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The elemental composition of a multiphase material can be obtained by means of chemical and
spectroscopic techniques. However, these techniques face a great difficulty in distinguishing the chemical
identity of the phases present in the material and in derivation of the fractions of particular phases. X-ray
powder diffraction seems to be an ideal technique for the analysis of a multiphase material. Each crystal-
line phase of the material gives its characteristic diffraction pattern independently of the other phases; this
fact makes it possible to identify the phase of interest and to determine its fraction. The intensities of dif-
fraction lines of a given phase are proportional to its fraction and an appropriate quantitative analysis can
be performed after the application of the correction for the absorption of X-rays in the material.

The principles of quantitative X-ray diffraction phase analysis of a multiphase material are pre-
sented, with a special attention paid to the doping methods. The following methods are described: (i) de-
termination of the fraction of a phase using repeated dopings, (ii) determination of the fraction of a phase
using a single doping, (iii) simultaneous determination of the fractions of several phases using a single
doping; (iv) determination of the fraction of the dominant phase. The applicability of the doping methods
is stated and the optimum conditions to minimize systematic errors are discussed. Recent approaches in
quantitative X-ray diffraction phase analysis are also mentioned in short.
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KBAHTUTATUBHA ®A3HA AHAJIU3A CO IOMOIII HA PEHATEHCKA TU®PAKIINJA
— EJHOCTABHU ITATUIITA

XeMHCKHOT cOocTaB Ha MyJITH(a3eH MaTepujajl MOXKe Jia Ce OIpelesd CO MOMOII Ha XeMHUCKH U
CIIEKTPOCKOIICKM TeXHHKU. MeryToa, Ipyu KOPUCTSEE Ha OBUE TEXHUKH CE N0jaByBaaT TOJIEMH TCIIKOTHH
Ha MaTOT Ha Je(UHHpame Ha XEMHCKUOT UJICHTHTET HA NMPUCYTHHUTE (a3u BO MATEpHjaloT, KAKO U NPH
OIpe/ieNlyBameTo Ha (hpakMUTe Ha onpeeHnTe Gasu. PeHarenckara audpakuuja Ha cripalieHn o0pacuu
€ eJJHa OJ] MJIeaJITHNTe TEXHUKH 3a aHaju3a Ha MynTudasHu Matepujau. Cekoja o KpucTaiHuTe $a3u Bo
MaTepHjaoT laBa HEj3MHU KapaKTePUCTUUHH TU(PPAKIMOHA MAaKCHMYMH, HE3aBHCHO O JApyruTe (asm.
Toa OBO3MOXYBa Jia Ce OmMpejenar MpucyTHUTe (asu, Kako W HUBHHUTE (pakimu. MHTEH3UTETUTE HA
IuppakUMOHUTE JIMHUM Ha OmpelencHa (a3a ce NPONOPLMOHANIHM CO Hej3MHaTa (pakiuja, IITO
OBO3MOJKYBa Jla C¢ HalpaBuW KBaHTUTATHBHA aHaJM3a [0 NMPUMEHA Ha KOpPEKLHMja Ha amcophiujata Ha
PEHATSHCKUTE 3paly BO MaTePHjalIoT.

Ipe3eHTrpaHy ce MPUHIUIATE HA KBAHTUTATHBHATA (ha3HA aHATHM3a HA MyITH(A3EH MaTepHjall co
MIOMOIII Ha PEeHATEHCKa Mudpakiiyja, Mpy MTO HoceOHO BHUMaHKWE € 0OpHATO Ha METOAOT Ha JIOJATOIH.
Omumanu ce cienaure meronu: (i) ompenenyBame Ha (asHa (pakidja KOPHCTEJKM TOBTOPEHU
nonaBama, (ii) ompenenyBame Ha (asHa ¢pakuuja KOpUCTEjKH eqHO nopaBame, (iii) cumyiraHo
ompezenyBame Ha (asHu (pakiuu KOPUCTEjKH €AHO NoaaBame u (iV) ompenenyBame Ha (pakiuja Ha
JoMuHaHTHaTa (asa. HaBeaeHa e MPUMEHIMBOCTa HA METONOT Ha JOJATOLU M JUCKYTHPAaHH CE€ OITH-
MAJIHUTE YCIOBH 32 MHHUMH3HPAhE Ha CHCTEMATCKUTE Tpeikd. HakpaTko ¢ HaBelIeH W HEOaMHEITHHOT
pa3Boj Ha KBaHTUTATHBHATa (ha3Ha aHAJIM3a CO IOMOLI HAa PEH/AreHCKa qudpakKiuja.

Kayuynu 300poBu: peHAreHcKa Audpaxiyja Ha CHpAIIeHH oO0paciy; KBaHTHTATHBHA (a3Ha aHAIN3a;
METO/] Ha 10AaTOLU

* Dedicated to Academician Gligor Jovanovski on the occasion of his 70" birthday.
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1. INTRODUCTION

Quantitative phase analysis of a multiphase
system on the basis of its diffraction pattern has
been a subject of interest from the very beginning
of X-ray diffraction. All simple methods for identi-
fication of particular phases in the system and de-
termination of their fractions are based on the prin-
ciples postulated by Alexander & Klug [1] and
Klug & Alexander [2]. Let a system consist of
several phases denoted with capital letters and let
the same notation represent their (mass, weight,
molar) fractions, i.e.

A+B+C+ +X+Y+ =1 (1)

The integrated intensity of a selected diffrac-
tion line of a phase, say A, is related to its fraction:

Ia = KaA/(dass), (2)

where d, is the density of the phase A, uis the
mass absorption coefficient of the system, and Ku
is a factor depending on the nature of the phase A,
on the selected diffraction line and the geometry of
the diffractometer. For pure phase A, since A = 1,
(2) changes into

lao = Ka/(dazin), (3)

where g, is the mass absorption coefficient of the
phase A. From (2) and (3) it follows:

IAIIAO =A (ILIA//U) (4)

The absorption coefficients are not known
accurately. Therefore, it is obvious from (4) that the
fraction A cannot be obtained simply by measuring
the ratio Ia/lao, i.e. by a direct comparison of the
diffraction pattern of the system containing the
phase A with the pattern of pure phase A.

Analogously to (4), for another phase, say B,
it follows:

IBIIBO =B (ILIB/,U) (5)
From (4) and (5) one obtains
A/B = KAB(IA”B), (6)
where
Kas = (18 11n) (180/1a0)-

Kag is a constant for the two phases which
are considered (in this case A and B), for the se-
lected diffraction lines and for the diffractometer
which is used.

A direct application of (6) is not straightfor-
ward, since the absorption coefficients are not ac-
curately known. In order to circumvent this prob-
lem, semi-empirical internal standard methods may
be used. For each phase, say A, the fraction of
which is to be determined, a calibration curve is
constructed in such a way as to relate A/S vs. I4/ls ,
where S denotes the internal standard. According
to (6), the calibration curve is a straight line having
the slope Kas. The slope is obtained from the inten-
sity measurement of a series of mixtures with
known ratios A/S. In order to find the fraction of
the phase A in the system, a known fraction of the
standard S is added to the system, the intensity
ratio I1a/ls is measured and A is found from the
previously constructed calibration curve. More
details on the internal standard method, as applied
in special cases, can be found in the textbook of
Klug & Alexander [2].

In the method developed by Chung [3, 4] no
calibration curve is needed, as the absorption coef-
ficients are flushed out of the intensity—fraction
equation. The method is based on a previous
knowledge, or measurement, of relative (reference)
intensities of (the strongest) diffraction lines for
each pair of phases that are present in the system,
or rather for each phase and a reference phase (co-
rundum, a-Al,O3). All information related to the
guantitative composition of the system can be de-
coded directly from its diffraction pattern.

2. THE DOPING METHODS

The doping methods involve the addition, to
the original system, of known amount(s) of the
phase(s), the fraction of which is (are) to be deter-
mined. The corresponding equations, deduced with
no approximation, relate the fraction of the phase
to be determined to the intensities diffracted by
that phase and by any non-added phase which is
present in the system, before and after doping. The
intensity—fraction equations are free of the absorp-
tion coefficients. The methods can be applied to a
system containing unidentified phase(s), in simul-
taneous analysis only for the phases of interest, and
in determination of the fraction of the amorphous
content. Four doping methods are described in the
following sections.

(i) Determination of the fraction of a phase
using repeated dopings

Copeland & Bragg [5] suggested that the
system can be doped with known amounts of the
phase, say A, the fraction of which is to be deter-
mined. The system already contains another phase,

Maced. J. Chem. Chem. Eng. 34 (1), 33-38 (2015)
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say B, which is considered as the reference phase.
The fraction A’ of the phase A is added to the system.
The fraction of this phase in the doped system is how
(A + A)(1 + A) and the fraction of the reference
phase is B/(1 + A"). In this case, it follows from (6):

KAB (IA/IB)' = (A + A')/B,
or, (Ia/1g)" = (constant) (A + A, @)

the prime indicating the intensities measured after
doping. The plot of (I14/lg)' as a function of A'is a
straight line; the fraction sought, A, is the absolute
value of the A'-axis intercept. In order to increase
the accuracy, several pairs of diffraction lines of A
and B can be used.

(if) Determination of the fraction of a phase
using a single doping

In order to avoid several consecutive dop-
ings, Bezjak & lJeleni¢ [6] have shown that the
fraction of any phase, say A, can be determined
using a single doping and from only two diffrac-
tion patterns. Namely, from (6) and (7) it follows:

(/1) = [(A + AYA] (I/15). 8)

The equation (8) relates the intensities of dif-
fraction lines of the sample doped with a known
fraction, A', of the phase of interest, and the intensi-
ties of diffraction lines of the original sample. B is
any other phase already present in the system. That
is a straight line, and its slope, (A + A"/A, deter-
mined from experimental data for all possible inten-
sity ratios, yields the initial fraction of the phase A.

(iii) Simultaneous determination of the fractions
of several phases using a single doping

It has been shown by Popovi¢ et al. that the
fractions of several phases can be simultaneously
determined from only two diffraction patterns: the
pattern of the original sample and the pattern of the
sample doped with known fractions of all phases of
interest [7, 8, 9]. The two patterns are to be taken
under the same experimental conditions. In princi-
ple, the fractions of all phases in the system can be
determined, if known fractions of all phases except
one are added. The equations shown below are
obtained using the relation that the sum of all frac-
tions after doping also equals 1, instead of 1 + A,
as in the methods (i) and (ii). The method is de-
scribed for a binary system, for a ternary system
with one phase or two phases added, and for a
general multiphase system.

Maced. J. Chem. Chem. Eng. 34 (1), 33-38 (2015)

Binary system
Original sample [equations (1) and (6)]:
A+B=1, 9)
A/B = Kpg (I1a/1g). (6)

If one wants to determine the fraction of the
phase B, a known fraction of that phase, B,, is add-
ed to the original sample. Then A is used as the
reference phase.

Doped sample:

Ag+Bg+Ba=1, (10)
Ad(By + Ba)= Kag (In o/l d+a)- (11)

Aq4 and By +B, are the fractions of the phases
in the doped sample, and I, 4 and Iz 4.4 are the cor-
responding intensities. The following is also valid:

Ad/Bd = A/B. (12)

There are five equations (9, 6, 10-12) for
five unknowns, A, B, Ay, Bq and K,g. It follows that
the fractions of the phases are:

B=B, RAB/(P—P RAB); A=1-B, (13)
where
Rag = (lad/lg g+a)(le/1a), P=1-B.. (14)

P is the parameter which equals 1 — the frac-
tion of the added phase in the doped sample, or, the
fraction of the original composition in the doped
sample. An example of the method is shown in
Figure 1.

uuuuu

50 55 60 65 70
2@ (CuKa)

Fig. 1. X-ray diffraction patterns of the system ZnO
(A=0.5, ¥) + a-Al,03 (B =0.5, e): (a) original sample,
(b) the sample doped with B, = 0.667. Radiation CuKa. [12]
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Ternary system

(a) The fraction of one phase, say B, is to be
found.
Original sample: In addition to (6) one has:

A+B+C=1, (15)
C/B = KCB(ICIIB)- (16)

A known fraction, B,, of the phase B is add-
ed to the original sample. Then, either A or C may
be used as the reference phase.

Doped sample: Besides (11) and (12), the
following is valid:

Ad+ Bd+ Ba+Cd= 1, (17)
Cu/(By + Ba) = Keg (Ic o Ig d+a), (18)
C4/Bq = C/B. (19)

It can be shown that, out of eight equations
(15, 6, 16, 17, 11, 18, 12, 19), there are only seven
independent equations for eight unknowns, A, B,
C, A4, By, C4, Kag and Kcg. This means that only
the fraction of the added phase, B, can be deter-
mined. If B is related to either A or C, as the refer-
ence phase, it follows that there are five equations
for five unknowns. The problem can be, therefore,
treated in terms of a binary system. If B is related
to A, one obtains that B is given by (13), with Rag
defined by (14). If B is related to C, it follows:

B=B, RCB/(P -P RCB), Reg = (|c d/IBd+a)(IB/IC)-

In both cases P = 1 — B,. It is obvious that
Rag = Res.

(b) The fractions of all three phases are to be
found. In this case, known fractions of two phases,
say, B and C, are added to the original sample. Then
Ais used as the reference phase.

Original sample: In addition to (15) and (6)
one has

A/C = KAc(IA/I(:). (20)

Doped sample: The fractions B, and C, are
added to the original sample. Besides (11) and (12)
the following is valid:

Ag+By+ B+ Cy+ Ca= 1, (21)
Ad(Cq + Ca)= Kac (Iad/lc g+a), (22)
AJCq =AIC. (23)

There are eight independent equations (15, 6,
20, 21, 11, 22, 12, 23) for eight unknowns, A, B, C,

Aqg, By, Cy, Kag and Kac. It can be shown that in this
case the fractions of the phases are given as follows:

B =B, RAB/(P -P RAB)a C=C, RAC/(P -P RAC),
A=1-(B+C).

The parameter P equals, as previously, the
fraction of the original composition in the doped
sample,

P=1-(B,+C,),

while Rag and Rac contain intensities of the added
phases, B and C, and the intensities of the non-
added phase, A, before and after doping:

Rag = (lad/lg a+a)(I6/1a), Rac= (lad/lca+a)(Ic/1n).
Multiphase system

The essential points of the doping method
can be summarized as follows. Let the system con-
sist of N phases. Its diffraction pattern is taken and
a partial or complete identification of the phases is
performed. The prominent, non-overlapping (in
principle the strongest) diffraction lines of particular
phases are chosen and their net integrated intensities
are measured. Then the system is doped by known
fractions of M phases, the original fractions of
which are to be determined (M =1, 2, 3, ... N - 1).
The intensities of the chosen diffraction lines are
measured again. In principle, if N — 1 phases are
added, the original fractions of all N phases can be
found. The fraction of any phase, say X, in the
original sample is given by equation

X= Xa Ryxl(P -P Ryx). (24)

Here X, is the fraction of the added phase X in
the doped sample, and Y is any non-added (refer-
ence) phase. P equals the fraction of the original
composition in the doped sample, or, 1 — the total
fraction of all the added phases in the doped sample.
Ryx is expressed through the intensities of the phases
X and Y before (ly, ly) and after (Ix g+a lvq) doping:

Ryx = (ly ol Ix a+a) (Ix/1v). (25)

An example of the method is shown in Fig-
ure 2.

One can utilize several pairs of diffraction
lines of the phases X and Y in order to increase the
accuracy of the measurement. Namely, from (24)
and (25) it follows:

|Xd+a /le =K (lx/ly)

Maced. J. Chem. Chem. Eng. 34 (1), 33-38 (2015)
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Fig. 2. X-ray diffraction patterns of industrial dust, method (iii),
determination of the fraction of quartz, a-SiO, (X):

() original sample, (b) the sample doped with X, = 0.286.
The fraction of quartz in the original sample: X = 0.200(10).
Other phases: Ch, chlorites; D, dolomite; M, micas.
Radiation CuKa. [9]

A plot of Iy 4+a /ly4 as a function of (Ix/ly) is
a straight line with the slope
K=(XP+X,)/(XP),

from which it follows that the fraction of the phase
of interest is given by

X = X, /(PK —P). (26)

Maced. J. Chem. Chem. Eng. 34 (1), 33-38 (2015)

(iv) Determination of the fraction
of the dominant phase

A specific case of the doping method is
proposed in which the fraction of the dominant
crystalline phase in a multiphase system can be
determined by measurement of diffraction line
intensities of only that phase [8, 9]. Let the system
contain a phase, say X, which is dominant, and let
diffraction lines of other phases be weak. The dop-
ing method (iii) may not be appropriate in such a
case, as diffraction lines of the phase used as the
reference phase will be even weaker after doping.
In this case, the following procedure may be ap-
plied. The diffraction pattern of the original sample
is taken (1* pattern) and the intensity of a prominent
non-overlapping (in principle the strongest) dif-
fraction line of the phase X is measured (ly). Then
the sample is doped by a known fraction, X,, of the
phase X. The diffraction pattern of the doped sam-
ple is taken (2™ pattern), and the intensity of the
chosen diffraction line of the phase X is measured
again (lx ¢+a). Finally, the diffraction pattern of the
pure phase X is taken (3 pattern) and the intensity
of the same diffraction line is measured once more
(Ixo). It is important that all three diffraction pat-
terns are taken under the same conditions. The
fraction of the phase X in the original sample is
given by equation

X = (Xa/P) (RJ/Ry), (27)
where
Ri=1—(Ixg+al Ix0), R2= (Ixasal Ix) -1, (28)

and P is the fraction of the original composition in
the doped sample,

P=Aj+Bg+Cy+ +Xy+Yy+ =1-X,.

Several diffraction lines of the phase X can
be used in order to increase the accuracy. Howev-
er, this method is not applicable in a case where X
is close to 1, as R; and R, then tend to zero and the
value obtained for X may not be reliable.

3. COMMENTS

The analysis of the described methods (iii)
and (iv) shows that it is advisable to choose X,
close to 0.5 in order to achieve a better accuracy of
X [8, 9]. Extensive grinding and mixing of the
original and doped samples are necessary to ensure
sample homogeneity. In case the grains/crystallites
are rather small, having the size of, say, 1 to 10
um, the primary extinction is also small. The inte-
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grated intensities of diffraction lines should be
precisely measured; the background line may be
estimated by application of the appropriate proce-
dures. The pure phase added to the original sample
should have a similar degree of crystal perfection
as the same phase present in the original sample.

The preferred orientation of the grains/crys-
tallites has to be avoided. In case of its presence,
the measured intensities of diffraction lines deviate
from the true values corresponding to the random
orientation of grains/crystallites. The presence of
the preferred orientation can be noticed if rather
different values of the fraction of X are obtained
for different combinations of diffraction lines of X
and Y. Grains/crystallites having a plate-like or a
needle-like shape tend to assume a preferred mode
of orientation when mounted in the sample holder.
If the degree of the preferred orientation is not
high, a rather accurate value of X can be obtained
by averaging the data that follow from diffraction
lines which are differently affected, by application
of the plot of Iy 4.4 /ly4 as a function of (Iy/ly) (26).

In case the preferred orientation of grains/cry-
stallites is not present, the fractions of the phases
can be found by comparison of the measured inten-
sities of diffraction lines and the intensities of the
same diffraction lines calculated on the basis of the
crystal structure of the phases in question. For
instance, the ratio of the molar fractions of rutile
and anatase, TiO,, is given by

RIA =1.25 (l110r/1101a),

where l110r and 1114 are the measured intensities of
diffraction lines 110 and 101 of rutile and anatase,
resp. [10].

The doping method (iii) is, in principle, based
on the non-overlapping diffraction lines. If a phase,
say X, exhibits several partially overlapped diffrac-
tion lines in a narrow angular interval, all these lines
may be considered as a single diffraction line, if dif-
fraction lines of other phases are not present in that
interval. The problem of overlapping of diffraction
lines can be overcome by means of the individual
profile fitting method which enables derivation of the
profiles of particular diffraction lines [11]. It has been
suggested to combine the doping method (iii) and the
individual profile fitting method, thus performing the
quantitative phase analysis without the reference to
structural models of particular phases [12].

The fractions of particular phases present in
the studied system can be derived using the Rietveld

method. That method is the so-called full pattern
analysis technique. Models of the crystal structures of
the phases present in the system, together with
instrumental and background information, are used to
generate the theoretical diffraction pattern that can be
compared to the observed pattern. The least squares
procedure is then used to minimize the difference
between the calculated diffraction pattern and the
observed diffraction pattern by adjusting model
parameters. That procedure may result in deter-
mination of the fractions and microstructural para-
meters of the phases present in the system and in
refinement of their crystal structures [13].
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