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Summary

The main goal of this thesis is to study homogenization of the Kirchhoff-Love model for
pure bending of a thin symmetric elastic plate, which is described by the fourth order elliptic
equation. Homogenization theory is one of the most successful approaches for dealing
with optimal design problems (in conductivity or linearized elasticity), which consists
of arranging given materials such that obtained body satisfies some optimality criteria,
typically expressed mathematically as the minimization of some (integral) functional under
some (PDE) constraints. The key role in homogenization theory has H-convergence.

After a brief introduction, in Chapter 1 we prove a number of properties of H-convergence,
such as locality, independence of boundary conditions, metrizability of H-topology, conver-
gence of energies and a corrector result. We also discuss smooth dependence of H-limit on
a parameter and calculate the H-limit of a periodic sequence of tensors. Moreover, we give
special emphasis to calculating the first correction in the small-amplitude homogenization
limit of a sequence of periodic tensors.

Using this newly developed theory, in Chapter 2 we put our focus on the composite
elastic plate. We show the local character of the set of all possible composites, also called
the G-closure, and prove that the set of composites obtained by periodic homogenization
is dense in that set. Additionally, we derive explicit expressions for elastic coefficients
of composite plate obtained by mixing two materials in thin layers (known as laminated
material), and for mixing two materials in the low-contrast regime. Moreover, we derive op-
timal bounds on the effective energy of a composite material, known as Hashin-Shtrikman
bounds. In the case of two-phase isotropic materials, explicit optimal Hashin-Shtrikman
bounds are calculated. We show that an analogous results can be derived for the comple-
mentary energy of a composite material.

Keywords: Kirchhoff-Love model of elastic plate, composite material, G-closure,
Hashin-Shtrikman bounds, homogenization, H-convergence, laminated material, small-

amplitude homogenization;
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Sazetak

Teorija homogenizacije razvijena je za elipticku jednadzbu drugog reda, a glavni cilj
ove disertacije je razvoj teorije homogenizacije za Kirchhoff-Loveovu jednadzbu tanke
simetricne elastiéne ploce, koja je elipticka jednadzba cetvrtog reda. Teorija homoge-
nizacije jedan je od najuspjesnijih pristupa rjesavanju problema optimalnog dizajna (u
vodljivosti i lineariziranoj elasti¢nosti), gdje je cilj odrediti raspored danih materijala (ili
samo jednog materijala) u danom univerzalnom skupu. Pri tome se optimalnost rasporeda
(distribucije) materijala mjeri funkcionalom koji je obi¢no integralni funkcional koji ovisi
o distribuciji materijala, ali i rjesenju pripadne parcijalne diferencijalne jednadzbe.

Osnovni pojam teorije homogenizacije predstavlja H-konvergencija. Spagnolo je 1968.
godine uveo pojam G-konvergencije za simetri¢ne koeficijente, a zatim su taj pojam gener-
alizirali Tartar 1975. godine, te Murat i Tartar za nesimetri¢ne koeficijente, pod imenom
H-konvergencija 1978. godine. Teorija je najprije razvijena za jednadzbu stacionarne
difuzije, a kasnije prosirena na sustav linearizirane elasti¢nosti. Postoje i rezultati za
elipticke jednadzbe viseg reda, a takoder i opsezna literatura od strane ruskih autora koji
Cesto koriste termin jaka G-konvergencija. Motivirani moguéim primjenama u optimal-
nom dizajnu, 1999. godine Antoni¢ i Balenovi¢ definirali su H-konvergenciju u kontekstu
jednadzbe elasti¢ne ploce te su pokazali da vrijedi teorem kompaktnosti.

Nakon uvoda, u Poglavlju 1 dokazuju se novi rezultati o svojstvima H-konvergencije
promatrane jednadzbe, poput lokalnosti, neovisnosti o rubnim uvjetima, metrizabilnosti
H-topologije i konvergencije energija. Izvode se rezultati o korektorima, te se komentira
njihova jedinstvenost. Pri izvodenju ovih rezultata, koristi se Tartarova metoda oscilira-
juéih test funkcija i rezultat kompaktnosti kompenzacijom, ¢ija je varijanta dokazana za
jednadzbu elasti¢ne ploce. Analizira se glatka ovisnost H-limesa o parametru i racuna
H-limes periodickog niza tenzora. Opcenito, H-limes je nemoguce eksplicitno izracunati,
osim u nekim posebnim slucajevima, medu kojima je i proces periodicke homogenizacije.
Proucava se i homogenizacija malih amplituda u periodickom slucaju, ¢iji je cilj izracunati
H-limes niza koeficijenata koji imaju sli¢na elasticna svojstva.

Koriste¢i prethodno dokazane rezultate, u Poglavlju 2 poseban naglasak stavljen je
na kompozitne materijale, tj. na mjesavinu materijala na mikroskali. Ovdje se prirodno
pojavljuje problem odredivanja skupa svih mogué¢ih mjesavina dobivenih postupkom ho-

mogenizacije, koji je poznat pod nazivom Problem G-zatvaraca. Opcenito, za jednadzbu



Sazetak

elasticne ploce G-zatvarac nije poznat, ¢ak ni za mjesavine dvaju izotropnih faza. Pokazuje
se lokalni karakter G-zatvaraca, te da je skup svih mjesavina dobivenih procesom peri-
odic¢ke homogenizacije gust podskup G-zatvaraca. Nadalje, izvode se efektivni koeficijenti
elasti¢ne ploce nastale mijesanjem dva materijala u tankim slojevima (ovako proizvedeni
materijali nazivaju se lamine), te efektivni koeficijenti ploce napravljene od dva materijala
sa slicnim elasti¢nim svojstvima, odnosno pod pretpostavkom malog kontrasta ili malih
amplituda. Izvode se i optimalne ocjene na efektivnu energiju kompozitnog materijala,
poznate kao Hashin-Shtrikmanove ocjene. Za primjenu u optimalnom dizajnu potrebno ih
je eksplicitno izracunati, kao i odgovarajuée (nizovne) lamine koje ih saturiraju, stoga se
u slucaju mjesavine dva izotropna materijala, racunaju eksplicitne Hashin-Shtrikmanove
ocjene. Takoder, analogni rezultati izvode se i za komplementarnu eneriju kompozitnog
materijala.

Ocekuje se da ¢e dobiveni rezultati utrti put k novim rezultatima vezanim za optimalni
dizajn tankih elasti¢nih ploca.

Kljucne rijeci: Kirchhoff-Loveov model elasticne ploc¢e, kompozitni materijal, G-
zatvarac¢, Hashin-Shtrikmanove ocjene, homogenizacija, H-konvergencija, laminirani ma-

terijal, homogenizacija malih amplituda;
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Introduction

Historical roots and motivation

The theory of homogenization is interesting from both the theoretical and the prac-
tical perspective. In order to use its full potential, one first has to develop theoretical
results, which might have important applications, for example in optimal design problems.
Commonly, optimal design problems do not have solutions (if they exist, such solutions
are usually called classical). Therefore, one needs to consider a proper relaxation of the
original problem. A relaxation by the homogenization method was introduced in [58], and
it consists in introducing generalized composite materials, which are mixtures of original
phases on a microscopic scale. Such relaxed problems have solutions, and we call them

relaxed or generalized solutions.

The physical idea of homogenization is to average heterogeneous media in order to
derive effective properties: we have a fine mixture of some materials and we want to
approximate it by a new homogeneous one. Justification for this procedure is that we are
not interested in what is happening at every point of the problem domain but rather what
is happening on a macroscopic scale. For example, in the model problem of conductivity we
are not interested in the pointwise temperature, but in average temperature in some (small)
region. The outcomes of this approach are very important, since from a numerical point
of view, solving equations will require too much effort if the length scale of heterogeneity

is very small.

Therefore, rather than considering a simple heterogeneous media with a fixed length
scale €(n), such that (n) — 0 as n — 400, and studying a single problem, we observe a

sequence of similar problems:

{Anun:f in

initial /boundary condition ,

where A,, n € N, are partial differential operators and 2 some highly heterogeneous
domain. Information about the heterogeneity of €2 is usually contained in coefficients of
the corresponding PDE. One can let the length scale go to zero: if u,, - u and A, — A

(in some sense), as n — oo, the following initial/boundary value problem is called the

1



Introduction

limit (effective, homogenized) problem:

Au=f in €
{ initial /boundary condition .

Clearly, the mathematical difficulty is to define an adequate topology for this notion
of convergence of problems, as n — oo; the most important concept in the theory of
homogenization is that of H-convergence. It was introduced by Spagnolo through the
concept of G-convergence for symmetric coefficients [65], and further generalized by Tartar
[71] and Murat and Tartar for non-symmetric coefficients under the name H-convergence
[58]. The theory was first developed for the stationary diffusion equation and later extended
to a linearized elasticity system (see [2] and references therein). There is also a quite
extensive literature by Russian authors who often use the term strong G-convergence [61,
76]. The compactness of H-convergence and many properties such as metrizability, locality,
irrelevance of boundary conditions and energy convergence are proved. Also, corrector
results are derived. We can say that theory is well developed for second order elliptic partial
differential equations, and there are also some results for higher order elliptic equations [77].
Motivated by a possible applications in optimal design, Antoni¢ and Balenovié¢ defined
H-convergence in the context of elastic plate equation and established the compactness of

H-convergence [9, 10].

Let us remark that H-convergence is not the only approach in the theory of homoge-
nization, although it is probably the most general. There are also a stochastic theory of
homogenization [43], and variational theory of homogenization, known as the I'-convergence
method [29]. It is interesting to note that the mathematical theory of homogenization
started in at least three directions. The oldest one is concerned with a general theory for
the convergence of operators already mentioned as the G-convergence or H-convergence.
The second direction is the asymptotic study of perforated domains which contain many
small holes [52, 63], and third is the study of periodic homogenization problems [16]. Since
then, the mathematical theory of homogenization has been significantly developed, and

has numerous applications.

The goal of this thesis is to develop homogenization theory for the Kirchhoff-Love
equation of an elastic, thin, symmetric plate, which is a fourth order elliptic equation.
This model can be formally justified by taking a limit in 3D elasticity equations with a
variant of the H-convergence method [28] or by using I'-convergence [18]. An assumption
that plate is symmetric with respect to its midplane simplifies the theory, since it is
equivalent to consider G-convergence [35, 51| instead of H-convergence. However, in this
thesis the general theory shall be presented, ignoring this symmetry assumption. For the

general theory of elastic plates see [23].

The homogenization method appears to be a physically justified tool for the modelling
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of composite materials, i.e. mixtures of two or more materials on a microscopic scale. It
shows that such mixtures (e.g. steel, carbon fibers) can have much better properties than
the components it is made of, so these materials are intensively studied by physicists,
engineers and mathematicians [2, 22, 35, 51, 54, 72, 74]. The natural problem is to
describe the composite material obtained by the homogenization process. Describing the
set of all composite materials obtained by the homogenization process is known as the
G-closure problem. Characterization of the G-closure is known for the mixture of two
isotropic conductors [48, 49], but it is unknown for linearized elasticity system, even for the
mixture of two isotropic materials. In the case of an elastic plate, G-closure is known only
in some special regimes [50]. Tt is possible to obtain approximations of the G-closure in
the small-amplitude or low contrast regime in the setting of stationary diffusion equation
[72], when we mix two materials with similar properties.

By using H-convergence and H-measures as a tool, the small-amplitude homogenization
for stationary diffusion equation is developed [68], i.e. the explicit formula for coefficients
up to the second order term is derived. In this way, a small-amplitude homogenization
result for the periodic case [16] is extended. Using similar techniques, Antoni¢ and Vrdoljak
developed the small-amplitude homogenization result for the parabolic equation [12, 13].
For the elastic plate equation, the low contrast regime was not studied up to date, and
that is one of the goals of this thesis.

In order to derive some effective properties of composite materials, Hashin-Shtrikman
bounds are calculated, i.e. bounds on the effective energy of a composite material, which
are well known for stationary diffusion equation and elasticity [2]. However, to obtain
effective properties and for application in optimal design, it is necessary to calculate them
explicitly, as well as the corresponding (sequential) laminates that saturate them [2]. In the
case of two-dimensional linearized elasticity this is done in [5], but for the plate equation

that is an open problem, which is one of the topics of this thesis.

Overview

In Chapter 1 we prove a number of properties of H-convergence, discuss smooth de-
pendence of H-limit on a parameter and calculate the H-limit of a sequence of periodic
tensors. Moreover, we give special emphasis to calculating the first non-vanishing (usually
second-order) term in the small-amplitude homogenization limit of a sequence of periodic
tensors.

In Chapter 2 we establish the local character of the G-closure, and prove the density
of the set of composites obtained by periodic homogenization in that set. We describe the
sequential laminates, a particularly interesting class of composite materials, and derive
optimal Hashin-Shtrikman bounds on the primal and complementary energy. Moreover,
we derive expressions for elastic coefficients of a composite plate obtained by mixing two

materials in low-contrast regime. In the case of two-phase isotropic materials, explicit
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Hashin-Shtrikman bounds on the primal and complementary energy are calculated.
Before reading this thesis, the reader may wish to view the Appendix, since it contains

some basic notation and elementary results.



CHAPTER 1

General homogenization theory for
elastic plate equation

In this chapter we prove the main properties of the H-convergence, which correspond
to the similar properties obtained for the stationary diffusion equation, including locality,
independence of boundary conditions, metrizability of H-topology, convergence of energies
and corrector result. The proofs are commonly based on Tartar’s method of oscillating
test functions. We also discuss smooth dependence of the H-limit on a parameter and
calculate the H-limit of a periodic sequence of tensors. Moreover, we explicitly calculate
the first correction in the small-amplitude homogenization limit of a sequence of periodic
tensors describing material properties in the Kirchhoff model for pure bending of a thin
solid symmetric plate under a transverse load. The majority of the results of this chapter
can be found in [20, 21].

1.1 Introduction

We consider a homogeneous Dirichlet boundary value problem for a general fourth-order

partial differential equation

{ divdiv(MVVu) = f in Q | 1)

u € H(Q)

where 2 C R? is an open and bounded set, and M is a tensor valued function, which
can be understood as a linear operator on the space of all symmetric d x d real matrices,

denoted by Sym.
The weak solution u of (1.1) is defined as a function u € H2(Q) satisfying

(Vv e H2(Q)) /MVVu  VVodx = n@)f 0 )i -
Q

The problem is elliptic, if we assume that M is bounded (almost everywhere) and coercive.

5



Chapter 1. General homogenization theory for elastic plate equation

More precisely, we assume that
M e Msy(a, 5;Q) = {N € L=(Q; L(Sym, Sym)) : (VS € Sym)N(x)S:S>aS:S &
1
N(x)'S:S> ES :Sa.e x€ Q},

where 8 > a > 0 are given, and : stands for the scalar product on the space Sym. The
bounds are chosen in this form to ensure their preservation during the homogenization
process, as it was shown in the case of stationary diffusion equation [58].

The well-posedness follows by a standard application of the Lax-Milgram lemma. To
be precise, the differential operator divdiv (MVV:) : H3(Q) — H~%(Q) is an isomorphism,
i.e. a linear and continuous operator with bounded inverse (the bound depending only on
Q and «).

In the two-dimensional case, boundary value problem (1.1) describes the Kirchhoff
(also known as Kirchhoff-Love) model for pure bending of a thin, solid symmetric plate
clamped at the boundary, under a transverse load f. This model can be derived by
taking a limit in 3d elasticity equations with a technique similar to H-convergence [28],
or by means of Gamma-convergence [18] (for classical reference see [23]). The plate is
assumed to be symmetric with respect to its midplane €2 and a tensor valued function M
describes its elastic properties (depending on the material properties and the thickness
of the plate). In this model, additional symmetry is present, making the tensor valued
function M self-adjoint. This assumption simplifies the theory, since it is equivalent to
consider G-convergence [35, 51] instead of H-convergence. However, in this chapter we
shall present the general theory (in arbitrary space dimension), ignoring this symmetry
assumption.

We are interested in the general (non-periodic) homogenization theory for this equation.
This theory is well developed for second-order elliptic problems, such as the stationary
diffusion equation or the system of linearized elasticity, for which the notion of H- (or G-)
convergence has been studied and properties, such as compactness, locality, independence
of boundary conditions and convergence of energies, have been established (see [2, T2]
and references therein). In [77], a homogenization of a general elliptic system of partial
differential equations has been considered, and some of the above mentioned properties
have been shown in such full generality. However, due to this generality, some of the
important properties are missing, while proofs end up being rather complicated.

The results concerning homogenization of the elastic plate equation have already been
initiated by Antoni¢ and Balenovié [9, 10], where, prompted by possible applications in
optimal design problems, a more direct approach to the homogenization of the stationary
plate equation was considered, and an appropriate variant of H-convergence was defined.

Additionally, compactness of H-convergence was established.



1.1. Introduction

Definition 1 A sequence of tensor functions (M™) in 9y (e, B;2) is said to H-converge
to M € My(a/, 35 Q) if for any f € H () the sequence of solutions (u,) of problems

divdiv(M"VVu,) = f
u, € HZ(Q)

converges weakly to a limit u in H3(f2), while the sequence (M"VVu,) converges to
MV Vu weakly in the space L?(£2; Sym). If this is the case, then M is called H-limit of

the sequence (M™); note that u solves the boundary value problem

divdiv(MVVu) = f
u € H(Q)

The sequences (u,) and (M"VVu,) in the above definition are bounded in H2(Q2) and
L2(€2; Sym), respectively, and thus converge (on a subsequence). Therefore, H-convergence
just makes a connection between their limits. Since the existence of the H-limit M is
doubtful, the following compactness theorem justifies the previous definition. Moreover, it
shows that the bounds in definition of 9 (a, 5; ), which could also be written in many

equivalent ways, are chosen in such a way that in the previous definition one actually has
o =aand g = f.

Theorem 1 (Compactness theorem for H-convergence) Let (M™) be a sequence in
My (v, 5;€2). Then there is a subsequence (M") and a tensor function M € My (a, F; )
such that (M™) H-converges to M.

In order to proceed with the proof of Theorem 1, we need the following two lemmas
[9, 10]. The first of them presents the compactness by compensation result and has the
key role in proving properties of H-convergence for elastic plate equation. This lemma
plays the same role as the div-rot lemma in the theory of homogenization for second-order

operators [72].

Lemma 1 (Compactness by compensation result) Let the following convergences be valid:

w" — w™ in H.(Q),

D" — D> in L} (€;Sym),

with an additional assumption that the sequence (divdivID™) is contained in a precompact

(for the strong topology) set of the space H; 2(€2). Then we have

loc
E": D" X E®:D>®

in the space of Radon measures on €2, denoted by M(Q2), where E" := VVuw", for
n e NU{oco}.



Chapter 1. General homogenization theory for elastic plate equation

Proof. Since the sequence (divdivD") is contained in a precompact (for the strong topol-
ogy) set of the space H;2(€2), and divdivD™ — divdiv D> weakly in H;;2(Q), there is a

loc loc

subsequence (div divD"™) converging to divdiv D> in H;;2(2) strongly. On the other hand,
for ¢ € C°(Q), the sequence (pw™) converges weakly to pw™ in H?(2), therefore we have

H;j(ﬂ)<diniV D™, pw"™ ) g2y — Hg3(9)<div divD™, pw™ ) g2 = /DOO : VV (pw™) dx.
)
(1.2)

Integration by parts of the term on the left-hand side of (1.2) yields
-2 ()l divdiv D™, ow™ ) 2y = /an : VV (pw™) dx
)

= /D"’“ : (VVe)uw™ dx + 2/D"’f (Ve ® V™) dx + /D"’“ : VVw"™ dx.
0 0 Q

By using the compactness argument for Sobolev imbeddings, we have Vw™ — Vw™ in
L2 (Q;RY) and w™ — w™ in L2

loc

(Q). Therefore, we can pass to the limit in the first
two terms of the above equality. On the other hand, a comparison argument shows that
the term / D" . pVVw"* dx converges to the limit

Q

/D°° : VV (pw™) dx — /D°° (VVp)w™ dx — 2/D°° : (Ve ® V™) dx
Q 0 0

= /D°° s pVVw™ dx.
)

This gives the statement of the lemma for a subsequence. However, one can easily see that

the same holds for any subsequence, with the same limit, and thus for the entire sequence
itself. [ |

Lemma 2 Let (M") be a sequence of tensor functions in My (v, 5; Q) and A, : H(Q) —
H~2(Q2) defined with:
A,v = divdiv(M"VVv), v € Hj ().

Then there is a subsequence (M™), and operators A, € L(HZ(Q); H2()),
R € L(H?(Q); L*(€; Sym)), such that A" — AZ' weakly in the sense of operators, and
that for arbitrary f € H 2(Q2) we have MV Vu,;, — Rf in L2(Q; Sym), where (u,,) is

the sequence of solutions of problems

{ divdiv (M™VVu,,) = f (1.3)

u,, € H3(Q)
Proof. Let G = {fi1, f2,...} be a countable dense subset of H"%(2). In the sequel, by
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1.1. Introduction

using a diagonal procedure, we shall construct operators B and R which are well defined

on G, and then extend those operators by continuity to linear operators on H=2().

More precisely, since ||A;1||£(H72(Q)’H3(Q)) < ;, the sequence (A 'f) is bounded in
HZ(€2), and has a weakly convergent subsequence which converges to Bf;. We repeat
the same procedure with that subsequence for f; and denote the cluster point by B fs;
analogously we do for f3, etc. Finally, we take a diagonal subsequence (4, ) so that the
following holds:

(Vm € N) A;klfm — Bf,, in H3 ().

Let us now extend the operator B : G — H3(£) to linear operator in H~2(2). For arbitrary
f € H2%(Q), we take a sequence (f,,) in G such that f,, — f, as m — oo, in H"(Q2), and

define Bf := T}L%O B f,,. From this construction one can easily conclude that
(Vf e H*(Q)) A, f — Bf in Hy(Q),
which yields a well defined linear operator B : H%(Q2) — H2(Q2). This operator is bounded
by —, since
!
u-20)( f, Aﬁklf>Hg(Q) = n-2(@) Any Unys Uny, J12(0) = Oé||A;,€1f||12{g(Q),

and by taking the limit inferior in & we have:
1Bzl flln-2@) = w2 f, Bf Juze) = alim inf 1A%, fllf2) = @l Bf[Ifeq)-

«

@:

Moreover, it is easy to show that B is coercive with

.. _ | «Q
n-2) f, Bf Juzi) = alim inf HAnklfHI%Ig(Q) > Oéhmklﬂf@HfH%H(Q) = @Hf”%ﬂ(m

By Lax-Milgram lemma B is invertible, and after denoting A, := B! it follows that

Al — ALl weakly in the sense of operators.

If (uy,) is a sequence of solutions to (1.3), then

Uy, — Uso = Bf in HI(Q).

The sequence (M"™VVu,,) is bounded in L?(2; Sym), therefore, by using a diagonal
procedure once more, we can construct a subsequence (M™) (still denoted by ny) such
that for f € G we have

M™*VVu,, — Rf in L*(;Sym),



Chapter 1. General homogenization theory for elastic plate equation

where w,, are solutions to (1.3) for that f. This defines an operator R : G — L?(Q; Sym),
which is clearly bounded: since M VVu,, =M™ VV(A;!f), we have

n - - B
MV Yy, [lz@sym) < BIVV(Ay Dllz@sm < B4 @ < I iz

p

Finally, after taking the limit inferior in k, we conclude that |R|| < —. An analogous
construction as in the first part of the proof yields a linear operator R : H () —
L2(€; Sym), which completes the proof. [ |

Proof of Theorem 1. Let (A4,) and A, as in Lemma 2. First we prove that the
operator A, is of the same form as operators A,,, in the sense that there is a tensor M>
such that A, u = divdiv(M>*VVu). This can be shown by using the method of oscillating
test functions [66]. This method consists of constructing a sequence of functions (v,) in

H?(Q2) such that

U — Vs in HA(Q),
divdiv ((M")'VV0,) — go in H2(Q), (1.4)

loc

(MMTVVv, — W™ in L2 _(€; Sym).

In order to construct the sequence of oscillating test functions, we choose an open set
(Y which contains the closure of 2. For x € Q'\Q we define the extension of tensor
M"(x) := aly, and for a given g € H%(Q') define (v,) to be the sequence of solutions to

boundary value problems

Ay, = divdiv (M")TVV0,) =g
v, € H3(Y)

Since we obviously have (M™)T € 9y («, 8; '), the sequence (v,) is bounded in H2(Y'),
and therefore in H%({2), hence it has a subsequence satisfying (1.4). Finally, the associated
operator A, is an isomorphism between spaces H2(€') and H=2(€'); therefore, by choosing
an arbitrary function g we can get any v, € H3({?') and vice versa.

Let (uy) be the sequence of solutions of problems (1.3). By Lemma 1, we can pass to

the limit on both sides of the equality
M"VVu, : VVu, = VVu, : (M")TVVu,,

which gives us Cuys : VVUy = VViuy 1 Wy, where C' = RA,, (see Lemma 2). By

choosing v (x) := z;z; in Q, we have (Cuw)ij = VVue : W or, in other words,
there is a tensor M* such that Cu,, = M>*VVu,. The above construction yields

M> e L2(Q; £(Sym, Sym)).

10



1.1. Introduction

It remains to show that M> € My («, 5; ), i.e. we shall show the equivalent claim
1
that (M>®)T € My(a, B;Q): let ¢ € CP(Q) and v (x) = §Nx -x, N € Sym. Since
(M™)T € My(a, B;9), we have:

/gpz(M”)TVan : VVu, dx > a/gp2|VVUn|2 dx. (1.5)
0 0

Applying the Lemma 1 to the left-hand side of (1.5), gives

/gpz(Moo)TN :Ndx > aliminf/gp2|VV'Un|2dx > oz/gozN : N dx.
Q Q Q

This implies the coercivity of (M>)T a. e. in . Since (M™)7 belongs to My («, 5;Q), it

also satisfies

/ S(MMT) (MM TV V0, : (MM VY0, dx > / 2(MYI VUV, 2dx.  (1.6)

™|

Analogously as when showing coercivity of (M™)7, from (1.6) we obtain:

|
/@2(M°°)TN . Ndx > —/@2|(M°°)TN|2dx.
Q BQ

This implies the boundedness of (M>)T a. e. in €2, which completes the proof, i.e. (M>)T €
gjt2 (Oé, Ba Q) . [ |

As it is already said, in this chapter we are also interested in the small-amplitude
homogenization limit of a sequence of periodic tensors. The small-amplitude homogeniza-
tion procedure of Tartar [72] consists in computing the first correction in the H-limit of
a sequence of coefficients, whose difference is proportional to a small parameter. More
precisely, after making an asymptotic expansion of the H-limit in terms of the small-
amplitude parameter, one wishes to explicitly characterize its first non-vanishing (usually
second-order) term. Its physical relevance is in deriving (approximate) effective properties
of (conducting or elastic) material that is made by mixing two materials under the so
called small-amplitude, small-contrast or small aspect ratio assumption, i.e. that origi-
nal materials have close coefficients or material properties (for some applications see for
example [3, 4, 39]).

The explicit formula for the correction in the case of second-order elliptic [68] (or
parabolic [12]) equation can in general be obtained by using H-measures [69, 70] (or their
variants [11]). However, in the case of periodic coefficients, the same can be done by using
Fourier expansions [13]. In this thesis we use the second approach and explicitly calculate
the first correction in the small-amplitude homogenization process for the periodic sequence

of tensors.
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Chapter 1. General homogenization theory for elastic plate equation

We are interested in the following expansion of the H-limit:
A, = A, +pBy +p°Co+o(p®) in Q,

where p is some positive real number, and thus we shall use a variant of Taylor’s theorem
which is appropriate for Banach spaces. We first recall the notion of Frechet differentiable
function [7], which is a natural extension of the usual definition the differential of a map
in Euclidean spaces to Banach spaces.

Let X and Y be Banach spaces, U an open subset of X, and we denote
Inv(X,Y)={A € L(X,Y) : Ais invertible},
where L(X,Y") is the space of linear continuous maps A : X — Y.

Definition 2 Let xq € U. We say that F' is Frechet differentiable at x; if there exists
A€ L(X,Y), such that

R(h) := F(xo+h) — F(x9) — A(h)
satisfies
R(h) = o(|[h[|x).

Such an operator A is uniquely determined (if it exists) and will be called the (Frechet)
differential of F' at x¢, with notation A = F'(x). If F' is differentiable at all xo € U we
say that F' is differentiable in U.

To define the n-th differential (n > 2) we can proceed by induction. The n-th differential
at a point xg € U will be identified with a continuous n-linear map from X x X x---x X
(n times) to Y, and denoted by F™ (x).

Proposition 1 [7, p. 31, Proposition 1.1]

(i) Inv(X,Y) is an open subset of L(X,Y’). More precisely, if A € Inv(X,Y’) then any
T € L(X,Y) such that

1

T - Alloxy) < ————
= A v

is invertible.

(ii) The map J : Inv(X,Y) — L(Y,X) defined by J(A) = A~ is C* for all k > 1
(i.e. C*). Additionally, J'(A)(B) = —A1oBo A™!, Be L(X,Y).

For u,v € U let [u,v] := {tu+ (1 —t)v:t € [0,1]}.

12



1.1. Introduction

Theorem 2 [7, p. 13, Theorem 1.8] Let F' : U C X — Y be Frechet differentiable at
every point of U. Given u, v € U such that [u,v]| C U, it follows

[1F () = F(v)[ly < sup{|[F'(W)]lrxy) : w € [u, v]}Hu—vllx.

Theorem 3 [59, p. 187, Theorem 6.1](Taylor’s theorem) Let F': U C R — Y be n times
Frechet differentiable at a point xy € U. Then

1
F(xzo+ h) = F(xo) + F'(zo)h + -+ + EF(n)(lUO)hn + r(xo; h),
where 7(zo; h) € o(|h|™).

In order to state the small-amplitude homogenization results precisely, we need to show
that the H-limit of a sequence depending smoothly on a parameter is also smooth. Since
continuity is preserved by uniform convergence, we shall use the Arzela-Ascoli theorem

for the purpose of constructing a uniformly converging subsequence.

Definition 3 Let (X, d;) and (Y, dy) be two metric spaces. A family F of functions defined

on a set F in a metric space X, with codomain Y, is said to be equicontinuous on FE if
(Ve > 0)(30 > 0)(Va,y € E)(Vf € F)di(z,y) <= do(f(x), f(y)) <e.

Theorem 4 [64, p. 158, Theorem 7.25|(Arzela-Ascoli) If K is compact, f, € C(K),

n € N, and if {f,, : n € N} is pointwise bounded and equicontinuous on K, then
(i) (fn) is bounded in C(K),
(ii) (f») has a uniformly converging subsequence.

When dealing with periodic homogenization, we need the notion of a quotient space
[44, 53].

Let M be a subspace of a vector space X over a field K. We define an equivalence
relation on X such that for x, y € X, x ~y if and only if x —y € M. For x € X, an

equivalence class is defined with
x| =x+M={x+m:mec M}

On the quotient set
X/M:={x+M:x€ X}

the following operations are well defined:
(x+M)+(y+M):=x+y)+ M, x,yeckX,

13



Chapter 1. General homogenization theory for elastic plate equation

and
ax+M):=(ax)+ M, xe X, a € K.

The vector space X/M over a field K, with the vector space operations given above, is

called the quotient space.

Theorem 5 [53, p. 51-53] Let M be a closed subspace of a normed space X. The quotient
norm of X/M is given by the formula

|x + M| x/p = inf{||[x+ m|x :m e M}, xeX,

and it is a norm on X/M. Additionally, if X is a Banach space, then X/M is also a

Banach space.
We are also interested in duals of quotient spaces.

Definition 4 Let X be a normed space and M a subspace of X. We define its annihilator
by
MO = {f e X' X’<f7X>X =0, xe M}

Obviously, MY is a subspace of X’.

Theorem 6 [75, p. 85, Theorem 4.4.3] Let X be a normed space and M a closed subspace
of X. Then (X/M) is isometrically isomorphic to M?°.

Theorem 7 [60, p. 108, Theorem 7.2] Assume that € is a bounded, open subset of R¢
with Lipschitz boundary, and let Pj_; be the space of polynomials of degree < k—1. Then

there exist ¢1,c; € R such that

1
P

Z ||Dau||€p(ﬂ) < CQ||[U]||W’“”’(Q)/7’1@71'

|a|=k

el [ulllwrr)pe, <

If p=2, H*(Q)/Px_1 is a Hilbert space with the scalar product

(o), [ul) = 3 / D®v D% dx.
lal=k 0

1.2 Properties of H-convergence

Using Tartar’s method of oscillating test functions, we give proofs for the above men-
tioned properties of H-convergence for the stationary plate equation, and additionally
prove a number of results, such as the metrizability and the corrector result. The rela-
tionship between H-convergence and some other types of convergence is studied in the

following theorem.
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1.2. Properties of H-convergence

Theorem 8 Let (M™) be a sequence of tensors in My (e, B;2) that either converges
strongly to a limit tensor M in L!(Q; £(Sym, Sym)), or converges to M almost everywhere
in Q. Then, (M™) also H-converges to M.

Proof. The sequence (M™) belongs to My (v, B;2) and therefore it is bounded in
L>°(2; L(Sym, Sym)). By the Lebesgue dominated convergence theorem (M™) converges
strongly to M in L?(€Q; £(Sym, Sym)), for any 1 < p < co. If u, is the solution of

divdiv(M"VVu,) = f
u, € H3(Q)

then the sequence (u,) is bounded in HZ(Q2), and therefore (up to a subsequence) it
converges weakly to u € HZ(Q).

Since (M™) converges strongly to M in L*(Q; £(Sym, Sym)) and (VVu,) converges
to VVu weakly in L?(Q; Sym), we conclude that o, := M"VVu, converges weakly to
o = MVVu in L'(Q; Sym), and thus also in L?(€; Sym), as the sequence (o) is bounded
in this space.

The homogenized equation in Definition 1 has a unique solution u € H3(€2), so each
subsequence of (u,,) converges to the same limit « and this implies that the entire sequence
(u,) converges to w. Since f € H%(Q) is arbitrary, it follows that (M™) H-converges to
M.

[ |

H-convergence is related to the material properties of an elastic plate and it would
be desirable that properties of a given material do not depend on boundary conditions,
e.g. that it is not important whether the plate is clamped at the boundary or not. The next
theorem implies that the notion of H-convergence is not tied to the prescribed boundary
conditions: instead of homogeneous Dirichlet boundary conditions in Definition 1 we can

take any boundary conditions which ensure well posedness of the boundary value problem.

Theorem 9 (Irrelevance of boundary conditions) Let (M™) be a sequence of tensors in
My (v, 5;2) that H-converges to M. For any sequence (z,) such that

2, —z in H2 (Q)

divdiv(M"VVz,) — f in H2(Q),

loc

the weak convergence M"VVz, = MVVz in L (Q; Sym) holds.

foc
Proof. Let w be an open set compactly embedded in €. The sequence (z,) is bounded in
H?(w), implying that (M"VVz,) is bounded in L?(w; Sym). If we denote o, := M"VVz,,
we can extract a weakly convergent subsequence such that o, — o in L?(w; Sym).
Since w € €2, there exists ¢ € C°(Q2) such that ¢| = 1. For arbitrary N € Sym, we
define
w(x) = ;gp(x)Nx X,

15



Chapter 1. General homogenization theory for elastic plate equation

g = divdiv(MVVw) € H?(Q).

Let (w,) be a sequence of solutions to

divdiv(M"VVuw,) =g
w, € H3(Q)

Since (M"™) H-converges to M, the following holds:
w, — w in H3(Q),
M"VVw, — MVVw in L*(Q;Sym).
By coercivity of M™ we have
(M"VVz, — M"VVuw,): (VVz,— VVuw,) >0 a.e inQ,

which, after passing to the limit and using the compactness by compensation result,
becomes

(0 —MVVuw): (VVz—-VVw) >0 a.e. in Q.
If we consider the previous inequality only in w, we have:
(0 —MN):(VVz—N) >0 a.e inw. (1.7)

For any joint Lebesgue point xy € w of VVz, o and M, let N = VVz(xg) + tO, where
O € Sym and t € R* are arbitrary. Now (1.7) yields

(o (x0) = M(x0) VV2(x) — tM(x)O) : (—0) > 0,
and after dividing this inequality by —¢ and taking the limit ¢ — 0%, it follows
(O'(XO) — M(XQ)VVZ(XO)) 0 <0.

By arbitrariness of O € Sym, the equality o(x) = M(x)VVz(x) easily follows. Due to
uniqueness of the limit o, the entire sequence M"VVz, converges weakly to MVVz in

L%(w; Sym), which completes the proof.
[ |

Remark 1 If we change the assumptions of Theorem 9, such that

z, — z in H3(Q)

divdiv(M"VVz,) — f in H2(Q),
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the weak convergence M"VVz, = MVVz in L?(2; Sym) holds.
H-convergence also implies the convergence of energies, as stated in the sequel.

Theorem 10 (Energy convergence) Let (M™) be a sequence of tensors in My (a, 5;2)
that H-converges to M. For any f € H™2(f2), the sequence (u,,) of solutions to

divdiv(M"VVu,) = f
u, € H3(Q)

satisfies

M"VVu, : VVu, — MVVu: VVu

in M(Q2), and
/ M"VVu, : VVu, dx —s / MYV : VVudx,
Q Q

where u is the solution of the homogenized equation

divdiv(MVVu) = f
u € H(Q)

Proof. If we apply Lemma 1, it can easily be seen that
M"VVu, : VVu, — MVVu: VVu

in the space of Radon measures, which proves the first statement.
From the weak formulation of given homogeneous Dirichlet boundary value problems

we get
/M"VVun : VVu,dx = g2 fiun )u20)
0

/MVVu 1 VVudx = g fu)uzo)
O

and since (u,) converges weakly to u in H3(£2), we have

H*Q(Q)< f, Up, >H%(Q) — H*Q(Q)< f> u >H(2)(Q) )

which concludes the proof.
[ |

Theorem 11 (Locality of H-convergence) Let (M™) and (O™) be two sequences of tensors
in My(a, 5; ), which H-converge to M and O, respectively. Let w be an open subset
compactly embedded in 2. If M"(x) = 0"(x), x € w, then M(x) = O(x), x € w.

17



Chapter 1. General homogenization theory for elastic plate equation

Proof. The proof goes along the same lines as the proof of Theorem 9: since w is compactly
embedded in €, there exists ¢ € C*(2) such that ¢| = 1. For arbitrary N € Sym, let

us define
1

w(x) := §go(x)Nx "X,
g := divdiv(MVVw) € H?(Q),

and let w,, be a sequence of solutions to

divdiv(M"VVuw,) =g
w, € H3(Q)

Since (M"™) H-converges to M, it follows that
w, — w in H3(Q),

M"VVw, — MVVw in L%(Q;Sym).

For sequence (0™) we can proceed similarly: for any S € Sym we introduce
1
v(x) = §¢(X)Sx X,

= divdiv (0VVo) € H2(Q),

and let (v,) be a sequence of solutions to

b

divdiv(0"VVu,) = f
v, € HZ(Q)

thus obtaining

v, — v in H3(Q),
0"VVu, — OVVv in L*(Q;Sym).

By applying the compactness by compensation result, we get

(M"VVuw, — 0"VVu,) : (VVw, — VVv,) —— (MVVw — OVVv) : (VVw — VVv)
(1.8)
in the space of Radon measures. On w we have VVv = S and VVw = N; so by assumption

0" = M" in w, the sequence in (1.8) equals
0" (VVuw, — VVuv,) : (VVw, — VVu,),

which is nonnegative because of the coercivity of Q™. Therefore, the limit in (1.8) is also
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nonnegative, i.e. (MN — 0S) : (N —S) > 0 a. e. in w. If we choose S=N+tZ,t € R,
Z € Sym, we obtain

(MN —-ON —-t0Z): (-tZ) >0 inw,

and after dividing this inequality by —t and letting ¢ — 0", we achieve (M — Q)N : Z < 0.
Since Z and N are arbitrary, this implies M = O a. e. in w.

[ |
We can rephrase the previous theorem by stating that values of the homogenized tensor

M in a region w do not depend on values of the sequence (M™) outside of this region.
The next theorem implies that H-convergence preserves the order of the tensors. Recall

that tensors describe the material properties of the given plate.

Theorem 12 (Ordering property) Let (M") and (O™) be two sequences of symmetric
tensors in My (a, ;) that H-converge to the homogenized tensors M and O, respectively.
Assume that (M™) and (0") are ordered: for each n € N

M. £<0%: & &€ Sym.
Then the homogenized coefficients are also ordered:

ME-£<0£: & &€ Sym.

Proof. Let us define a sequence (v,,) of oscillating test functions satisfying

1
vnéﬁNx-x in H*(Q),

divdiv (0"VVu,) — ¢° in H2(Q),
where N € Sym is arbitrary. Existence of such a sequence is established in the proof
of Theorem 1. Note that VVv, — N, and additionally we have O"VVwv, — ON in
L% .(€; Sym), by Theorem 9.

Similarly, let us take a sequence (w,) of oscillating test functions satisfying

1
wnéiNx-x in H*(Q),

divdiv(M"VVuw,) — ¢" in H2(Q),
M"VVw, — MN in LI _(Q;Sym).

loc
Due to the coercivity of M™, we have
M"VVuw, : VVw, — M"VVuw, : VVv, — M"VVu, : VVw, + M"VVuv, : VVu,
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= M"(VVuw, — VVuv,) : (VVw, — VVuv,) >0
in . Since M™ < O", it follows that
M"VVw, : VVw,—M"VVuw, : VVv,—-M"VVu, : VVw,+0"VVuv, : VVv, >0 in Q.

By applying the compactness by compensation result, we can pass to the limit in each

term of the above expression and get
MN:N-MN:N-MN:N+ON:N=(0O-M)N:N>0.

Since N is arbitrary, it follows that O > M.
[

In the following theorem we introduce bounds on homogenized tensor, in the sense of
the standard order on symmetric tensors. The bounds are given in terms of weak-* limits,

representing the harmonic and arithmetic mean of the corresponding sequence.

Theorem 13 Let (M") be a sequence of symmetric tensors in My (a, 5;€2) that H-

converges to M. Assume that

M* ——~M in L*(Q;£(Sym, Sym)),
(M)~ M in L*®(Q; £(Sym, Sym)).

Then the homogenized tensor satisfies
ME:E<MEE<ME:E €€ Sym.

Proof. As before, let us take a sequence (w,,) of oscillating test functions satisfying

1
wnéiNx-x in H*(Q),

divdiv(M"VVuw,) — ¢" in H2(Q),
M"VVw, — MN in L _(€;Sym),

loc

where N € Sym is an arbitrary matrix. Since M" is coercive it follows
M"(VVw, —N): (VVw, —N) >0,
which, by symmetry of M", is equivalent to
M"VVuw, : VVw, —2M"VVw, : N+ M"N : N > 0.

20



1.2. Properties of H-convergence

By the compactness by compensation result, passing to the limit gives
MN:N-2MN:N+MN:N >0,

thus proving inequality M > M, by arbitrariness of IN.
Similarly, for & € Sym, the coercivity of (M™)~! implies

(MM 1(M"VVuw, — o) : (M"VVuw, —a) >0,
which is equivalent to
M"VVw, : VVw, — 2VVw, : o+ (M") o : 0 > 0.
Passing to the limit as before gives
MN:N—2N10'+M_10'10'20,
which for &0 = MN becomes
MN:N-2MN:N+MN:N >0,

i.e.

(M-—M)N:N>0.

This proves the second inequality, and concludes the proof.
[ |

Theorem 14 Let (M™) be a sequence of tensors in My (v, B; Q). If (M™) H-converges to
M in 9y (a, 3;Q), then the sequence ((M™)T) H-converges to MT in My (a, 5; Q).

Proof. For f € H2(Q), let (u,) be the sequence of solutions to

divdiv (M")TVVu,) = f
u, € H3(Q)

As sequences (u,,) and ((M™)TVVu,) are bounded in H2(Q2) and L2(£2; Sym), respectively,

we can extract a weakly convergent subsequence such that
u, — u in H3(Q),
(M")TVYVu, — o in L*(;Sym).
On the other hand, since (M™) H-converges to M, for g € H () the sequence (v,,) of
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solutions to
divdiv(M"VVu,) =g
v, € H3(Q2)

satisfies
v, — v in H3(Q),

M"VVv, — MVVo in L*(Q;Sym),

where v is the solution of the homogenized equation

divdiv(MVVv) =g
v € HA(Q)

Applying the compactness by compensation result to
M"YV, : VVu, = VVu, : (M")TVVu,

leads to
MVVuvy : VVu=VVu:o. (1.9)

For an arbitrary open set w € €, there exists ¢ € C(2) such that ¢| = 1. Choosing
g := divdiv (MVV (%QO(X)NX : x)), N € Sym, implies that v(x) = ;Nx X in w. Using
this, (1.9) becomes

MN:VVu=N:0o a.e inuw,

which implies that & = MTVVu almost everywhere in €2, by arbitrariness of w and N.
Due to uniqueness of the limit o, the entire sequence ((M™)?VVu,) converges weakly to
MTVVu in L2(Q; Sym), which gives the claim of the theorem. |

The following result states that H-convergence defines a metrizable topology on the
set My(a, 5; Q).

Theorem 15 Let F = {f,, : n € N} be a dense countable family in H2(Q2), M and O

tensors in My (v, 5;Q), and (u,), (v,) sequences of solutions to

divdiv(MVVu,) = f,
u, € H3(Q)
and

Y

divdiv(OVVu,) = f,
v, € H3(2)

respectively. Then,

|un - UnHL?(Q) + ||MVVun — OVVURHHA(Q;Sym)
[ follm-2()

d(M, 0) := f: o (1.10)
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1.2. Properties of H-convergence

is a metric function on My (v, B; Q) and H-convergence is equivalent to the convergence

with respect to d.

Proof. Since My(cx, B; ) is bounded in L>®(Q; £(Sym, Sym)) and L?(Q; £(Sym, Sym)) is
continuously imbedded in H™*(€2; £(Sym, Sym)), there exists a constant ¢ > 0 such that

(VM € M, 552) iz + IMYVuta i1 sy < llfulln-2(c

Clearly, the same is true if we replace M and (u,,) with tensor O and the corresponding
sequence (vy,), which implies that the series in the definition of d converges. In order to
verify that d is a metric, we shall only prove that d(M, Q) = 0 implies M = O, as other
properties are straightforward. The equality d(M, Q) = 0 implies that for any f € H2(Q),
the solutions u and v of
divdiv(MVVu) = f
{ u € H(Q)
and
divdiv(OVVv) = f
{ v € H3(Q)
satisfy u = v and MVVu = OVVv in Q. Indeed, by definition of d, this immediately
follows for f € F, and then for any f € H™?(Q) by the density of F in H™2(2) and
continuity of the linear mappings f — u and f — v from H%(Q) to H3(Q). For a set
w compactly embedded in € let us take ¢ € CX(Q2) such that ¢|, = 1. If we take
f =divdiv (MVV (%QO(X)SX : x)) , for arbitrary S € Sym, this yields VVu = VVv =S
in w, implying MS = OS in w, and finally M = O, by arbitrariness of S and w.
It remains to prove that H-convergence is equivalent to the convergence in this metric
space. Assume that sequence (M™) in 9y (v, 5; ) H-converges to M in My (av, B; ), and

let (u™), (u,) be the sequences of solutions of

divdiv(M"VVu) = f,
u™ € H3(Q)

and
divdiv(MVVu,) = f,
u, € HA(Q)

respectively. Since (M™) H-converges to M it follows

u™ —u, in HZ(),

M"VVu" — MVVu, in L*(€;Sym),

and by the Rellich compactness theorem we have strong convergences v — u,, in L*(2)
and M"VVu" — MV Vu, in H(Q; Sym), which imply d(M™ M) — 0.
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Chapter 1. General homogenization theory for elastic plate equation

In order to prove the converse statement, let a sequence (M™) and M belong to
My(cr, ;) and d(M™ M) — 0. We take an arbitrary f € H 2%(Q) and a sequence
(fu) C F strongly converging to f in H™2(2). Let u, u™, u,s and v’ be solutions of

Y

divdiv(MVVu) = f
u € H3(Q)
divdiv(M™VVu™) = f
u™ € H(Q) ’
divdiv(MVVu, ) = fu
Up € Hg(Q)

and

divdiv(M"VVul) = fu
u™ € H3(92)

respectively. For any n’ € N the sequences (u!}),, and (M™VVu}),, are bounded in
HZ(Q) and L?(Q2; Sym), respectively, and therefore converge weakly on a subsequence.
However, from d(M™ M) — 0 it follows that, for every n’ € N, u™ — wu, in L*(Q)
and M"VVu" — MVVu, in H!(Q;Sym), which implies the convergence of whole
sequences:

u” — w,y  in H3(S),

M"YVl — MVVu, in L*(;Sym), (1.11)

as m — oQ.

If we subtract the equations for u and u,,, we get

divdiv(MVV(u —uy)) = f — fur
u— u, € H3(Q)

and similarly for «™ and u])}:

divdiv(M"VV (u™ —ul)) = f — fu
u™ —u™ € H3(Q)

Since (f,/) strongly converges to f, the well-posedness result for these problems ensures
that w,, — u in H3(Q) and thus MVVu,, = MVVu in L?(Q; Sym), as well as u™ — u™
in H3(Q2) and thus M™VVu? — M™VVu™ in L?(Q; Sym), uniformly in m as n’ — oo.
Here, for the last convergence we have also used boundedness of the sequence (M™) in
Leo(92; L(Sym, Sym)).
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1.3. Corrector result

Together with (1.11) this implies

u™ — u in H3(Q)

M"VVu, — MVVu in L*(Q;Sym), (1.12)

i.e. (M™) H-converges to M, by arbitrariness of f. Indeed, for an arbitrary f € H™2(Q)
and € > 0, the above (uniform) convergences imply that first and third term on the

right-hand side of the inequality

m m
n/

’H*2(Q)< Siu™ — u)Hg(Q)‘ < ‘H*Q(Q)< fiu™ —u >H§(Q)‘ +
—+ ’H—Q(Q)< ,ug — Uy >H%(Q)‘ +

+ ’H-%Q)( Iyt — U>Hg(9)‘

can be made ¢ small for n’ large enough, i.e.

‘H—?(Q)( fou™ — U>H§(Q)‘ <2+ ‘H—Q(Q)< I T >H§(Q)‘

is valid for every m and n’ large enough. Taking the limit as m — oo, from (1.11) and
arbitrariness of ¢ and f we get the first convergence in (1.12), while the second one can

be derived similarly. [ |

1.3 Corrector result

This section is devoted to the corrector result in dimension d = 2. Its goal is to improve
convergence of VVu,, by adding correctors, and ending up with strong convergence, instead

of the weak one given by the definition of H-convergence.

Definition 5 Let (M™) be a sequence of tensors in My («, 5; Q) that H-converges to a

limit M. For 1 <4,5 < 2 let (w), be a sequence of oscillating test functions satisfying

. 1
wy) — it in H*(Q),

divdiv(M"VVw?) — g; in H2(Q), (1.13)

where g;; are some elements of Hi;2(Q2). The tensor W™ with components W/, =

[VVwk™|;; is called the corrector.

It is important to note that functions (w%),<; j<2 are not uniquely defined. However,
for any other family of such functions, it is easy to see that their difference converges

strongly to zero in H?(f2), and similar holds true for the corrector tensors.

Lemma 3 Let (M™) be a sequence of tensors in MMy (c, ;) that H-converges to a tensor

M. A sequence of correctors (W™) is unique in the sense that, for any two sequences
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Chapter 1. General homogenization theory for elastic plate equation

of correctors (W") and (W™"), their difference (W™ — W") converges strongly to zero in
(Q; L(Sym, Sym)).

loc

Proof. For 1 <i,5 < 2, let (w?), and (@), be two sequence satisfying (1.13) and let
@ € C(9). Using coercivity of M", and integrating by parts two times we obtain:

allp(VVw! — vvwfj)“i?(g;sym) < /902MHVV(UJ @) VV (0 — @Y dx
= u2efdivdiv (M”VV( —wy)), ¢ (wy] — @) 2oyt
T (dlv(M"VV( — @), V(*) (w? —@ff)mm)—
— 12, @(M"VV (w — @), V(w)] = @])V(6) ) 12e) -

Each term on the right hand side tends to zero when n — oo, the first one because
of the assumption (1.13), while the second one and the third one converge to zero by the
Rellich compactness theorem. Thus, we deduce that VV(w% — w%) converges strongly to

zero in L2 .(Q; Sym), which proves the statement.
[

Lemma 4 Let (M") be a sequence of tensors in My (a, B;2) that H-converges to a limit

M, and (W™) the corresponding sequence of correctors. Then

W" — 1y in L*(Q; £(Sym, Sym)),
M"W" — M in LQ(Q; [,(Sym, Sym)) 5

Proof. The first convergence is a consequence of the definition of correctors. The second
one follows from the definition of H-convergence, and the third one from the compactness
by compensation result applied to the components of (W) and M"W", [ |

In the next theorem we clarify in what sense correctors transform a weak convergence

into the strong one.

Theorem 16 Let (M™) be a sequence of tensors in My (c, 5;2) which H-converges to M.
For f € H2(Q), let (u,) be the sequence of solutions to

divdiv(M"VVu,) = f
u, € H3(Q)

Let u be the weak limit of (u,) in H3(f2), i.e., the solution of the homogenized equation

divdiv(MVVu) = f
u € HZ(Q)
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1.3. Corrector result

Then, if we denote 7, := VVu, — W*VVu, where W" is a corrector, it holds that (r,)

converges strongly to zero in L _(2; Sym).

Proof. Let ¢ € C°(Q), and let (v,,) be a sequence in C°(Q) such that v, — u in H3().

Since M™ is coercive we have

OZHSO(VVUn - anvvm) ||32(Q;Sym)
< / PPM™(VVu, — WIVV0,,) : (VVu, — WV V0,,) dx
Q

_ / LMYV, - VVu, dx — / PM'VVu, - W'YV, dx—
Q Q

_ / PPMPW Vo, : V'V, dx + / PHWH T MW Vo, : VV0,, dx.
Q Q

As n — 400, the first term on the right hand side converges by Theorem 10, while the
second and the third term converge by the compensated compactness result. The last

term converges by Lemma 4, leading to

1
liglﬁs;}p lo(VVUy — W'V V) 12 (u5ym) < o /QOQMVV(U — V) : VV(u —vy,) dx.
Q

If u is smooth (in that case we can choose v,, = u), the proof is finished. If u is not

smooth, than after taking limit as n — +o0 in the estimate (c is a generic constant below)

ng(VVun — WnVVU) HLl(Q;Sym)
< HQO(VVU,L - WnVVUm)HLl(Q;Sym) + Hg&Wn(VVUm - VVUJ)HLl(Q;Sym)
< ”SO(VVUn - anvvm)||L2(Q;Sym) + HSOWn||L2(Q;L(sym,sym))vavm - VquL?(Q;sym) )

we get

lim%supHgo(VVun — W*VVu)||r@sym)

< c(e(VVu = VVU) [2@sym) + 1V V0m — VVUL2@8ym) )
and finally

lim sup [|io(V Vi, = W'V V) |1 08ym)

< climjup(Hap(VVu — VVu) li2@sym) + | VVU = VVU ||L20i8ym) = 0,

which finishes the proof, by arbitrariness of .
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Chapter 1. General homogenization theory for elastic plate equation

1.4 H-convergent sequence depending on a parameter

A prerequisite for the small-amplitude homogenization is that H-convergence preserves
a smooth (or analytic) dependence with respect to a parameter. More precisely, we shall
prove that, if a sequence M"(-, p) depends smoothly on a parameter p, so does the H-limit
M(-,p). We shall begin with this simple lemma, whose proof mimics the one in the case

of the stationary diffusion equation [12, 72] but we present it here for completeness.

Lemma 5 If M € My (a, §; Q) and O € L*°(Q; L(Sym, Sym)) such that
HOHLOO(Q;c(sym,sym)) <6 < a, then

Y
M+0€m2<a—5,0‘5 5;9).
a—20

Proof. One can easily see that
(M +0)¢: € > alé]” - o€, (1.14)

where | - | on the right-hand side of (1.14) denotes the Frobenius norm. This proves the
coercivity of M + O.

— 52
The other bound (M+0)§ : € < af 5 € : € can be written in two equivalent forms,
as .
(M+0)¢: &> = [(M+0)EF or [(M+0)¢— LE| < LI,
2
— 1
where L := M. Note that L > —f3, therefore we have
2(a —9) 2

(~2L5+ )& = (5 — 2L)aléP = (5 — 2L)ME : € > [ME* — 2LME : €,
and the obtained inequality can be rewritten as
Mg — LE[* < (L - 6)°l¢P”
Finally,
(M +0)¢ — LE| < [ME — Lg| +[0€] < (L — 8)[€| + 5l¢| = Lle].

or equivalently |
(M+0)¢:€> —[(M+0)¢f”

[ |
Let us now describe a bound for the L*°-distance between the H-limits of two sequences
M™ € My(a, 5;2) and O™ € My (o, 5 2), that are nearby in L>(Q; £L(Sym, Sym)).
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1.4. H-convergent sequence depending on a parameter

Lemma 6 Let M" € My(a, B;02) and O™ € My(a/, F';2) be two sequences of tensors

that H-converge to the homogenized tensors M and O, respectively. Assume that,

(Je > 0) (Vn € N) [|[0" — M| (2 (Sym,sym)) < €

Then
so

oo %

10 — ML (@;(ym. sym)) < €

Proof. For f,g € H2(Q), let (u,) and (v,) be sequences of solutions to

divdiv(M"VVu,) = f
u, € H3(Q)

and
divdiv ((0")'VVuv,) =g
v, € H3(2)

Since (M™) H-converges to M, and (O™)7 H-converges to O, it follows

u, — u in H(Q),
M"VVu, — MVVu in  L*(Q;Sym),

v, — v in H3(Q),
(0MI'VVy, — 0'VVy in L*(Q;Sym).

By Lemma 1, we have that M"VVu, : VVv,, and VVu, : (0")TVVu, converge vaguely
to MVVu : VVv and VVu : 0T V'V, respectively. Therefore, for every ¢ € C(£2) one

has
hm/gp M"YV, | YV, dx = /90 (0 — M)VVu : VVo dx.

For every ¢ > 0 one can conclude

/g&(O —M)VVu: VVudx

< elim sup/go[VVun||VVUn|dx.
e

Since for arbitrary a,b € R™ such that 4abac’ > 1 it holds
|VVu,||VV,| < aa|VVu,|* + bd'|[VVu,|?,

and M™ € My (a, 5;Q2), O™ € My (o, 55 Q), we have

/gp(O ~M)VVu : VVudx
Q

< elim sup/gp[a(M”VVun : VVuy,) +6(0"VVu, :
"0

(1.15)

VVu,)]| dx
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_ / pla(MVVu : VVu) + b(0VVo : VV)] dx
Q

< 5aﬁ/<,0|VVu]2 dx—i—abﬁ’/go]VVvF dx.
Q 0

Since this inequality is true for every ¢ € C(Q2), ¢ > 0, it follows
|(0 — M)VVu: VVu| < e(af|VVul> + b3 |VV0]?) a.e. in Q. (1.16)

After minimizing the right-hand side of the previous inequality over all a, b satisfying the

condition 4abaa’ > 1 we get

Be’

ao!

(0O —-M)VVu:VVu| <e |IVVu||[VVu| a.e. in (.

An alternative way to obtain the minimum (over a and b) for the right-hand side of (1.16)
ﬁ. Hence, the desired
inequality follows by arbitrariness of u and v, by using an analogous arguments as was

is to use the arithmetic-geometric mean inequality and ab >

done in the proof of Theorem 15. [ |
Let us now prove that when passing to the H-limit in a sequence depending on a
parameter, the smoothness is preserved. This result appears to be very important since

we want to calculate first correction in the small-amplitude limit.

Theorem 17 Let M"™ : Q x P — L(Sym,Sym) be a sequence of tensors, such that
M (-, p) € My(a, B;Q2), for p € P, where P C R is an open set. Assume that (for some
k € Ng) a mapping p — M"(-, p) is of class C* from P to L>(Q; £(Sym, Sym)), with all

derivatives up to order k being equicontinuous on every compact set K C P:

(VK € K(P)) (Ve > 0)(35 > 0)(¥p, q € K)(¥n € N)(Vi € {0,...,k})
p—ql < 5= [[(M)I(,p) = (M)(, @)L @csymsymy <& (1.17)

Then there is a subsequence (M™) such that for every p € P
M™ (-, p) == M(-.p) in Dyl 5 9) (1.18)

and p — M(-,p) is a C* mapping from P to L>(£2; £(Sym, Sym)).

Proof. For a countable dense subset Il of P, by the Cantor diagonal method and com-
pactness of My (a, 5;€2) there exists a subsequence (M™) such that for every p € II
M™% (-, p) —2< M(-, p) in My(av, ;). For arbitrary compact K C P, by (1.17), it follows
that

(Ve > 0)(30 > 0)(Vp,q € K)(Vn € N)
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1.4. H-convergent sequence depending on a parameter

Ip—ql <6 = [[M"(-,p) — M"(-, q)[|L (Qc(Sym,Sym)) < €.

Since for p,q € K N1II we have M" (- p) SRIEN M(-,p) and M"™(- q) LN M(-, q), by

Lemma 6 it follows

5
IM(-, p) — M(-, @) || ((Sym,Sym)) < €

which implies uniform continuity of p — M(:, p) on K NII, and thus it can be extended by
continuity to the entire set K. In order to prove that (1.18) holds for every p € K, let us
suppose the opposite, i.e. that this H-convergence fails for some p € K. Due to the compact-
ness of H-convergence, there exists a subsequence (M™r) and N € L*°(Q; £(Sym, Sym))
such that M (- p) —2< M(-,p) + N, where & := N[t (2:2(Sym,8ym)) > 0. Using the
equicontinuity of (M™r) and uniform continuity of M over K one can conclude that there

exists a 0 > 0 such that for every ¢ € K such that [p — ¢| < ¢, it follows

n n a
[M" (-, p) — M™ (-, ) || (0:(Sym,Sym)) < € and

%7
19
IM(-,p) — M(-, @) || (©:0(Sym,Sym)) < 3

From the second inequality, it easily follows

[IM(-, p) + N — M(-, ¢) | (@:(Sym,Sym))
g

Z |||NHL°°(Q;£(Sym,Sym)) — ||M(7p) - M('7Q)HL“’(Q;L(Sym,Sym))| > 57

while from the first one and Lemma 6 we have

€
||M(7p) +N - M(a Q>||L°°(Q;£(Sym,8ym)) < 57
for ¢ € IIN K and |p — ¢| < d, which is a contradiction. Therefore, (1.18) holds for every
p € K and, by arbitrariness of K, the mapping p — M(-, p) is well defined and continuous

on P.
In order to prove that p — M(-, p) is a C*¥ mapping from P to L>(Q; £(Sym, Sym))
let us define a family of operators 7,(p) : H3(Q) — H™%(Q2), for n € N and p € P, with

Ta(p)v = divdiv (M"(-,p)VVv), v € H3(Q).

Note that 7,(p) may be written as a composition P o M"™(-, p), where

P L°(Q; L(Sym, Sym)) — L(H3(Q),H2(Q)) is defined as P(N) := divdiv(NVV:), for
N € L*>®°(Q; £(Sym, Sym)). Since P is linear and p — M"(-,p) is of class C*¥ one can
conclude that 7, : P — L(H2(Q),H2(Q2)) is a sequence of C*¥ mappings. Additionally,

(7,) satisfies the same equicontinuity property as the sequence (M"™).

Since 7,(p) is an isomorphism (for every p and n), and, by Proposition 1, taking
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Chapter 1. General homogenization theory for elastic plate equation

inverse is a C* mapping, it follows that the mapping p — (7,,(p)) ™! is also a C*¥ mapping.

Moreover, one can conclude the following:

(VK € K(P)) (Ve > 0)(30 > 0)(Vp,q € K)(Vn € N)(Vi € {0,...,k})
p—al <= [[((TP) ™Y = (7)) cu—2@mz@) <& (1.19)

We shall prove this only for ¢ = 0, since for i € {1,...,k} it can be shown analogously. By
Theorem 2 and using the notation as in Proposition 1, with X := H2(Q), Y := H™2(Q),

we have:

1(7a(p)) ™ = (7a(@) vy = ||J(Tn(p)) J (7o)l vix)
< sup {[|7(T)l[cizcerey : T € [Falp), @]} - 17 (0) = 7(@) e,y
< sup { |/ (D)lpeixnooy : T € [Talp), mala)]} - .

Due to equicontinuity property of the sequence (7,,), one only has to check that

sup {[[7(T) || iy Lovixy = T € [malp), 7alq)]} s finite:

1T (T oexyyeovixy = sup [[J(T)(B)lvx
IBllLx,vy=1
= sup || —,_Z—‘_1 OBOT_1||L(ij)

1Bl (x,vy=1

< sup T Yoyl Blluaxwn 1T nyx)
IBllL(x,vy=1

= ”T_IH%(Y,X)'

As T € [1,(p), Tn(q)], Tn(p) = P o M"™(-, p), and by using convexity of the set M (cv, 5; Q),
for some M € My (a, 3;Q) we have T =P o M € L(HZ(Q),H2(2)), which is a bounded
and coercive operator with constants independent of p, ¢ and n. Thus, it follows that

||T71H%(Y,X) < o0, lLe.
sup {1/ (7))l wx v)ovix : T € [Falp), 7 (9)]} < 00

Since the subsequence (M™ (-, p)) H-converges to M(-,p) for every p € P, it follows
that
—92 -1 H(Q)(Q) -1
(Vp e P)(Vf € HZ(Q)) (7, (p) " f — (r(p))" [, (1.20)
where 7(p) = P(M(-,p)). Let us define a family of functions ¥/9 : P — R, n € N, and
U9 PR as

H%(Q)( (Ta(2) ", 9 ) m20)
I flla—2@llglla—2@

V)9 (p) =
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1.4. H-convergent sequence depending on a parameter

_ H2 (@) ()" f9) 20

w/9(p)
I fll-2@ llglla-20)

where f, g € H%(Q) are arbitrary nonzero functions. Since p — (7,(p))~! is a C*¥ mapping
from P to L(H72(£2),H3(f2)), we have that p — W/9(p) is of class C* from P to R. Note

that due to equicontinuity properties of a sequence ((7,,(p))™!) it follows that

(VK € K(P)) (Ve > 0)(35 > 0)(Vp,q € K)(Vn e N)(Vi € {0,....k})|p—q| <=

(@)D (p) — (©49) D (g)| (1.21)
—1\ (@) —1\ (@)
Hg(9)< ((Tn(p)) 1) f79>H_2(Q) Hg(Q)< ((Tn(Q)) 1) f7g>H_2(Q)
[f a2 llglln-2) 1/ -2 |9 /ln-2()
1 ()" = (™)) 19
= 2 Tn(p — (((q fr9 <e
sl 508 (GO = (@) fa )
Additionally, from (1.20) we have that

(Vpe P) W)o(p) — W9(p). (1.22)

By the Arzela-Ascoli theorem it follows that the sequence (\I/f”f ), with all its derivatives, is
bounded in C'(K), where K C P is an arbitrary compact set, and pointwise convergence
in (1.22) is actually uniform, thus p — U/9(p) is of class C* from P to R. After passing
to the limit in (1.21), one can conclude that U/9 has the same equicontinuity properties
as the sequence (0/:9). It follows that p — (7(p))~' is a C¥ mapping, and using the same

reasoning as before, the mapping p — 7(p) is also of class C*.
Let us now consider a sequence 7, : P — L(H2(Q2); L?(Q; Sym)) defined by

Zn(p)v = M" (-, p) VV ((7a(p)) " 7(p)v), v € HG(€).

Note that, with v, € H2(Q) defined as

one has
Zn(p)v = M"(-, p)VV0,.

As it is a composition of C*¥ mappings it follows that each Z, is also of class C¥. By
H-convergence of a subsequence (M™(-,p)) to M(-,p), one can easily see that Z,, (p)v
converges weakly in L?(Q2; Sym) to Z(p)v := M(-, p)VVu, for arbitrary v € H3(Q2). Sim-
ilarly as for (7(p))~! above, one can easily show that p — Z(p) belongs to the class

CH(P; L(HF(2); L2(2; Sym))).
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The Lebesgue measure ) is inner regular on R%, hence for every ¢ > 0 there exists
a compact set K C Q, such that A(Q\K) < e. For O := K\0K € Q, and S € Sym,
let us take v € HZ() such that v(x) = 1Sx - x on O. We easily conclude that p —
M(-,p)S belongs to the class C*(P;L°(0;Sym)), and moreover, since A\(Q\K) < ¢, to
CF(P; L*>(£; Sym)). Due to arbitrariness of S, it follows that p — M(-, p) is of class Ck
from P to L*°(€; £L(Sym, Sym)), which concludes the proof.

Remark 2 It is easy to see that the above theorem is valid if we take P C R an open set.
Furthermore, it can be shown that H-convergence also preserves an analytic dependence
with respect to a parameter. To be precise, if we assume in the previous theorem that
every M" is analytic mapping P — L*>°(€Q; £(Sym, Sym)), then the corresponding H-limit
M (after extracting a subsequence) is also analytic. This can be proved using the fact
that any weakly converging sequence of analytic functions of operators has a limit which
is analytic as well [42], and by following the same technique as in the proof of Theorem
17.

1.5 Periodic homogenization

When studying homogenization theory, periodic homogenization [16] appears to be
the simplest case. There is a wide range of applications of periodic homogenization, for
example in mechanics, physics, chemistry and engineering, in the study of crystalline or
polymer structures, nuclear reactor design, etc. If the period of the observed structure
is small compared to size of a region in which the system is studied, then asymptotic
analysis is used. An example of a periodic domain is given in Figure 1.1, where x denotes
the width of 2.

O
O

OO
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Figure 1.1: Periodic domain.
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For the unit cube Y = [0,1]¢ in R% and p € [1, o0, let us consider the following normed
spaces of Y-periodic functions [2]: L (Y) := {f € L{,.(R%) such that f is Y — periodic},

loc

equipped with the norm || - [|Le(yv), HL(Y) := {f € H},.(R?)such that f is Y — periodic}

with the norm || - [[g2(y), and the quotient space HZ(Y)/R, equipped with the norm

|VV - |l2(vy. For simplicity of notation, the class [u] in the quotient space will usually be
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1.5. Periodic homogenization

identified with a representative of the class u € [u]. If we identify Y with the d-dimensional
torus T' (by gluing together the opposite faces of Y'), which is a smooth compact manifold
without boundary, these spaces are isomorphic to L2(T), H*(T') and H*(T') /R, respectively.

They can also be defined for vector, matrix or tensor valued functions.

Furthermore, let E;;, for 1 <4,5 < d, be d x d matrices, with entries

1, fi=j=k=1
Bl =14 5, ifi#j, (k1) €{(7), 0}
0, otherwise.

We are interested in what happens in the limit of the periodic case, i.e., we want to
derive the explicit formula for the homogenization limit of a periodic sequence of tensors.
To be precise, for a Y-periodic tensor function M € LE(Y; £(Sym, Sym)) N IMy(e, 3;Y)
and a bounded, open set Q C RY, we are interested in the H-limit of the sequence

M™ € My (a, ;) defined by
M"(x) := M(nx), x € (. (1.23)

Let us first remark that, for f € (H3(Y")/R)’, the boundary value problem

{divdiv(M(y)VVw(y))=f(y) ¥ (1.24)

y— w(y) is Y-periodic

has a unique solution in HZ(Y)/R.

In order to prove that there exists a unique solution of (1.24), we shall check the

assumptions of the Lax-Milgram lemma. Obviously,

B(w,p) = /MVV'LU : VVedy, w, ¢ € HL(Y)/R, (1.25)
v

is a bilinear form and it doesn’t depend on the choice of representatives of the equivalence
classes. Since M € My (a, ;) and |[VV - ||12(yy is norm on the space H(Y') /R, one can

easily conclude that bilinear form (1.25) is bounded and coercive:

Bw,) = [ MVVu: VVedy < 8|90V Vel
Y

and

B(w,w) = /MVVw : VVwdy > a/ HVVwHiz(Y) dy = a|]VVwHiz(y).
¥ ¥

Now, by the Lax-Milgram lemma there exists a unique solution in H% (Y") /R of boundary
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Chapter 1. General homogenization theory for elastic plate equation

value problem (1.24).

Remark 3 Analogously as in [2, p. 58, Lemma 1.3.21], it can easily be shown that
f € L4(Y) belongs to (H2(Y)/R)' if and only if / Fly) dy = 0.
v

Theorem 18 Let (M™) be a sequence of tensors defined by (1.23). Then (M™) H-converges
to a constant tensor M € My (ar, 5;2) with entries

s = [ M(y) (B + VVwi(y) : (By+ VVuw(y) dy. (1.26)
v
where (w;;)1<i j<a is the family of unique solutions in HZ (Y") /R of boundary value problems

{ divdiv (M(y)(By; + VVwy() =0 Y, . (1.27)

y — w;;(y) is Y-periodic.

Proof. The solution of (1.27), with right-hand side f € (HZ(Y)/R)" instead of zero, is
any function w;; € HZ(Y) /R satisfying

Y

[ M) (B + V() : VVely)dy = [ fy)ely) dy. (1.28)

for arbitrary function ¢ € H%(Y)/R.

By Theorem 1 there is a subsequence (M™) of (M") and a tensor valued function M
in My (v, 5; Q) such that (M™) H-converges to M. Let us define

p 1 1
wy! (x) == S %it) + ﬁwlj(nx) ,

where w;; € H%(Y)/R are unique solutions of (1.27). Since wg;(n-) Convirges weakly to
the average of w;; in H?(€2), we easily conclude the convergence w? — S TiT; in H?().

Since
divdiv (M™ (x)VVwY (x)) = divdiv (M™ (x)(E;; + VVw;;(n;x))) = 0 in Q,

Theorem 9 implies
M"*VVw? — ME;; in L2 (Q;Sym).

However, due to periodicity we have

Y
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1.6. Small-amplitude homogenization in the periodic case

which implies that for components of M we can conclude

mklij = MEij t Ey

= [ M)y + VVuy(y)) : By dy

M(y)(Ei; + VVwi;(y)) : (Ex + VVur(y)) dy,

I
<—

where we used that w;; is a weak solution of (1.27) and took wy; as test function in (1.28).
Since every H-converging subsequence of (M™) has the same limit, it follows that the entire

sequence (M™) H-converges to M. |

1.6 Small-amplitude homogenization in the periodic
case

Let us consider a sequence of small perturbations of a constant coercive tensor A, €
L(Sym, Sym):
A’ (y) = Ao+ pB"(y),

where B"(y) := B(ny), y € Q, Q C R%is a bounded, open set and B € L3 (Y5 L(Sym, Sym))
such that /B(y) dy = 0. Note that p — A} is a C* mapping from P C R an open set,
v

such that 0 € CI P, to LE(Y; £(Sym, Sym)), for every k € N, thus we have a smooth

dependence with respect to a parameter p.

Theorem 17 implies that there is a subsequence (Azk) such that for every p € P,
A" AN Ap in My (v, 5;92), and p — Ap is a C* mapping from P to L (Y; £(Sym, Sym)).
By Theorem 18, every H-converging subsequence of (A7) has the same limit, thus the
entire sequence (Ag) H-converges to Ap. Since p +—> Ap is a C*¥ mapping from P to

L3 (Y5 £L(Sym, Sym)), by using Taylor’s theorem it follows that
Ap = A(] +pB0 —|—p2C0 + O<p2) in €. (129)

The goal of small-amplitude homogenization is to obtain the explicit formula for the leading

terms By and Cj in the expansion of the homogenization limit. Theorem 18 implies that

AE,, E, = / (Ao + pB(¥)(Even + VYL (y)) : (Bye + VVUL (y) dy,  (1.30)

for m,n,r,s € {1,2,---,d}, where w?,,, € H}(Y)/R are solutions of (1.27) with Ay + pB
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Chapter 1. General homogenization theory for elastic plate equation

instead of M, i.e. of

divdiv ((Ag +pB(y))(Ep, + VVU?, (y)) =0 inY,
y — wh (y) is Y-periodic.

By using the integration by parts in (1.30), one easily gets
AEpn By = AEyy Byt p [ BYVUL,,  Byody + [ AV, : VYL, dy+
Y Y

+p / BE,., : VVu?, dy + p / BYVW! : VVu?, dy. (1.32)
Y Y

Let us define
T(p)v := divdiv (Ao + pB)VVv), v € HL(Y)/R.

Note that T'(p) may be written as a composition P o (Ag + pB), where

P LP(Y; L(Sym,Sym)) — L(HZL(Y)/R, (HL(Y)/R)) is defined with P(N) := divdiv (NVV-),
N € L (Y; £(Sym, Sym)). Furthermore, going along the same lines as in the proof of
Theorem 17, it follows that the mapping p — (T'(p))~! is also a C* mapping from P C R

to L((H%(Y)/R)",H%(Y)/R). By using this and the definition of w?,,, we conclude that

p — wP is a C*¥ mapping from P C R to Hi(Y)/R, for any £ € N. Hence, one can

mn

i P
write wh =~ as

wh = wy™ 4+ pwi™ + o(p).

Due to the given boundary value problem (1.31), after comparing expressions corresponding
to the same powers of p, it is easy to conclude that wy™ = 0: first we insert w?,  in the

corresponding boundary value problem

mn=1,...,d

divdiv ((Ag + pB(y)) (Emy + VVUE, (y)) =0 inY,
y— wP (y) is Y-periodic.

By comparing expressions corresponding to the same powers of p, we obtain

{divdiv(Ao(Emn+VVw6”"))=0 Y =1

y — wi™ s Y-periodic.

Uniqueness of the solution of this boundary value problem implies w{™ = 0.

If we insert the expression for w® = in formula (1.32), we have

~

A,E.: En. = AcE, : E,y + p? / BYVw!™ : E,, dy+
Y

+p / AV VW™ : TV dy+ (1.33)
Y
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