it follows that the Γ connection is given by

Γρνµ = τ ρ∂(µτν) + eρi

(
∂(µe

i
ν) − ω

ij
(µ e j

ν) − ω
i0

(ν τν)

)
. (5.25)

The connection is symmetric because of the curvature constraints R i
µν (P ) = 0 and

Rµν = 0. Note that the connection satisfies the metric compatibility conditions in

4.12 and that 5.23 and 5.24 define the connection Γ uniquely. From 4.19 and 5.25,

it follows that

Kµν = 2ω i0
[µ e i

ν] , (5.26)

which according to R(M) = 0 equals

Kµν = 2∂[µmν] (5.27)

and hence satisfies the condition in 4.32. It can be shown that the Riemann tensor

for connection 5.25 can be expressed in terms of the curvature tensors of the gauge

algebra:

Rµ
νρσ(Γ) = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ

= −eµi
(
R i0
ρσ (G)τν +R ij

ρσ (J)eνj
)
.

(5.28)

Again we must impose the Ehlers conditions 4.33 to obtain Newton-Cartan for-

mulation. Each of the three Ehlers conditions is equal to one curvature constraint

R ij
µν (J) = 0. (5.29)

Substituting this into 5.16 gets us

R i0
[λµ (G)τν] = 0, e i

[λ R
i0

µν] (G) = 0. (5.30)

Contracting the first equation with eνj and eµk, and the second equation with τµ, eλj
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and eνk and renaming indices gives

eµke
ν
jR

i0
µν (G) = 0, τµeν[iR j]0

µν = 0. (5.31)

This implies that the only non-zero component of R i0
µν (G) is

τµeν(iR j)0
µν (G) = δk(jR

i)
0k0(Γ) (5.32)

and gives exactly the only non-zero component of the Riemann tensor that occurs

in Newton-Cartan gravity. These results lead to the Poisson equation and the geode-

sic equation of a massive free particle using the same procedure from the previous

chapter.
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6 Summary and outlook

6.1 Summary

We cite applications of geometrical reformulations of non-relativistic gravity as the

main motivation to study Newton-Cartan gravity. First we go over the basics of diffe-

rential geometry and introduce the vielbein formalism of general relativity. We show

how to obtain the formulation by gauging the Poincaré algebra where we used a

curvature constraint 3.47 in order to solve for spin connection ω ab
µ in terms of the

independent vielbein e aµ .

Newton-Cartan gravity is the geometric reformulation of Newtonian gravity. This

formulation can also be obtained by a gauging procedure. The Lie algebra under-

lying this procedure is the Bargmann algebra 5.4, which is centrally extended Galilei

algebra. The correct Newton-Cartan formulation is obtained by imposing curvature

constraints 5.15 which allows us to solve the dependent fields ω ij
µ and ω i0

µ in terms

of the independent fields e iµ , τµ and mµ. Next we impose the vielbein postulates

5.23 and 5.24 with which we can solve for the Γ connection. Finally, we impose an

additional curvature constraint 5.29 which is equivalent to each of the three Ehlers

conditions in 4.33. The Poisson equation can be recovered from the relation 5.32

between the curvature of the dependent field ω i0
µ and the Newton-Cartan Riemann

tensor. The independent gauge fields e iµ and τµ describe the degenerate metrics of

Newton-Cartan gravity.

6.2 Outlook

Applications of Newton-Cartan gravity cited in the introduction of this thesis, namely

the AdS/CFT correspondence and the study of thermal transport, mostly use a gene-

ralized version of Newton-Cartan gravity that includes torsion. This gravity theory

may be constructed through gauging or by dimensionally reducing general relativity

in one dimension higher along a null isometry [13] [16] [17]. In holographic appli-

cations, it is common to consider the conformal extension of the Bargmann algebra,

called the Schrödinger algebra. Field equations for Newtonian gravity with arbitrary

torsion are then obtained by gauging the Schrödinger algebra or by performing null

reduction of conformal algebra [13].
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7 Prošireni sažetak

7.1 Uvod

Albert Einstein je svojom teorijom opće teorije relativnosti uspješno uskladio Newto-

nove zakone gravitacije sa specijalnom teorijom relativnosti. Opća teorija relativnosti

opisuje gravitaciju kao geometrijsko svojstvo prostor-vremena te je neovisna o koor-

dinatnom sustavu. Francuski matematičar Cartan uspio je geometrijski reformulirati

nerelativističku Newtonovu gravitaciju te se ta teorija zove Newton-Cartanova gra-

vitacija. Interes u nerelativističke teorije gravitacije je porastao zadnjih godina zbog

njihove primjene. Koristi se u holografiji gdje je najpoznatiji primjer AdS/CFT kores-

pondencija [1], te u proučavanju termalnog transporta u otpornom mediju [8].

7.2 Gravitacija i tenzorska algebra

Newtonov zakon gravitacije kaže da svaki objekt u svemiru privlači sve ostale objekte

u svemiru silom koja je proporcionalna masi svakog objekta i obrnuto proporcionalna

kvadratu njihove udaljenosti:

F21 = −Gm1m2

|r12|2
r̂12. (7.1)

Poissonova jednadžba za gravitaciju jest

∇2φ = 4πGρ. (7.2)

Newtonovi zakoni vrijede samo za inercijalne referentne sustave, tj sustave koji su

medusobno povezani Galilei transformacijama. Prema Einsteinu, svi promatrači mo-

raju biti ekvivalentni, bez obzira jesu li inercijalni ili ne. Prema tome, bilo koji ko-

ordinatni sustav se može koristiti. Ako teorije mora biti invarijantna na koordinante

transformacije, dolazimo do zaključka da mora biti tenzorske forme.

Liejeva derivacija općenitog tenzorskog polja T a···b··· dana je s

LXT
a···
b··· = Xc∂cT

a···
b··· − T c···b··· ∂cX

a − · · ·+ T a···c··· ∂bX
c + · · · . (7.3)
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Kovarijantna derivacija općenitog tenzora je

∇cT
a···
b··· = ∂cT

a···
b··· + ΓadcT

d···
b··· + · · · − ΓdbcT

a···
d··· − · · · (7.4)

gdje je Γabc afina veza koja se transformira po sljedećoj jednadžbi

Γ′abc =
∂x′a

∂xd
∂xe

∂x′b
∂xf

∂x′c
Γdef −

∂xd

∂xb
∂xe

∂xc
∂2xa

∂xd∂xe
(7.5)

Riemannov tenzor je tenzor tipa (1, 3) definiran s

Ra
bcd = ∂cΓ

a
bd − ∂dΓabc + ΓebdΓ

a
ec − ΓebcΓ

a
ed (7.6)

Metrika je simetrični kovarijantni tenzor ranga 2 te se mnogostrukost koja ima me-

triku zove Riemannova mnogostrukost. Norma kontravarijantnog vektora Xa je

X2 = gab(x)XaXb (7.7)

a vektori Xa i Y a su ortogonalni ako

gabX
aY b = 0 (7.8)

Metrika gab i kontravarijantna metrika gab se koriste za spuštanje i dizanje tenzorskih

indeksa:

T ··· ······a··· = gabT
···b···
··· ··· T

···a···
··· ··· = gabT ··· ······b··· (7.9)

Kontrakcijom Riemannovog tenzora dobije se Riccijev tenzor:

Rab = Rc
acb (7.10)

te daljnjom kontrakcijom dobije se Riccijev skalar

R = gabRab (7.11)

Einstenov tenzor je definiran s

Gab = Rab −
1

2
gabR (7.12)
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7.3 Vielbein formalizam i baždarenje Poincaréove algebre

Razmatrajući klasični slučaj čestice u konstantnom gravitacijskom polju i pretpostav-

ljajući da su gravitacijska te inercijalna masa ekvivalentne dolazi se do zaključka da,

gledajući česticu iz sustava koji slobodno pada,

r(t)→ r′(t) = r(t)− 1

2
gt2 (7.13)

na česticu ne djeluje sila. Einstein je postulirao da u svakoj točki u vremenu i pros-

toru postoji transformacija kojom se može postići ovakvo izuzimanje gravitacijskog

polja. Gravitaciju je moguće uključiti tako da koordinate u lokalnim vrijednostima

prozovemo ”slobodno padajućim” koordinatama. Latinski indeksi m,n, p, q, · · · koris-

tit će se za slobodno padajući sustav, a grčki indeksi µ, ν, ρ, σ, · · · za neki proizvoljni

sustav.

Razmotrimo slučaj skalarnog polja φ(x). Akcija ovog polja bez gravitacije je

S[φ] =

∫
d4xL =

∫
d4x

[
1

2
∂µφ∂

νφ− V (φ)

]
(7.14)

Da bismo dodali gravitaciju u sustav, varijablu xµ moramo interpretirati kao slobodno

padajuće koordinate

{xµ} → {ξm}, m = 0, 1, 2, 3 (7.15)

te nova akcija koja uključuje efekte gravitacije je

S[φ] =

∫
d4ξ

[
1

2
ηmn∂mφ∂nφ− V (φ)

]
(7.16)

gdje treba uzeti u obzir da, iako ovo izgleda kao početna akcija, nova se integrira

preko mnogostrukosti koja je odredena proizvoljnim koordinatnim sustavom {xµ}.

Transformacija izmedu ravnih i proizvoljnih koordinata je zadana matricom koja se

zove vielbein

emµ (x) ≡ ∂ξm

∂xµ
(7.17)
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te on zadovoljava jednadžbe

emµ e
µ
n = δmn (7.18)

eµme
m
ν = δµν . (7.19)

Akcija se konačno može izraziti u proizvoljnom sustavu

S =

∫
d4x
√
− det gµν

[
1

2
gµν∂µφ∂νφ− V (φ)

]
(7.20)

gdje je gµν nova metrika

ds2 = ηmne
m
µ (x)enν (x)dxµdxν (7.21)

Komutatori Poincaréove algebre zadani su s

[Pa, Pb] = 0, (7.22)

[Mbc, Pa] = −2ηa[bPc], (7.23)

[Mcd,Mef ] = 4η[c[eMf ]d], (7.24)

gdje su Pa generatori za translacije, a Mab generatori Lorentzovih transformacija.

Lokalnim P transformacijama pripadat će baždarno polje e aµ i parametri ξa(x), a

lokalnim Lorentz transformacijama pripadat će baždarno polje ω ab
µ i parametri λab.

Definiramo konekciju

Aµ = e aµ Pa +
1

2
ω ab
µ Mab. (7.25)

i baždarni parametar

ζ = ζaPa +
1

2
λabMab (7.26)

Baždarna transformacija konekcije a je dana s

Aµ = e aµ Pa +
1

2
ω ab
µ Mab. (7.27)
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iz čega se dobiju transformacije baždarnih polja

δe aµ = ∂µζ
a − ω ab

µ ζb + λabe bµ , (7.28)

δω ab
µ = ∂µλ

ab + 2λc[aω b]c
µ . (7.29)

Zakrivljenosti su

R a
µν (P ) = 2∂[µe

a
ν] − 2ω ab

[µ e b
ν] , (7.30)

R ab
µν (M) = 2∂[µω

ab
ν] − 2ω ac

[µ ω cb
ν] . (7.31)

Želimo baždarna polja e aµ i ω ab
µ interpretirati kao vielbein i spin-konekciju. Pri-

mjećujemo da je vielbein jedino polje koje se transformira P transformacijama, te

nam uvjet

R a
µν (P ) = 0 (7.32)

omogućuje da izrazimo ω ab
µ preko vielbeina, njegovog inverza i derivacija:

ω ab
µ (e, ∂e) = −2eλ[a∂[µe

b]
λ] + e cµ e

λaeρb∂[λe
c

ρ] (7.33)

Nametanjem vielbein postulata:

∇µe
a
ν = ∂µe

a
ν − Γρνµe

a
ρ − ω ab

µ e bν = 0. (7.34)

možemo dobiti Γ vezu izraženu preko vielbeina i njegovog inverza

Γρνµ = eρaDµe
a
ν (7.35)

Takoder, definiramo nedegeneriranu metriku i njen inverz:

gµν = e aµ e
b
ν ηab, gµν = e µa e

ν
b η

ab (7.36)
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7.4 Newton-Cartanova gravitacija

Newton-Cartanova gravitacija je geometrijska reformulacije Newtonove gravitacije.

Želimo klasičnu jednadžbu putanje čestice s masom

d2xi

dt2
+
∂φ

∂xi
= 0 (7.37)

usporediti s geodezijskom jednadžbom

d2xα

dλ2
+ Γαβγ

dxβ

dλ

dxγ

dλ
= 0 (7.38)

Jedini koeficijenti veze koji ne ǐsčezavaju su

Γi00 =
∂φ

∂xi
(7.39)

iz čega se dobije i da su jedini neǐsčezavajući koeficijenti Reimannovog tenzora

Ri
0k0 = −Ri

00k =
∂2φ

∂xi∂xk
(7.40)

te Riccijevog tenzora

R00 =
∑
i

∂2φ

∂xi2
(7.41)

Končano, Poissonovu jednadžbu možemo napisati u geometrijskom obliku:

R00 = 4πGρ (7.42)

Razmotrimo Minkowski metriku i njen inverz:

ηµν/c
2 =

−1 0

0 I3/c2

 , ηµν =

−1/c2 0

0 I3

 . (7.43)

Limes c → inf bi nam dao degeneriranu kovarijantnu vremensku metriku τµν čije su

tri svojstvene vrijednosti nula, te degeneriranu kontravarijantnu prostornu metriku

hµν s jednom svojstvenom vrijednosti koja je jednaka nuli. Metrika τµν je efektivno

1 × 1 matrica pa ćemo koristiti vielbein verziju τµ koja je definirana s τµν = τµτν .

Uvodimo i inverznu prostornu metriku hµν i invernu vremensku metriku τµ te za njih
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vrijedi

hµνhνρ = δµρ − τµτρ, τµτµ = 1,

hµνtν = 0, hµντ
ν = 0.

(7.44)

Primijenit ćemo uvjet kompatibilnosti:

∇ρh
µν = 0, ∇ρτµ = 0 (7.45)

gdje je kovarijantna derivacija s vezom Γρµν . Najopćenitija veza koja zadovoljava ove

jednadžbe je

Γσµν = τσ∂(µτν) +
1

2
hσρ (∂νhρµ + ∂µhρν − ∂ρhµν) + hσλKλ(µτν) (7.46)

gdje je Kµν proizvoljni simetrični tenzor. Koristit ćemo nadalje adaptirane koordinate

x0 = t, te postaviti kovarijantni ansatz iz kojeg želimo dobiti Poissonovu jednadžbu:

Rµν = 4πGρτµτν (7.47)

Ona se dobije postavljanjem još dva uvjeta, jedan je Trautmanov uvjet

hσ[λR
µ]
(νρ)σ = 0. (7.48)

a drugi je bilo koji od Ehlerovih uvjeta

hρλRµ
νρσR

ν
µλα = 0

ili τ[λR
µ
ν]ρσ = 0

ili hσ[λRµ]
νρσ = 0.

(7.49)

Pokaže se da su ovi uvjeti dovoljni da se dobije Poissonova jednažba

R00 = ∂iΓ
i
00 = δij∂i∂jφ = 4πGρ. (7.50)
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7.5 Baždarenje Bargmannove algebre

Bargmannova algebra je Galileieva algebra centralno proširena s generatorom M čiji

su komutatori

[Jij, Jkl] = 4δ[i[kJl]j], [Jij, Pk] = −2δk[iPj],

[Jij, Gk] = −2δk[iGj], [Gi, H] = −Pi,

[Gi, Pj] = −δijM.

(7.51)

Baždarenje Bargmannove algebre radi se na isti način kao što se baždarila i Poin-

caréova algebra. Generatoru prostornih translacija Pi pripadat će baždarno polje e iµ i

parametar ξi, generatoru vremenskih translacija H polje e 0
µ = τµ i parametar ξ0 = τ ,

generatoru rotacija Jij polje ω ij
µ i parametar λij, generatoru Galileievih potisaka po-

lje ω i0
µ i parametar λi0 te generatoru M polje mµ i parametar σ. Varijacije baždarnih

polja su

δe iµ = Dµζ
i + λije jµ − λi0τµ + τω i0

µ ,

δτµ = ∂µτ,

δω ij
µ = Dµλ

ij,

δω i0
µ = Dµλ

i0 + λijω j0
µ ,

δmµ = ∂µσ + ζ iω i0
µ − λi0e iµ ,

(7.52)

gdje kovarijantna derivacija Dµ uključuje samo ω ij
µ . Zakrivljenosti baždarnih polja

su

Rµν(P ) = 2(D[µe
i

ν] − ω i0
[µ τν]), (7.53)

Rµν(H) = 2∂[µτν], (7.54)

Rµν(G) = 2D[µω
i0

ν] , (7.55)

Rµν(J) = 2(∂[µω
i0

ν] ), (7.56)

Rµν(M) = 2(∂[µmν] + e j
[µ ω

j0
ν] ). (7.57)
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Inverzni prostorni vielbein i inverzni vremenski vielbein definirani su uvjetima

e iµe
µ
j = δij, τµτµ = 1,

τµe iµ = 0, τµe
µ
i = 0,

e iµe
ν
i = δνµ − τµτ ν ,

(7.58)

Jedino se polja e iµ , τµ i mµ transformiraju P i H transformacijama te želimo postići

da navedena polja budu neovisna. Stoga postavljamo sljedeće uvjete:

R i
µν (P ) = Rµν(H) = Rµν(M) = 0. (7.59)

Takoder, iz izraza za zakrivljenosti možemo dobiti sljedeće relacije:

R ij
[λµ (J)e j

ν] = −R i0
[λµ (G)τν], e i

[λ R
i0

µν] (G) = 0. (7.60)

Uvjet Rµν(H) = 0 daje ∂[µτν] = 0. Rješenje za ω ij
µ je

ω kl
µ = ∂[µe

k
ν] e

νl − ∂[µe l
ν] e

νk + e iµ∂[νe
i

ρ] e
νkeρl − τµeρ[kω l]0

ρ (7.61)

a za ω i0
µ

ω i0
µ = eνi∂[µmν] + eνiτ ρe jµ ∂[νe

j
ρ] + τµτ

νeρi∂[νmρ] + τ ν∂[µe
i

ν] (7.62)

Ovim smo postigli da su e iµ , τµ i mµ neovisna polja, a preko njih su izražena ovisna

polja ω ij
µ i ω i0

µ .

Γ vezu uvodimo vielbein postulatom za prostorni vielbein

∂µe
i
µ − ω ij

µ e jν − ω i0
µ τν − Γρνµe

i
ρ = 0 (7.63)

te za vremenski vielbein

∂µτν − Γλνµτλ = 0. (7.64)

Iz ovoga slijedi da je veza dana s

Γρνµ = τ ρ∂(µτν) + eρi

(
∂(µe

i
ν) − ω

ij
(µ e j

ν) − ω
i0

(ν τν)

)
(7.65)

Veza takoder zadovoljava uvjete kompatibilnosti iz 7.45 te je jedinstveno definirana.
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Usporedivanjem gornje jednadžbe s 7.46 dobije se

Kµν = 2∂[µmν] (7.66)

Riemannov tenzor može se napisati preko tenzora zakrivljenosti baždarne algebre:

Rµ
νρσ(Γ) = ∂ρΓ

µ
νσ − ∂σΓµνρ + ΓλνσΓµλρ − ΓλνρΓ

µ
λσ

= −eµi
(
R i0
ρσ (G)τν +R ij

ρσ (J)eνj
)
.

(7.67)

Da bismo došli do Newton-Cartanove formulacije gravitacije, moramo primijeniti

Ehlersove uvjete 7.49. Ovi uvjeti istovjetni su jednom uvjetu za zakrivljenost

R ij
µν (J) = 0. (7.68)

Uvrštavanjem ovog uvjeta u 7.60 dobiju se relacije

R i0
[λµ (G)τν] = 0, e i

[λ R
i0

µν] (G) = 0. (7.69)

Konačno, iz ovoga slijedi da je jedini neǐsčezavajući član od R i0
µν (G)

τµeν(iR j)0
µν (G) = δk(jR

i)
0k0(Γ) (7.70)

te daje točno jedini neǐsčezavajući član Riemannovog tenzora Newton-Cartanove gra-

vitacije. Ovakav Riemannov tenzor vodi ka Poissonovoj jednadžbi i geodezijskoj jed-

nadžbi slobodne masivne čestice

7.6 Zaključak

U ovom diplomskom radu prvo prolazimo kroz osnove diferencijalne geometrije.

Upoznajemo se s vielbein formalizmom opće teorije relativnosti te pokazujemo kako

se on može dobiti baždarenjem Poincaréove algebre. Nametanjem uvjeta na zakriv-

ljenost 7.32 omogućuje nam da ovisno baždardno polje ω ij
µ izrazimo preko neovisnog

polja e iµ . Nakon toga pokazujemo kako se formulacija Newton-Cartanove gravitacije

može dobiti baždarenjem Bargmannove algebre. Za to su nam potrebni uvjeti na za-

krivljenosti 7.59 s kojima rješavamo ovisna polja ω ij
µ i ω i0

µ preko neovisnih polja e iµ ,
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τµ i mµ. Vielbein postulatima 7.63 i 7.64 dobijemo Γ vezu, te još jednim uvjetom na

zakrivljenosti 7.68 konačno dobijemo relaciju iz koje se dobije Poissonova jednadžba

Newton-Cartanove teorije.

U primjenama Newton-Cartanove gravitacije u AdS/CFT korespondenciji i proučavanju

termalnog transporta najčešće se koristi verzija Newton-Cartanove gravitacije s tor-

zijom. Ova tema bi se, dakle, mogla proširiti izvodom takve gravitacije baždarenjem

Schrödingerove algebre ili dimenzionalnom redukcijom opće teorije relativnosti u

većoj dimneziji.
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