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The elemental composition of a multiphase material can be obtained by means of chemical and 

spectroscopic techniques. However, these techniques face a great difficulty in distinguishing the chemical 
identity of the phases present in the material and in derivation of the fractions of particular phases. X-ray 
powder diffraction seems to be an ideal technique for the analysis of a multiphase material. Each crystal-
line phase of the material gives its characteristic diffraction pattern independently of the other phases; this 
fact makes it possible to identify the phase of interest and to determine its fraction. The intensities of dif-
fraction lines of a given phase are proportional to its fraction and an appropriate quantitative analysis can 
be performed after the application of the correction for the absorption of X-rays in the material. 

The principles of quantitative X-ray diffraction phase analysis of a multiphase material are pre-
sented, with a special attention paid to the doping methods. The following methods are described: (i) de-
termination of the fraction of a phase using repeated dopings, (ii) determination of the fraction of a phase 
using a single doping, (iii) simultaneous determination of the fractions of several phases using a single 
doping; (iv) determination of the fraction of the dominant phase. The applicability of the doping methods 
is stated and the optimum conditions to minimize systematic errors are discussed. Recent approaches in 
quantitative X-ray diffraction phase analysis are also mentioned in short. 
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КВАНТИТАТИВНА ФАЗНА АНАЛИЗА СО ПОМОШ НА РЕНДГЕНСКА ДИФРАКЦИЈА  

– ЕДНОСТАВНИ ПАТИШТА  

 
Хемискиот состав на мултифазен материјал може да се определи со помош на хемиски и 

спектроскопски техники. Меѓутоа, при користење на овие техники се појавуваат големи тешкотии 
на патот на дефинирање на хемискиот идентитет на присутните фази во материјалот, како и при 
определувањето на фракциите на одредените фази. Рендгенската дифракција на спрашени обрасци 
е една од идеалните техники за анализа на мултифазни материјали. Секоја од кристалните фази во 
материјалот дава нејзини карактеристични дифракциони максимуми, независно од другите фази. 
Тоа овозможува да се определат присутните фази, како и нивните фракции. Интензитетите на 
дифракционите линии на определена фаза се пропорционални со нејзината фракција, што 
овозможува да се направи квантитативна анализа по примена на корекција на апсорпцијата на 
рендгенските зраци во материјалот. 

Презентирани се принципите на квантитативната фазна анализа на мултифазен материјал со 
помош на рендгенска дифракција, при што посебно внимание е обрнато на методот на додатоци. 
Опишани се следните методи: (i) определување на фазна фракција користејќи повторени 
додавања, (ii) определување на фазна фракција користејќи едно додавање, (iii) симултано 
определување на фазни фракции користејќи едно додавање и (iv) определување на фракција на 
доминантната фаза. Наведена е применливоста на методот на додатоци и дискутирани се опти-
малните услови за минимизирање на систематските грешки. Накратко е наведен и неодамнешниот 
развој на квантитативната фазна анализа со помош на рендгенска дифракција. 
 

Клучни зборови: рендгенска дифракција на спрашени обрасци; квантитативна фазна анализа; 
метод на додатоци 
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1. INTRODUCTION 

 

Quantitative phase analysis of a multiphase 

system on the basis of its diffraction pattern has 

been a subject of interest from the very beginning 

of X-ray diffraction. All simple methods for identi-

fication of particular phases in the system and de-

termination of their fractions are based on the prin-

ciples postulated by Alexander & Klug [1] and 

Klug & Alexander [2]. Let a system consist of 

several phases denoted with capital letters and let 

the same notation represent their (mass, weight, 

molar) fractions, i.e. 
 

A + B + C +
 . . .  

+ X + Y +
 . . .  

= 1.        (1) 
 

The integrated intensity of a selected diffrac-

tion line of a phase, say A, is related to its fraction: 
 

IA = KA A/(dA


where dA  is the density of the phase A, is the 
mass absorption coefficient of the system, and KA 

is a factor depending on the nature of the phase A, 
on the selected diffraction line and the geometry of 
the diffractometer. For pure phase A, since A = 1, 
(2) changes into  
 

IA0 = KA /(dAA


whereA is the mass absorption coefficient of the 

phase A. From (2) and (3) it follows: 
 

IA/IA0 = A (A/).                       (4) 
 

The absorption coefficients are not known 

accurately. Therefore, it is obvious from (4) that the 

fraction A cannot be obtained simply by measuring 

the ratio IA/IA0, i.e. by a direct comparison of the 

diffraction pattern of the system containing the 

phase A with the pattern of pure phase A. 

Analogously to (4), for another phase, say B, 

it follows: 


IB/IB0 = B (B/).                         (5) 
 

From (4) and (5) one obtains 
 

A/B = KAB (IA/IB),                        (6) 

where 

KAB  = (B/A)(IB0/IA0). 
 

KAB is a constant for the two phases which 

are considered (in this case A and B), for the se-

lected diffraction lines and for the diffractometer 

which is used. 

A direct application of (6) is not straightfor-

ward, since the absorption coefficients are not ac-

curately known. In order to circumvent this prob-

lem, semi-empirical internal standard methods may 

be used. For each phase, say A, the fraction of 

which is to be determined, a calibration curve is 

constructed in such a way as to relate A/S vs. IA/IS , 

where S denotes the internal standard. According 

to (6), the calibration curve is a straight line having 

the slope KAS. The slope is obtained from the inten-

sity measurement of a series of mixtures with 

known ratios A/S. In order to find the fraction of 

the phase A in the system, a known fraction of the 

standard S is added to the system, the intensity 

ratio IA/IS is measured and A is found from the 

previously constructed calibration curve. More 

details on the internal standard method, as applied 

in special cases, can be found in the textbook of 

Klug & Alexander [2]. 

In the method developed by Chung [3, 4] no 
calibration curve is needed, as the absorption coef-
ficients are flushed out of the intensity–fraction 
equation. The method is based on a previous 
knowledge, or measurement, of relative (reference) 
intensities of (the strongest) diffraction lines for 
each pair of phases that are present in the system, 
or rather for each phase and a reference phase (co-
rundum, -Al2O3). All information related to the 
quantitative composition of the system can be de-
coded directly from its diffraction pattern.  

 
2. THE DOPING METHODS 

 

The doping methods involve the addition, to 
the original system, of known amount(s) of the 
phase(s), the fraction of which is (are) to be deter-
mined. The corresponding equations, deduced with 
no approximation, relate the fraction of the phase 
to be determined to the intensities diffracted by 
that phase and by any non-added phase which is 
present in the system, before and after doping. The 
intensity–fraction equations are free of the absorp-
tion coefficients. The methods can be applied to a 
system containing unidentified phase(s), in simul-
taneous analysis only for the phases of interest, and 
in determination of the fraction of the amorphous 
content. Four doping methods are described in the 
following sections. 

 

(i)  Determination of the fraction of a phase  

using repeated dopings 
 

Copeland & Bragg [5] suggested that the 

system can be doped with known amounts of the 

phase, say A, the fraction of which is to be deter-

mined. The system already contains another phase, 
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say B, which is considered as the reference phase. 

The fraction A' of the phase A is added to the system. 

The fraction of this phase in the doped system is now 

(A + A')/(1 + A') and the fraction of the reference 

phase is B/(1 + A'). In this case, it follows from (6): 

 

KAB (IA/IB)' = (A + A')/B,  

or,              (IA/IB)' = (constant) (A + A'),              (7) 

 

the prime indicating the intensities measured after 

doping.  The plot of  (IA/IB)' as a function of A' is a 

straight line; the fraction sought,  A, is the absolute 

value of the A'-axis intercept. In order to increase 

the accuracy, several pairs of diffraction lines of A 

and B can be used.  

 
(ii)   Determination of the fraction of a phase  

using a single doping 
 

In order to avoid several consecutive dop-

ings, Bezjak & Jelenić [6] have shown that the 

fraction of any phase, say A, can be determined 

using a single doping and from only two diffrac-

tion patterns. Namely, from (6) and (7) it follows: 

 

(IA/IB)' = [(A + A')/A] (IA/IB).             (8) 

 

The equation (8) relates the intensities of dif-

fraction lines of the sample doped with a known 

fraction, A', of the phase of interest, and the intensi-

ties of diffraction lines of the original sample. B is 

any other phase already present in the system. That 

is a straight line, and its slope, (A + A')/A, deter-

mined from experimental data for all possible inten-

sity ratios, yields the initial fraction of the phase A. 

 
(iii) Simultaneous  determination of the fractions  

of several phases using a single doping 
 

It has been shown by Popović et al. that the 

fractions of several phases can be simultaneously 
determined from only two diffraction patterns: the 
pattern of the original sample and the pattern of the 
sample doped with known fractions of all phases of 
interest [7, 8, 9]. The two patterns are to be taken 
under the same experimental conditions. In princi-

ple, the fractions of all phases in the system can be 
determined, if known fractions of all phases except 
one are added. The equations shown below are 
obtained using the relation that the sum of all frac-
tions after doping also equals 1, instead of 1 + A', 
as in the methods (i) and (ii). The method is de-

scribed for a binary system, for a ternary system 
with one phase or two phases added, and for a 
general multiphase system. 

Binary system 
 

Original sample [equations (1) and (6)]: 
 

A + B = 1,                           (9) 
 

A/B = KAB (IA/IB).                       (6) 
 

If one wants to determine the fraction of the 
phase B, a known fraction of that phase, Ba, is add-
ed to the original sample. Then A is used as the 
reference phase.  

Doped sample:    
 

Ad + Bd + Ba = 1,                   (10) 
 

Ad/(Bd  + Ba)= KAB (IA d/IB d+a).        (11) 
 

Ad and Bd +Ba are the fractions of the phases 
in the doped sample, and IA d and IB d+a are the cor-
responding intensities. The following is also valid: 
 

Ad/Bd   = A/B.                          (12) 
 

There are five equations (9, 6, 10–12) for 
five unknowns, A, B, Ad, Bd  and KAB. It follows that 
the fractions of the phases are: 
 

B = Ba RAB/(P – P RAB),    A = 1 – B,     (13) 
 

where 
 

RAB = (IA d/IB d+a)(IB/IA),  P = 1 – Ba.      (14) 
 

P is the parameter which equals 1 – the frac-
tion of the added phase in the doped sample, or, the 
fraction of the original composition in the doped 
sample. An example of the method is shown in 
Figure 1. 

 

 
 

Fig. 1. X-ray diffraction patterns of the system ZnO  

(A = 0.5, ▼) + -Al2O3 (B =0.5, ●): (a) original sample,  

(b) the sample doped with Ba = 0.667. Radiation CuK[12] 
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Ternary system 
 

(a) The fraction of one phase, say B, is to be 
found. 

 Original sample: In addition to (6) one has: 
 

A + B + C = 1,                        (15) 
 

C/B = KCB (IC/IB).                      (16) 
 

A known fraction, Ba, of the phase B is add-

ed to the original sample. Then, either A or C may 

be used as the reference phase.  

Doped sample: Besides (11) and (12), the 
following is valid: 
 

Ad + Bd + Ba + Cd = 1,                  (17) 
 

Cd/(Bd  + Ba) = KCB (IC d/IB d+a),            (18) 
 

Cd/Bd  = C/B.                          (19) 
 

It can be shown that, out of eight equations 

(15, 6, 16, 17, 11, 18, 12, 19), there are only seven 

independent equations for eight unknowns, A, B, 

C, Ad, Bd, Cd, KAB and KCB. This means that only 

the fraction of the added phase, B, can be deter-

mined. If B is related to either A or C, as the refer-

ence phase, it follows that there are five equations 

for five unknowns. The problem can be, therefore, 

treated in terms of a binary system. If B is related 

to A, one obtains that B is given by (13), with RAB 

defined by (14). If B is related to C, it follows: 
 

B = Ba RCB/(P – P RCB),    RCB = (IC d/IB d+a)(IB/IC). 
 

In both cases P = 1 – Ba. It is obvious that 

RAB = RCB.  

(b) The fractions of all three phases are to be 

found. In this case, known fractions of two phases, 

say, B and C, are added to the original sample. Then 

A is used as the reference phase.  

Original sample: In addition to (15) and (6) 

one has  
 

A/C = KAC (IA/IC).                        (20) 
 

Doped sample: The fractions Ba and Ca are 

added to the original sample. Besides (11) and (12) 

the following is valid: 
 

Ad + Bd + Ba + Cd + Ca = 1,              (21) 
 

Ad/(Cd  + Ca)= KAC (IA d/IC d+a),           (22) 
 

Ad/Cd   = A/C.                         (23) 
 

There are eight independent equations (15, 6, 

20, 21, 11, 22, 12, 23) for eight unknowns, A, B, C, 

Ad, Bd, Cd, KAB and KAC. It can be shown that in this 

case the fractions of the phases are given as follows:  
 

B = Ba RAB/(P – P RAB),   C = Ca RAC/(P – P RAC),  

A = 1 – (B + C). 
 

The parameter P equals, as previously, the 

fraction of the original composition in the doped 

sample, 
 

P = 1 – (Ba + Ca), 
 

while RAB  and RAC contain intensities of the added 

phases, B and C, and the intensities of the non-

added phase, A, before and after doping: 
 

RAB = (IA d/IB d+a)(IB/IA),  RAC = (IA d/IC d+a)(IC/IA).  

 

Multiphase system 
 

The essential points of the doping method 

can be summarized as follows. Let the system con-

sist of N phases. Its diffraction pattern is taken and 

a partial or complete identification of the phases is 

performed. The prominent, non-overlapping (in 

principle the strongest) diffraction lines of particular 

phases are chosen and their net integrated intensities 

are measured. Then the system is doped by known 

fractions of M phases, the original fractions of 

which are to be determined (M = 1, 2, 3, ... N – 1). 

The intensities of the chosen diffraction lines are 

measured again. In principle, if N – 1 phases are 

added, the original fractions of all N phases can be 

found. The fraction of any phase, say X, in the 

original sample is given by equation 
 

X = Xa RYX/(P – P RYX).              (24) 
 

Here Xa is the fraction of the added phase X in 

the doped sample, and Y is any non-added (refer-

ence) phase. P equals the fraction of the original 

composition in the doped sample, or, 1 – the total 

fraction of all the added phases in the doped sample. 

RYX is expressed through the intensities of the phases 

X and Y before (IX, IY) and after (IX d+a, IY d) doping: 
 

RYX = (IY d/IX d+a)(IX/IY).                (25) 
 

An example of the method is shown in Fig-

ure 2. 

One can utilize several pairs of diffraction 

lines of the phases X and Y in order to increase the 

accuracy of the measurement. Namely, from (24) 

and (25) it follows: 

 

IX d+a /IY d = K (IX/IY).  
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Fig. 2.  X-ray diffraction patterns of industrial dust, method (iii), 

determination of the fraction of quartz, -SiO2 (X):  

(a) original sample, (b) the sample doped with Xa = 0.286.  

The fraction of quartz in the original sample: X = 0.200(10).  

Other phases: Ch, chlorites; D, dolomite; M, micas.  

Radiation CuK[9] 

 
A plot of IX d+a /IY d  as a function of  (IX/IY) is 

a straight line with the slope  
 

K = (X P + Xa) /(X P),  
 

from which it follows that the fraction of the phase 

of interest is given by  
 

X = Xa /(PK –P).                   (26) 

(iv)  Determination of the fraction  

of the dominant phase 
 

A specific case of the doping method is 
proposed in which the fraction of the dominant 
crystalline phase in a multiphase system can be 
determined by measurement of diffraction line 
intensities of only that phase [8, 9]. Let the system 
contain a phase, say X, which is dominant, and let 
diffraction lines of other phases be weak. The dop-
ing method (iii) may not be appropriate in such a 
case, as diffraction lines of the phase used as the 
reference phase will be even weaker after doping. 
In this case, the following procedure may be ap-
plied. The diffraction pattern of the original sample 
is taken (1

st
 pattern) and the intensity of a prominent 

non-overlapping (in principle the strongest) dif-
fraction line of the phase X is measured (IX). Then 
the sample is doped by a known fraction, Xa, of the 
phase X. The diffraction pattern of the doped sam-
ple is taken (2

nd
 pattern), and the intensity of the 

chosen diffraction line of the phase X is measured 
again (IX d+a). Finally, the diffraction pattern of the 
pure phase X is taken (3

rd 
pattern) and the intensity 

of the same diffraction line is measured once more 
(IX0). It is important that all three diffraction pat-
terns are taken under the same conditions. The 
fraction of the phase X in the original sample is 
given by equation 

 

X = (Xa/P) (R1/R2),                (27) 
 

where   
 

R1 = 1 – (IX d+a / IX0),   R2 =  (IX d+a / IX) – 1,   (28) 

 

and P is the fraction of the original composition in 

the doped sample, 
 

P = Ad + Bd + Cd +
 . . .  

+ Xd + Yd +
 . . .  

= 1 – Xa . 
 

Several diffraction lines of the phase X can 
be used in order to increase the accuracy. Howev-
er, this method is not applicable in a case where X 
is close to 1, as R1 and R2 then tend to zero and the 
value obtained for X may not be reliable. 

 
3. COMMENTS 

 

The analysis of the described methods (iii) 
and (iv) shows that it is advisable to choose Xa 
close to 0.5 in order to achieve a better accuracy of 
X [8, 9]. Extensive grinding and mixing of the 
original and doped samples are necessary to ensure 
sample homogeneity. In case the grains/crystallites 
are rather small, having the size of, say, 1 to 10 
m, the primary extinction is also small. The inte-
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grated intensities of diffraction lines should be 
precisely measured; the background line may be 
estimated by application of the appropriate proce-
dures. The pure phase added to the original sample 
should have a similar degree of crystal perfection 
as the same phase present in the original sample.  

The preferred orientation of the grains/crys-
tallites has to be avoided. In case of its presence, 
the measured intensities of diffraction lines deviate 
from the true values corresponding to the random 
orientation of grains/crystallites. The presence of 
the preferred orientation can be noticed if rather 
different values of the fraction of X are obtained 
for different combinations of diffraction lines of X 
and Y. Grains/crystallites having a plate-like or a 
needle-like shape tend to assume a preferred mode 
of orientation when mounted in the sample holder. 
If the degree of the preferred orientation is not 
high, a rather accurate value of X can be obtained 
by averaging the data that follow from diffraction 
lines which are differently affected, by application 
of the plot of IX d+a /IY d  as a function of (IX/IY) (26). 

In case the preferred orientation of grains/cry-
stallites is not present, the fractions of the phases 
can be found by comparison of the measured inten-
sities of diffraction lines and the intensities of the 
same diffraction lines calculated on the basis of the 
crystal structure of the phases in question. For 
instance, the ratio of the molar fractions of rutile 
and anatase, TiO2, is given by  

 

R/A = 1.25 (I110R/I101A), 
 

where I110R and I101A are the measured intensities of 
diffraction lines 110 and 101 of rutile and anatase, 
resp. [10]. 

The doping method (iii) is, in principle, based 
on the non-overlapping diffraction lines. If a phase, 
say X, exhibits several partially overlapped diffrac-
tion lines in a narrow angular interval, all these lines 
may be considered as a single diffraction line, if dif-
fraction lines of other phases are not present in that 
interval.  The problem of overlapping of diffraction 
lines can be overcome by means of the individual 
profile fitting method which enables derivation of the 
profiles of particular diffraction lines [11]. It has been 
suggested to combine the doping method (iii) and the 
individual profile fitting method, thus performing the 
quantitative phase analysis without the reference to 
structural models of particular phases [12].  

The fractions of particular phases present in 
the studied system can be derived using the Rietveld 

method. That method is the so-called full pattern 
analysis technique. Models of the crystal structures of 
the phases present in the system, together with 
instrumental and background information, are used to 
generate the theoretical diffraction pattern that can be 
compared to the observed pattern. The least squares 
procedure is then used to minimize the difference 
between the calculated diffraction pattern and the 
observed diffraction pattern by adjusting model 
parameters. That procedure may result in deter-
mination of the fractions and microstructural para-
meters of the phases present in the system and in 
refinement of their crystal structures [13]. 
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