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Background: Potential energy surfaces (PES’s) of actinide nuclei are characterized by a two-humped barrier
structure. At large deformations beyond the second barrier, the occurrence of a third barrier was predicted by
macroscopic-microscopic model calculations in the 1970s, but contradictory results were later reported by a
number of studies that used different methods.
Purpose: Triple-humped barriers in actinide nuclei are investigated in the framework of covariant density
functional theory (CDFT).
Methods: Calculations are performed using the multidimensionally constrained relativistic mean field (MDC-
RMF) model, with the nonlinear point-coupling functional PC-PK1 and the density-dependent meson exchange
functional DD-ME2 in the particle-hole channel. Pairing correlations are treated in the BCS approximation with
a separable pairing force of finite range.
Results: Two-dimensional PES’s of 226,228,230,232Th and 232,234,236,238U are mapped and the third minima on these
surfaces are located. Then one-dimensional potential energy curves along the fission path are analyzed in detail
and the energies of the second barrier, the third minimum, and the third barrier are determined. The functional
DD-ME2 predicts the occurrence of a third barrier in all Th nuclei and 238U. The third minima in 230,232Th are
very shallow, whereas those in 226,228Th and 238U are quite prominent. With the functional PC-PK1 a third barrier
is found only in 226,228,230Th. Single-nucleon levels around the Fermi surface are analyzed in 226Th, and it is
found that the formation of the third minimum is mainly due to the Z = 90 proton energy gap at β20 ≈ 1.5 and
β30 ≈ 0.7.
Conclusions: The possible occurrence of a third barrier on the PES’s of actinide nuclei depends on the effective
interaction used in multidimensional CDFT calculations. More pronounced minima are predicted by the DD-ME2
functional, as compared to the functional PC-PK1. The depth of the third well in Th isotopes decreases with
increasing neutron number. The origin of the third minimum is due to the proton Z = 90 shell gap at relevant
deformations.

DOI: 10.1103/PhysRevC.91.014321 PACS number(s): 21.60.Jz, 24.75.+i, 25.85.−w, 27.90.+b

I. INTRODUCTION

The potential energy surface (PES) of a fissile nucleus
plays a crucial role in fission studies. Observables such as
the fragment mass distribution and the fission half-life are
closely related to properties of the PES of a compound
nucleus. The PES’s of actinide nuclei are characterized by
a two-humped barrier structure along the static fission path,
which has extensively been studied both experimentally and
using a variety of theoretical models. We refer the reader, for
instance, to Refs. [1–4] and references therein. Macroscopic-
microscopic model calculations predicted, already in the
1970s [5–7], the occurrence of shallow third minima beyond
the second barrier. These minima were used to explain the
thorium anomaly [6–8]. High-resolution fission cross section
measurements for 230−233Th and 237U supported the existence
of shallow third minima on the PES’s of these nuclei [9–15].
The deduced values for the depth of the third well are only
a few hundred keV. In Ref. [16] a model was developed to
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describe fission in light actinides and to consider transmission
through a triple-humped fission barrier with absorption. Using
this model the complex resonance structure in the first-chance
neutron-induced fission cross sections of 232Th and 231Pa was
reproduced, and shallow third minima with depths of less than
1 MeV were obtained.

The PES’s of nuclei in the Ra-Th region were computed
using the macroscopic-microscopic model with a modified
oscillator potential, and in many nuclei a third minimum was
found at a very large quadrupole deformation [17]. It was
concluded that the depth of the third minimum could be at
most 1.5 MeV. This model, with shell corrections calculated
by adopting an axially deformed Woods-Saxon potential, was
later used to systematically study the PES’s of even-even Rn,
Ra, Th, and U isotopes [18]. Very deep minima, or even
two hyperdeformed minima, were predicted in many of these
nuclei. In some cases the depth of the third minimum could be
as large as 4 MeV.

A series of experiments were performed to find evidence
for hyperdeformed states in U isotopes [19–23]. The deduced
values for the excitation energies of the third minima and
the third barriers were EIII = 3–4 MeV and BIII ≈ 6 MeV,
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respectively. Thus, the depth of the third well could be
2–3 MeV. Such deep third minima in U isotopes agree with
the predictions of Ref. [18], but differ from the experimental
results of 230−233Th and 237U [9–15] and from the theoretical
predictions reported in Refs. [5–7,17].

To verify the predictions for third minima in actinides
in the macroscopic-microscopic model based on the Woods-
Saxon potential, calculations with additional shape degrees of
freedom were preformed in Refs. [24,25]. It was found that
the third barrier could be lowered substantially by including
the β1 deformation. Consequently, third minima disappeared
in many nuclei, except in 230,232Th, in which only a shallow
third minimum with a depth of less than 400 keV was found.
Furthermore, in Ref. [26] an analysis of PES’s computed with
the finite-range liquid-drop model [27] revealed that only few
nuclei accessible to experiment exhibit third minima in their
PES’s and the depth of the third well is less than 1 MeV for
the light Th and U isotopes.

In addition to the macroscopic-microscopic model, a
number of self-consistent approaches have also been used to in-
vestigate PES’s of deformed nuclei. Deformation-constrained
Hartree-Fock or Hartree-Fock-Bogoliubov calculations with
Skyrme forces [28–30] and the Gogny force [31–33] did not
exhibit deep third minima in actinide nuclei. In Ref. [34] a
shallow third minimum with a depth of 1–2 MeV in 232Th was
found in axially deformed relativistic mean-field calculations
with the effective interactions PL-40, NL1, and NL-SH.

In the present study we examine the occurrence and
properties of third minima on the PES’s of light actinides,
using the multidimensionally constrained relativistic mean-
field (MDC-RMF) model. Third minima, if they exist, are
located at very large quadrupole and octupole deformations. It
is probable that some intruder high-N single-particle states
play an important role in the formation of these minima.
Therefore, in addition to the PES’s, we analyze in detail the
single-particle level structure at hyperdeformation and study
the origin of possible third minima.

The paper is organized as follows. The MDC-RMF model
is introduced in Sec. II. In Sec. III we present numerical
details and the results for the PES’s and third barriers in
light actinide nuclei. A summary and conclusions are given in
Sec. IV.

II. THE MDC-RMF APPROACH

Relativistic mean-field (RMF) models have been applied
very successfully in studies of a variety of nuclear structure
phenomena. In the standard representation of RMF models a
nucleus is described as a system of Dirac nucleons coupled
to exchange mesons through an effective Lagrangian [35–43].
At the energy scale characteristic of nuclear binding and low-
lying excited states, the meson exchange is just a convenient
representation of the effective nuclear interaction, and can
be replaced by the corresponding local four-point (contact)
interactions between nucleons [44,45]. A quantitative treat-
ment of nuclear matter and finite nuclei necessitates a medium
dependence of effective mean-field interactions that takes
into account higher-order many-body effects. The medium
dependence can be introduced either by including nonlinear

terms in the Lagrangian [46–48] or by assuming an explicit
density dependence for the meson-nucleon couplings [49,50].
Therefore, the framework of covariant density functionals can
be formulated in one of the following four representations
for the effective nuclear interaction: meson exchange (ME)
or point-coupling (PC) nucleon interactions combined with
nonlinear (NL) or density-dependent (DD) vertex functions.

In a self-consistent mean-field approach that allows break-
ing both axial quadrupole and reflection symmetries, the
MDC-RMF model has recently been developed and applied
to studies of PES’s and fission barriers of actinides [1,51–54],
shapes of hypernuclei [55,56], and nonaxial-octupole Y32

correlations in N = 150 isotones [57]. The nuclear shape is
parameterized by the deformation parameters

βλμ = 4π

3ARλ
〈Qλμ〉, (1)

where Qλμ = rλYλμ is the mass multipole operator. The
shape is invariant under the exchange of the x and y axes,
and thus all deformations βλμ with even μ can be included
simultaneously. The deformed RMF equations are solved by
an expansion in the axially deformed harmonic oscillator
(ADHO) basis [58,59]. For details of the MDC-RMF model,
we refer the reader to Ref. [1].

III. RESULTS AND DISCUSSION

A. Implementation and numerical details

In the present study we employ two relativistic density
functionals: PC-PK1 [60] with point-coupling effective inter-
actions that include nonlinear terms in the self-energies and
the meson-exchange functional DD-ME2 [61] with density-
dependent meson-nucleon couplings. Pairing correlations are
taken into account in the BCS approximation with a separable
pairing force of finite range [62–64]

V (r1 − r2) = −gδ(R̃ − R̃′)P (r̃)P (r̃ ′)
1 − P̂σ

2
, (2)

where g is the pairing strength and R̃ and r̃ are the center-of-
mass and relative coordinates of the two nucleons, respectively.
P (r) denotes the Gaussian function:

P (r) = 1

(4πa2)3/2
e−r2/4a2

, (3)

where a is the effective range of the pairing force. The two
parameters g = g0 = 728 MeV fm3 and a = 0.644 fm [62,63]
have been adjusted to reproduce the density dependence of the
pairing gap at the Fermi surface in symmetric nuclear matter
and calculated with the Gogny force D1S.

Nonaxial shapes are crucial for determining the height of
both the inner [65,66] and outer barriers [1,51–54]. What role
do they play at the third barrier? In Fig. 1 we display the
energy curve of 226Th computed with and without the inclusion
of triaxial deformations. This calculation is performed in
an ADHO basis truncated to Nf = 16 oscillator shells (see
Ref. [1] for the explanation of the truncation). As shown
in the figure, triaxial deformations lower the second barrier
considerably. Beyond the second saddle point the influence
of nonaxial deformations on the binding energy gradually

014321-2



MULTIDIMENSIONALLY CONSTRAINED RELATIVISTIC . . . PHYSICAL REVIEW C 91, 014321 (2015)

FIG. 1. (Color online) Energy curve of 226Th computed with
the MDC-RMF model using the functional PC-PK1. When axial
symmetry is imposed, the energy denoted by the dash-dotted (black)
curve is obtained [axial symmetric (AS) and reflection asymmetric
(RA)], whereas triaxial calculations yield the solid (blue [gray]) curve
[nonaxial (NA) and reflection asymmetric (RA)]. The ADHO basis
contains Nf = 16 oscillator shells.

vanishes as β20 increases, and these shapes appear not to be
important at the third minimum and the third barrier.

In Ref. [1] the convergence of the total energy with respect
to the size of the ADHO basis has been verified along the
fission path up to the second fission barrier. Since here we
consider a region with even larger deformation, we will extend
this check and examine the basis truncation up to the third
fission barrier. The energy curve of 226Th is calculated up to
β20 = 2.7 assuming axial symmetry and employing ADHO
bases with Nf = 16, 18, 20, and 22 shells. In Ref. [1] it
has been shown that a basis with Nf = 20 produces very
accurate results for the height of the second barrier, around
which the triaxial deformation is also important. In Fig. 1 one
notices that nonaxial shapes do not influence the height of the
third barrier, and so the axial symmetry is imposed and we
mainly focus on the deformation region beyond the second
barrier. Figure 2 shows that the height of the third barrier
is lowered when Nf increases from 16 to 20. The results
obtained with Nf = 20 and 22 are almost identical, and this
means that Nf = 20 should present a sufficient choice. We
notice that for the hyperdeformed minimum around β20 ∼ 1.6,
results obtained with Nf = 18, 20, and 22 are difficult to
differentiate.

B. Two-dimensional PES’s

We consider light even-even actinides 232,234,236,238U and
226,228,230,232Th. Figure 3 displays the self-consistent MDC-
RMF energy surfaces in the (β20,β30) plane, calculated with the
relativistic functionals PC-PK1 and DD-ME2. The deforma-
tion parameters are restricted to the ranges β20 ∼ (1.0,3.0) and
β30 ∼ (0.3,1.5), in which the second barrier together with the
third minimum and the third barrier, if they exist, are located.
Note that the contour interval for the PES’s plotted in Fig. 3 is
0.5 MeV.

In Fig. 3(a) one notices that for 232,234,236,238U the PES’s do
not display a third minimum when calculated with PC-PK1.

FIG. 2. (Color online) The axially symmetric energy curve of
226Th computed with the MDC-RMF model, using the functional
PC-PK1. Results obtained with different truncations of the ADHO
basis, i.e., with Nf = 16, 18, 20, and 22 shells are plotted by the
dash-dotted, dotted, dashed, and solid curves, respectively.

For these four U isotopes the second saddle point is located at
β20 ∼ 1.2–1.3 and β30 ∼ 0.3–0.4. With the increase of β20 the
total binding energy decreases monotonically along the lowest
fission path. Different results are obtained with DD-ME2, as
shown in Fig. 3(b). With the exception of 236U, we find a third
minimum on the PES’s of 232,234,238U. The minimum is rather
shallow for 232U and 234U and very pronounced for 238U. These
results are very similar to those obtained in recent calculations
based on the macroscopic-microscopic model [24–26,67] and
the Skyrme Hartree-Fock-Bogoliubov model [30].

In the case of Th isotopes, both PC-PK1 and DD-ME2
predict a pronounced third minimum for 226Th with a depth
of 2–3 MeV. As the neutron number N increases, both the
energy of the third minimum and the height of the third barrier
decrease and the depth of the third well is also reduced. This
trend has also been predicted in the macroscopic-microscopic
model calculations [26]. For 230Th only a shallow minimum of
depth less than 1 MeV occurs. The third minimum completely
disappears for 232Th when calculated with PC-PK1 and it is
very shallow with the functional DD-ME2.

Figure 3 clearly shows that the functional DD-ME2 (lower
panel) predicts more pronounced third minima when compared
to those obtained with PC-PK1 (upper panel). In addition
to the lowest fission path on which we focus in this work,
there are other possible paths along which there are more
shallow minima and saddle points. It would be worthwhile to
investigate these fine structures in a future study.

C. Pairing strength

In general the height of fission barriers is rather sensitive to
the strength of the pairing interaction [68]. As explained above,
the parameters of the separable pairing force of finite range
that we use in this work were originally adjusted to reproduce
the pairing gap at the Fermi surface in symmetric nuclear
matter and calculated with the Gogny force D1S. A number
of studies based on the relativistic Hartree-Bogoliubov model
have shown that this pairing force can be used to calculate

014321-3



ZHAO, LU, VRETENAR, ZHAO, AND ZHOU PHYSICAL REVIEW C 91, 014321 (2015)

FIG. 3. (Color online) Self-consistent MDC-RMF energy surfaces of U and Th isotopes in the (β20,β30) plane, calculated with the
relativistic functionals PC-PK1 (a) and DD-ME2 (b). For each nucleus the energy is normalized with respect to the binding energy of the
absolute minimum. The contours join points on the surface with the same energy and the energy difference between neighboring contours is
0.5 MeV. The calculation has been performed in the ADHO basis with Nf = 16 shells.

structure properties with a success, but in some other cases,
the pairing strength needs to be fine-tuned [69,70].

In the present work, since pairing correlations are treated in
the BCS approximation, it is necessary to verify whether the
strength of the pairing force is adequate for the mass region

under consideration. We have therefore calculated the odd-
even mass differences for the Th isotopes:

�n(Z,N ) = 1
2 [E(Z,N + 1) + E(Z,N − 1) − 2E(Z,N )],

�p(Z,N ) = 1
2 [E(Z + 1,N ) + E(Z − 1,N ) − 2E(Z,N )],

014321-4
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FIG. 4. (Color online) The odd-even differences of binding en-
ergies of Th isotopes computed with the MDC-RMF model, using the
functional PC-PK1. Results obtained using different pairing strength
parameters g/g0 = 1.0, 1.1, and 1.2, where g0 = 728 MeV fm3, are
plotted as dots, triangles, and stars respectively. The squares denote
the experimental values obtained from Ref. [71]. The calculation has
been performed in the ADHO basis with Nf = 20 shells.

using different pairing strengths: g/g0 = 1.0, 1.1, and 1.2,
where g0 = 728 MeV fm3. The results are shown in Figs. 4
and 5. For the case of PC-PK1, when compared to experimental
values obtained from Ref. [71], one notices that the calculation
with g/g0 = 1.0 underestimates both proton and neutron odd-
even mass differences considerably. While the results obtained
with g/g0 = 1.1 nicely reproduce the empirical proton odd-
even mass differences, the experimental neutron gaps are
located between the values obtained using g/g0 = 1.1 and
g/g0 = 1.2. For the case of DD-ME2, the results obtained with
both g/g0 = 1.0 and g/g0 = 1.1 underestimate proton and
neutron odd-even mass differences. The results obtained with
g/g0 = 1.2 reproduce the empirical proton odd-even mass
differences quite well and slightly underestimate the neutron
odd-even mass differences. Since we do not wish to introduce
additional model parameters by considering different pairing
strengths for protons and neutrons, in the remainder of this
study we will use g/g0 = 1.1 both for protons and neutrons
for PC-PK1 and g/g0 = 1.2 for DD-ME2.

Multidimensional self-consistent deformation-constrained
calculations are very time-consuming but, on the other hand, to
accurately locate the saddle points it is necessary to consider
several shape degrees of freedom. Therefore, to locate the
fission paths, in the present study we adopt the approach used
in Refs. [1,51]: (1) From the two-dimensional energy surfaces
on the (β20,β30) plane shown in Fig. 3, and calculated with
Nf = 16 and g/g0 = 1.0, one approximately identifies the

FIG. 5. (Color online) The odd-even differences of binding en-
ergies of Th isotopes computed with the MDC-RMF model, using the
functional DD-ME2. Results obtained using different pairing strength
parameters g/g0 = 1.0, 1.1, and 1.2, where g0 = 728 MeV fm3, are
plotted as dots, triangles, and stars respectively. The squares denote
the experimental values obtained from Ref. [71]. The calculation has
been performed in the ADHO basis with Nf = 20 shells.

lowest fission path. (2) In a second step, one-dimensional
constrained calculations with Nf = 20 and g/g0 = 1.1 for
PC-PK1 and g/g0 = 1.2 for DD-ME2 are performed along
this approximate fission path for nuclei with apparent third
minima. In these calculations additional nonaxial shapes are
allowed around the second barrier.

D. The third minima and barriers

By examining the two-dimensional PES’s shown in Fig. 3,
one notices that third minima and barriers appear for
226,228,230,232Th and 232,234,238U. For these nuclei the energy
curves along the lowest static fission path, calculated in the
ADHO basis with Nf = 20 shells and with the enhanced
pairing strength g/g0 = 1.1 for PC-PK1 and g/g0 = 1.2 for
DD-ME2, are shown in Fig. 6. In the vicinity of the second
saddle point, MDC-RMF calculations are performed with and
without the inclusion of triaxial quadrupole shapes and both
results are displayed for comparison. As already reported in
Ref. [51], the inclusion of triaxial configurations, in addition to
the axial octupole deformation, modifies the shape and height
of the second fission barrier. We should note that the effect
of triaxiality on the second barrier sensitively depends on the
strength of the pairing interaction. For instance, for the case
g/g0 = 1.0 (cf. Fig. 1), the inclusion of triaxial configurations
lowers the second fission barrier of 226Th by 0.72 MeV,
whereas for g/g0 = 1.1 (cf. Fig. 6) the second barrier of
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FIG. 6. (Color online) MDC-RMF energy curves of 226,228,230,232Th and 232,234,238U. The calculation has been performed in the ADHO basis
with Nf = 20 shells and the pairing strength parameter g/g0 = 1.1 for PC-PK1 and g/g0 = 1.2 for DD-ME2. For each nucleus the energy is
normalized with respect to the binding energy at the absolute minimum.

226Th is only lowered by 0.33 MeV. By further increasing
the pairing strength the influence of nonaxial deformations
on the binding energy near the second fission barrier may
be further reduced [72]. The energies of the third minima,
the heights of the second and third barriers, and the depths
of the third wells �E ≡ BIII − EIII, together with empirical
parameters [11,15,20,22,23,73], are included in Table I.

For 226Th the functional DD-ME2 (PC-PK1) predicts the
third minimum at 7.37 (5.44) MeV above the deformed ground
state. With DD-ME2 the third barrier is slightly higher than the
second one, whereas the opposite is obtained with PC-PK1.
The depths of the third well computed with DD-ME2 and
PC-PK1 are 1.94 MeV and 1.29 MeV, respectively. In the case
of 228Th the third minimum is shallower: 1.13 MeV for DD-
ME2 and 0.78 MeV for PC-PK1. Among the nuclei considered
here, these two isotopes exhibit the most pronounced third
minima. The fission barrier parameters for 230Th deduced in
Ref. [11] are EIII = 5.55 MeV and BIII = 6.45 MeV. MDC-
RMF calculations with the functional DD-ME2 reproduce
these values, whereas they are underestimated by about
2 MeV by PC-PK1. For 232Th the third minimum appears on
the PES calculated with DD-ME2 but not on the one obtained

with PC-PK1. The electron-induced fission cross section
measurement for 232Th indicates a shallow third minimum
with a depth of about 0.30 MeV [15]. The theoretical result
obtained with DD-ME2 (0.50 MeV) is consistent with this
empirical value. In general, Table I shows that the depth of the
third minimum in the Th isotopes decreases with increasing
the neutron number.

For the U isotopes MDC-RMF calculations with the
functional DD-ME2 predict the existence of the third minimum
in 238U. The depth of the third well is 1.11 MeV, which is
smaller than the empirical value 2.0 MeV [23]. The reason for
that is shown in Table I, where one notices that the calculated
energy of the third minimum (3.70 MeV) is close to the
empirical value (3.6 MeV), but the theoretical height of the
third barrier (4.81 MeV) is much smaller than the empirical
value 5.6 MeV.

E. Single-nucleon level structure

The appearance of a hyperdeformed minimum must have
its origin in the single-particle level structure. Since 226Th
displays the most pronounced third minimum among the nuclei
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TABLE I. Excitation energies (in MeV) of the second saddle
point BII, the third minimum EIII, and the third saddle point
BIII, with respect to the deformed mean-field equilibrium state for
226,228,230,232Th and 232,234,238U, obtained from MDC-RMF calcula-
tions. �E ≡ BIII − EIII denotes the depth of the third well relative to
the third barrier. The empirical values (denoted by “Emp”) are from
Refs. [11,15,20,22,23,73].

Nucleus Parameters BII EIII BIII �E

226Th DD-ME2 8.76 7.37 9.31 1.94
PC-PK1 7.94 5.44 6.73 1.29

228Th DD-ME2 8.16 6.69 7.82 1.13
PC-PK1 7.19 4.72 5.50 0.78

230Th DD-ME2 7.84 5.97 6.60 0.63
PC-PK1 6.56 4.01 4.45 0.44
Emp [73] 6.80
Emp [11] 5.75 5.55 6.45 0.90

232Th DD-ME2 7.53 5.42 5.92 0.50
Emp [73] 6.70
Emp [15] 6.50 5.40 5.70 0.30

232U DD-ME2 7.25
Emp [73] 5.40
Emp [22] 4.91 3.20 6.02 2.82

234U DD-ME2 7.01
Emp [73] 5.50
Emp [20] 3.1

238U DD-ME2 7.70 3.70 4.81 1.11
Emp [73] 5.50
Emp [23] 5.6 3.6 5.6 2.0

considered in this work, we will analyze the neutron and proton
deformed single-particle levels of this isotope.

In Fig. 7 we display the neutron and proton deformed
single-particle levels of 226Th near the Fermi surface along the
static fission path, as functions of the quadrupole deformation
β20. The levels are obtained in a MDC-RMF calculation using
the functional DD-ME2. The quadrupole deformation of the
superdeformed minimum of 226Th is predicted at β20 ≈ 0.6.
For β20 � 0.6, octupole deformations are not considered, and
thus parity is conserved. When β20 > 0.6, the octupole defor-
mation β30 is nonzero and the parity cannot be considered as
a good quantum number for large deformations. Furthermore,
around the second saddle point triaxial deformations also play
a role and the third component of the angular momentum is not
conserved either. This results in a very complex single-particle
level scheme around the second barrier. Since in this study we
are mainly interested in single-particle levels in the region of
the third minimum and the third barrier, in Fig. 7 we only plot
results obtained by imposing axial symmetry.

The hyperdeformed minimum of 226Th is located at β20 ∼
1.5 and β30 ∼ 0.7. By examining the neutron single-particle
levels around β20 = 1.5, in the upper panel of Fig. 7 one notices
a region of low level density near the Fermi surface, even
though the energy gap is not large. For protons, as shown in
the lower panel of Fig. 7, a large energy gap is clearly visible
at Z = 90 in the region β20 ≈ 1.5. Therefore, the formation of
the third minimum on the PES of 226Th is mainly caused by
the large proton gap at the Fermi surface. Many single-particle

states around the proton Fermi level are involved in the
formation of the energy gap at Z = 90. These states are dotted
with symbols in the lower panel of Fig. 7, and labeled with �,
i.e., the third component of the angular momentum.

IV. SUMMARY

We have analyzed the potential energy surfaces (PES’s) of
light even-even Th and U isotopes using the multidimension-
ally constrained relativistic mean field (MDC-RMF) approach.
Calculations have been performed with two relativistic density
functionals: PC-PK1 with point-coupling effective interactions
that include higher order terms, and the meson-exchange func-
tional DD-ME2 with density-dependent meson-nucleon cou-
plings. Pairing correlations are taken into account in the BCS
approximation with a separable pairing force of finite range.

In a first step we have examined the two-dimensional
PES’s of 226,228,230,232Th and 232,234,236,238U and located the
third minima on the energy maps. By analyzing the resulting
potential energy curves along the lowest static fission path, the
energies of the second barrier, the third minimum, and the
third barrier have been determined. In calculations with the
functional DD-ME2, a third potential barrier is predicted in
all Th nuclei and 238U. The third well in 230,232Th is very
shallow with a depth of less than 1 MeV, whereas the third well
in 226,228Th and 238U is rather deep. The functional PC-PK1
predicts a third barrier only in 226,228,230Th. Therefore we note
that the occurrence of a third barrier in constrained mean-field
calculations of PES’s of actinides depends on the specific
choice for the energy density functional.

Insights into the origin of the third minimum on the PES
have been obtained by examining the neutron- and proton-
deformed single-particle levels of 226Th near the Fermi surface
along the static fission path, as functions of the quadrupole
deformation β20. We have shown that the formation of the
third minimum is facilitated by the appearance of the Z = 90
proton energy gap in the region β20 ≈ 1.5 and β30 ≈ 0.7 and
that this gap originates from several pairs of single-proton
states in the vicinity of the Fermi surface.
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FIG. 7. (Color online) The neutron (upper panel) and proton (lower panel) single-particle levels of 226Th near the Fermi surface along
the static fission path. For β20 � 0.6, only reflection-symmetric deformations are considered and the solid (dotted) curves represent positive
(negative) parity states. When β20 > 0.6, the octupole deformation β30 has a nonvanishing value and parity is not a good quantum number. The
dash-dotted curves denote the Fermi energy, and the symbols in the lower panel are used to guide the eye. The MDC-RMF calculation has been
performed with the functional DD-ME2.
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