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Summary

The main goal of this thesis is to study homogenization of the Kirchhoff-Love model for
pure bending of a thin symmetric elastic plate, which is described by the fourth order elliptic
equation. Homogenization theory is one of the most successful approaches for dealing
with optimal design problems (in conductivity or linearized elasticity), which consists
of arranging given materials such that obtained body satisfies some optimality criteria,
typically expressed mathematically as the minimization of some (integral) functional under
some (PDE) constraints. The key role in homogenization theory has H-convergence.

After a brief introduction, in Chapter 1 we prove a number of properties of H-convergence,
such as locality, independence of boundary conditions, metrizability of H-topology, conver-
gence of energies and a corrector result. We also discuss smooth dependence of H-limit on
a parameter and calculate the H-limit of a periodic sequence of tensors. Moreover, we give
special emphasis to calculating the first correction in the small-amplitude homogenization
limit of a sequence of periodic tensors.

Using this newly developed theory, in Chapter 2 we put our focus on the composite
elastic plate. We show the local character of the set of all possible composites, also called
the G-closure, and prove that the set of composites obtained by periodic homogenization
is dense in that set. Additionally, we derive explicit expressions for elastic coefficients
of composite plate obtained by mixing two materials in thin layers (known as laminated
material), and for mixing two materials in the low-contrast regime. Moreover, we derive op-
timal bounds on the effective energy of a composite material, known as Hashin-Shtrikman
bounds. In the case of two-phase isotropic materials, explicit optimal Hashin-Shtrikman
bounds are calculated. We show that an analogous results can be derived for the comple-
mentary energy of a composite material.

Keywords: Kirchhoff-Love model of elastic plate, composite material, G-closure,
Hashin-Shtrikman bounds, homogenization, H-convergence, laminated material, small-
amplitude homogenization;
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Sažetak

Teorija homogenizacije razvijena je za eliptičku jednadžbu drugog reda, a glavni cilj
ove disertacije je razvoj teorije homogenizacije za Kirchhoff-Loveovu jednadžbu tanke
simetrične elastične ploče, koja je eliptička jednadžba četvrtog reda. Teorija homoge-
nizacije jedan je od najuspješnijih pristupa rješavanju problema optimalnog dizajna (u
vodljivosti i lineariziranoj elastičnosti), gdje je cilj odrediti raspored danih materijala (ili
samo jednog materijala) u danom univerzalnom skupu. Pri tome se optimalnost rasporeda
(distribucije) materijala mjeri funkcionalom koji je obično integralni funkcional koji ovisi
o distribuciji materijala, ali i rješenju pripadne parcijalne diferencijalne jednadžbe.

Osnovni pojam teorije homogenizacije predstavlja H-konvergencija. Spagnolo je 1968.
godine uveo pojam G-konvergencije za simetrične koeficijente, a zatim su taj pojam gener-
alizirali Tartar 1975. godine, te Murat i Tartar za nesimetrične koeficijente, pod imenom
H-konvergencija 1978. godine. Teorija je najprije razvijena za jednadžbu stacionarne
difuzije, a kasnije proširena na sustav linearizirane elastičnosti. Postoje i rezultati za
eliptičke jednadžbe višeg reda, a također i opsežna literatura od strane ruskih autora koji
često koriste termin jaka G-konvergencija. Motivirani mogućim primjenama u optimal-
nom dizajnu, 1999. godine Antonić i Balenović definirali su H-konvergenciju u kontekstu
jednadžbe elastične ploče te su pokazali da vrijedi teorem kompaktnosti.

Nakon uvoda, u Poglavlju 1 dokazuju se novi rezultati o svojstvima H-konvergencije
promatrane jednadžbe, poput lokalnosti, neovisnosti o rubnim uvjetima, metrizabilnosti
H-topologije i konvergencije energija. Izvode se rezultati o korektorima, te se komentira
njihova jedinstvenost. Pri izvođenju ovih rezultata, koristi se Tartarova metoda oscilira-
jućih test funkcija i rezultat kompaktnosti kompenzacijom, čija je varijanta dokazana za
jednadžbu elastične ploče. Analizira se glatka ovisnost H-limesa o parametru i računa
H-limes periodičkog niza tenzora. Općenito, H-limes je nemoguće eksplicitno izračunati,
osim u nekim posebnim slučajevima, među kojima je i proces periodičke homogenizacije.
Proučava se i homogenizacija malih amplituda u periodičkom slučaju, čiji je cilj izračunati
H-limes niza koeficijenata koji imaju slična elastična svojstva.

Koristeći prethodno dokazane rezultate, u Poglavlju 2 poseban naglasak stavljen je
na kompozitne materijale, tj. na mješavinu materijala na mikroskali. Ovdje se prirodno
pojavljuje problem određivanja skupa svih mogućih mješavina dobivenih postupkom ho-
mogenizacije, koji je poznat pod nazivom Problem G-zatvarača. Općenito, za jednadžbu
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Sažetak

elastične ploče G-zatvarač nije poznat, čak ni za mješavine dvaju izotropnih faza. Pokazuje
se lokalni karakter G-zatvarača, te da je skup svih mješavina dobivenih procesom peri-
odičke homogenizacije gust podskup G-zatvarača. Nadalje, izvode se efektivni koeficijenti
elastične ploče nastale miješanjem dva materijala u tankim slojevima (ovako proizvedeni
materijali nazivaju se lamine), te efektivni koeficijenti ploče napravljene od dva materijala
sa sličnim elastičnim svojstvima, odnosno pod pretpostavkom malog kontrasta ili malih
amplituda. Izvode se i optimalne ocjene na efektivnu energiju kompozitnog materijala,
poznate kao Hashin-Shtrikmanove ocjene. Za primjenu u optimalnom dizajnu potrebno ih
je eksplicitno izračunati, kao i odgovarajuće (nizovne) lamine koje ih saturiraju, stoga se
u slučaju mješavine dva izotropna materijala, računaju eksplicitne Hashin-Shtrikmanove
ocjene. Također, analogni rezultati izvode se i za komplementarnu eneriju kompozitnog
materijala.

Očekuje se da će dobiveni rezultati utrti put k novim rezultatima vezanim za optimalni
dizajn tankih elastičnih ploča.

Ključne riječi: Kirchhoff-Loveov model elastične ploče, kompozitni materijal, G-
zatvarač, Hashin-Shtrikmanove ocjene, homogenizacija, H-konvergencija, laminirani ma-
terijal, homogenizacija malih amplituda;
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Introduction

Historical roots and motivation

The theory of homogenization is interesting from both the theoretical and the prac-
tical perspective. In order to use its full potential, one first has to develop theoretical
results, which might have important applications, for example in optimal design problems.
Commonly, optimal design problems do not have solutions (if they exist, such solutions
are usually called classical). Therefore, one needs to consider a proper relaxation of the
original problem. A relaxation by the homogenization method was introduced in [58], and
it consists in introducing generalized composite materials, which are mixtures of original
phases on a microscopic scale. Such relaxed problems have solutions, and we call them
relaxed or generalized solutions.

The physical idea of homogenization is to average heterogeneous media in order to
derive effective properties: we have a fine mixture of some materials and we want to
approximate it by a new homogeneous one. Justification for this procedure is that we are
not interested in what is happening at every point of the problem domain but rather what
is happening on a macroscopic scale. For example, in the model problem of conductivity we
are not interested in the pointwise temperature, but in average temperature in some (small)
region. The outcomes of this approach are very important, since from a numerical point
of view, solving equations will require too much effort if the length scale of heterogeneity
is very small.

Therefore, rather than considering a simple heterogeneous media with a fixed length
scale ε(n), such that ε(n)→ 0 as n→ +∞, and studying a single problem, we observe a
sequence of similar problems: Anun = f in Ω

initial/boundary condition ,

where An, n ∈ N, are partial differential operators and Ω some highly heterogeneous
domain. Information about the heterogeneity of Ω is usually contained in coefficients of
the corresponding PDE. One can let the length scale go to zero: if un → u and An → A

(in some sense), as n → ∞, the following initial/boundary value problem is called the
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Introduction

limit (effective, homogenized) problem:
 Au = f in Ω

initial/boundary condition .

Clearly, the mathematical difficulty is to define an adequate topology for this notion
of convergence of problems, as n → ∞; the most important concept in the theory of
homogenization is that of H-convergence. It was introduced by Spagnolo through the
concept of G-convergence for symmetric coefficients [65], and further generalized by Tartar
[71] and Murat and Tartar for non-symmetric coefficients under the name H-convergence
[58]. The theory was first developed for the stationary diffusion equation and later extended
to a linearized elasticity system (see [2] and references therein). There is also a quite
extensive literature by Russian authors who often use the term strong G-convergence [61,
76]. The compactness of H-convergence and many properties such as metrizability, locality,
irrelevance of boundary conditions and energy convergence are proved. Also, corrector
results are derived. We can say that theory is well developed for second order elliptic partial
differential equations, and there are also some results for higher order elliptic equations [77].
Motivated by a possible applications in optimal design, Antonić and Balenović defined
H-convergence in the context of elastic plate equation and established the compactness of
H-convergence [9, 10].

Let us remark that H-convergence is not the only approach in the theory of homoge-
nization, although it is probably the most general. There are also a stochastic theory of
homogenization [43], and variational theory of homogenization, known as the Γ-convergence
method [29]. It is interesting to note that the mathematical theory of homogenization
started in at least three directions. The oldest one is concerned with a general theory for
the convergence of operators already mentioned as the G-convergence or H-convergence.
The second direction is the asymptotic study of perforated domains which contain many
small holes [52, 63], and third is the study of periodic homogenization problems [16]. Since
then, the mathematical theory of homogenization has been significantly developed, and
has numerous applications.

The goal of this thesis is to develop homogenization theory for the Kirchhoff-Love
equation of an elastic, thin, symmetric plate, which is a fourth order elliptic equation.
This model can be formally justified by taking a limit in 3D elasticity equations with a
variant of the H-convergence method [28] or by using Γ-convergence [18]. An assumption
that plate is symmetric with respect to its midplane simplifies the theory, since it is
equivalent to consider G-convergence [35, 51] instead of H-convergence. However, in this
thesis the general theory shall be presented, ignoring this symmetry assumption. For the
general theory of elastic plates see [23].

The homogenization method appears to be a physically justified tool for the modelling

2



Introduction

of composite materials, i.e. mixtures of two or more materials on a microscopic scale. It
shows that such mixtures (e.g. steel, carbon fibers) can have much better properties than
the components it is made of, so these materials are intensively studied by physicists,
engineers and mathematicians [2, 22, 35, 51, 54, 72, 74]. The natural problem is to
describe the composite material obtained by the homogenization process. Describing the
set of all composite materials obtained by the homogenization process is known as the
G-closure problem. Characterization of the G-closure is known for the mixture of two
isotropic conductors [48, 49], but it is unknown for linearized elasticity system, even for the
mixture of two isotropic materials. In the case of an elastic plate, G-closure is known only
in some special regimes [50]. It is possible to obtain approximations of the G-closure in
the small-amplitude or low contrast regime in the setting of stationary diffusion equation
[72], when we mix two materials with similar properties.

By using H-convergence and H-measures as a tool, the small-amplitude homogenization
for stationary diffusion equation is developed [68], i.e. the explicit formula for coefficients
up to the second order term is derived. In this way, a small-amplitude homogenization
result for the periodic case [16] is extended. Using similar techniques, Antonić and Vrdoljak
developed the small-amplitude homogenization result for the parabolic equation [12, 13].
For the elastic plate equation, the low contrast regime was not studied up to date, and
that is one of the goals of this thesis.

In order to derive some effective properties of composite materials, Hashin-Shtrikman
bounds are calculated, i.e. bounds on the effective energy of a composite material, which
are well known for stationary diffusion equation and elasticity [2]. However, to obtain
effective properties and for application in optimal design, it is necessary to calculate them
explicitly, as well as the corresponding (sequential) laminates that saturate them [2]. In the
case of two-dimensional linearized elasticity this is done in [5], but for the plate equation
that is an open problem, which is one of the topics of this thesis.

Overview
In Chapter 1 we prove a number of properties of H-convergence, discuss smooth de-

pendence of H-limit on a parameter and calculate the H-limit of a sequence of periodic
tensors. Moreover, we give special emphasis to calculating the first non-vanishing (usually
second-order) term in the small-amplitude homogenization limit of a sequence of periodic
tensors.

In Chapter 2 we establish the local character of the G-closure, and prove the density
of the set of composites obtained by periodic homogenization in that set. We describe the
sequential laminates, a particularly interesting class of composite materials, and derive
optimal Hashin-Shtrikman bounds on the primal and complementary energy. Moreover,
we derive expressions for elastic coefficients of a composite plate obtained by mixing two
materials in low-contrast regime. In the case of two-phase isotropic materials, explicit

3
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Hashin-Shtrikman bounds on the primal and complementary energy are calculated.
Before reading this thesis, the reader may wish to view the Appendix, since it contains

some basic notation and elementary results.
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Chapter 1

General homogenization theory for
elastic plate equation

In this chapter we prove the main properties of the H-convergence, which correspond
to the similar properties obtained for the stationary diffusion equation, including locality,
independence of boundary conditions, metrizability of H-topology, convergence of energies
and corrector result. The proofs are commonly based on Tartar’s method of oscillating
test functions. We also discuss smooth dependence of the H-limit on a parameter and
calculate the H-limit of a periodic sequence of tensors. Moreover, we explicitly calculate
the first correction in the small-amplitude homogenization limit of a sequence of periodic
tensors describing material properties in the Kirchhoff model for pure bending of a thin
solid symmetric plate under a transverse load. The majority of the results of this chapter
can be found in [20, 21].

1.1 Introduction

We consider a homogeneous Dirichlet boundary value problem for a general fourth-order
partial differential equation  div div (M∇∇u) = f in Ω

u ∈ H2
0(Ω)

, (1.1)

where Ω ⊆ Rd is an open and bounded set, and M is a tensor valued function, which
can be understood as a linear operator on the space of all symmetric d× d real matrices,
denoted by Sym.

The weak solution u of (1.1) is defined as a function u ∈ H2
0(Ω) satisfying

(∀ v ∈ H2
0(Ω))

∫
Ω

M∇∇u : ∇∇v dx = H−2(Ω)〈 f, v 〉H2
0(Ω) .

The problem is elliptic, if we assume that M is bounded (almost everywhere) and coercive.

5



Chapter 1. General homogenization theory for elastic plate equation

More precisely, we assume that

M ∈M2(α, β; Ω) :=
{

N ∈ L∞(Ω;L(Sym, Sym)) : (∀S ∈ Sym) N(x)S : S ≥ αS : S &

N(x)−1S : S ≥ 1
β

S : S a. e. x ∈ Ω
}
,

where β > α > 0 are given, and : stands for the scalar product on the space Sym. The
bounds are chosen in this form to ensure their preservation during the homogenization
process, as it was shown in the case of stationary diffusion equation [58].

The well-posedness follows by a standard application of the Lax-Milgram lemma. To
be precise, the differential operator div div (M∇∇·) : H2

0(Ω) −→ H−2(Ω) is an isomorphism,
i.e. a linear and continuous operator with bounded inverse (the bound depending only on
Ω and α).

In the two-dimensional case, boundary value problem (1.1) describes the Kirchhoff
(also known as Kirchhoff-Love) model for pure bending of a thin, solid symmetric plate
clamped at the boundary, under a transverse load f . This model can be derived by
taking a limit in 3d elasticity equations with a technique similar to H-convergence [28],
or by means of Gamma-convergence [18] (for classical reference see [23]). The plate is
assumed to be symmetric with respect to its midplane Ω and a tensor valued function M
describes its elastic properties (depending on the material properties and the thickness
of the plate). In this model, additional symmetry is present, making the tensor valued
function M self-adjoint. This assumption simplifies the theory, since it is equivalent to
consider G-convergence [35, 51] instead of H-convergence. However, in this chapter we
shall present the general theory (in arbitrary space dimension), ignoring this symmetry
assumption.

We are interested in the general (non-periodic) homogenization theory for this equation.
This theory is well developed for second-order elliptic problems, such as the stationary
diffusion equation or the system of linearized elasticity, for which the notion of H- (or G-)
convergence has been studied and properties, such as compactness, locality, independence
of boundary conditions and convergence of energies, have been established (see [2, 72]
and references therein). In [77], a homogenization of a general elliptic system of partial
differential equations has been considered, and some of the above mentioned properties
have been shown in such full generality. However, due to this generality, some of the
important properties are missing, while proofs end up being rather complicated.

The results concerning homogenization of the elastic plate equation have already been
initiated by Antonić and Balenović [9, 10], where, prompted by possible applications in
optimal design problems, a more direct approach to the homogenization of the stationary
plate equation was considered, and an appropriate variant of H-convergence was defined.
Additionally, compactness of H-convergence was established.

6



1.1. Introduction

Definition 1 A sequence of tensor functions (Mn) in M2(α, β; Ω) is said to H-converge
to M ∈M2(α′, β′; Ω) if for any f ∈ H−2(Ω) the sequence of solutions (un) of problems

 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

converges weakly to a limit u in H2
0(Ω), while the sequence (Mn∇∇un) converges to

M∇∇u weakly in the space L2(Ω; Sym). If this is the case, then M is called H-limit of
the sequence (Mn); note that u solves the boundary value problem

 div div (M∇∇u) = f

u ∈ H2
0(Ω)

.

The sequences (un) and (Mn∇∇un) in the above definition are bounded in H2
0(Ω) and

L2(Ω; Sym), respectively, and thus converge (on a subsequence). Therefore, H-convergence
just makes a connection between their limits. Since the existence of the H-limit M is
doubtful, the following compactness theorem justifies the previous definition. Moreover, it
shows that the bounds in definition of M2(α, β; Ω), which could also be written in many
equivalent ways, are chosen in such a way that in the previous definition one actually has
α′ = α and β′ = β.

Theorem 1 (Compactness theorem for H-convergence) Let (Mn) be a sequence in
M2(α, β; Ω). Then there is a subsequence (Mnk) and a tensor function M ∈M2(α, β; Ω)
such that (Mnk) H-converges to M.

In order to proceed with the proof of Theorem 1, we need the following two lemmas
[9, 10]. The first of them presents the compactness by compensation result and has the
key role in proving properties of H-convergence for elastic plate equation. This lemma
plays the same role as the div-rot lemma in the theory of homogenization for second-order
operators [72].

Lemma 1 (Compactness by compensation result) Let the following convergences be valid:

wn −⇀ w∞ in H2
loc(Ω) ,

Dn −⇀ D∞ in L2
loc(Ω; Sym) ,

with an additional assumption that the sequence (div div Dn) is contained in a precompact
(for the strong topology) set of the space H−2

loc(Ω). Then we have

En : Dn ∗−−⇀ E∞ : D∞

in the space of Radon measures on Ω, denoted by M(Ω), where En := ∇∇wn, for
n ∈ N ∪ {∞}.

7



Chapter 1. General homogenization theory for elastic plate equation

Proof. Since the sequence (div div Dn) is contained in a precompact (for the strong topol-
ogy) set of the space H−2

loc(Ω), and div div Dn ⇀ div div D∞ weakly in H−2
loc(Ω), there is a

subsequence (div div Dnk) converging to div div D∞ in H−2
loc(Ω) strongly. On the other hand,

for ϕ ∈ C∞c (Ω), the sequence (ϕwn) converges weakly to ϕw∞ in H2
c (Ω), therefore we have

H−2
loc(Ω)〈 div div Dnk , ϕwnk 〉H2

c (Ω) → H−2
loc(Ω)〈 div div D∞, ϕw∞ 〉H2

c (Ω) =
∫
Ω

D∞ : ∇∇(ϕw∞) dx.

(1.2)
Integration by parts of the term on the left-hand side of (1.2) yields

H−2
loc(Ω)〈 div div Dnk , ϕwnk 〉H2

c (Ω) =
∫
Ω

Dnk : ∇∇(ϕwnk) dx

=
∫
Ω

Dnk : (∇∇ϕ)wnk dx + 2
∫
Ω

Dnk : (∇ϕ⊗∇wnk) dx +
∫
Ω

Dnk : ϕ∇∇wnk dx.

By using the compactness argument for Sobolev imbeddings, we have ∇wnk −→ ∇w∞ in
L2

loc(Ω; Rd) and wnk −→ w∞ in L2
loc(Ω). Therefore, we can pass to the limit in the first

two terms of the above equality. On the other hand, a comparison argument shows that
the term

∫
Ω

Dnk : ϕ∇∇wnk dx converges to the limit

∫
Ω

D∞ : ∇∇(ϕw∞) dx−
∫
Ω

D∞ : (∇∇ϕ)w∞ dx− 2
∫
Ω

D∞ : (∇ϕ⊗∇w∞) dx

=
∫
Ω

D∞ : ϕ∇∇w∞ dx.

This gives the statement of the lemma for a subsequence. However, one can easily see that
the same holds for any subsequence, with the same limit, and thus for the entire sequence
itself. �

Lemma 2 Let (Mn) be a sequence of tensor functions in M2(α, β; Ω) and An : H2
0(Ω)→

H−2(Ω) defined with:
Anv := div div (Mn∇∇v), v ∈ H2

0(Ω).

Then there is a subsequence (Mnk), and operators A∞ ∈ L(H2
0(Ω); H−2(Ω)),

R ∈ L(H−2(Ω); L2(Ω; Sym)), such that A−1
nk
−⇀ A−1

∞ weakly in the sense of operators, and
that for arbitrary f ∈ H−2(Ω) we have Mnk∇∇unk −⇀ Rf in L2(Ω; Sym), where (unk

) is
the sequence of solutions of problems div div (Mnk∇∇unk

) = f

unk
∈ H2

0(Ω)
. (1.3)

Proof. Let G = {f1, f2, . . . } be a countable dense subset of H−2(Ω). In the sequel, by
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1.1. Introduction

using a diagonal procedure, we shall construct operators B and R which are well defined
on G, and then extend those operators by continuity to linear operators on H−2(Ω).

More precisely, since ‖A−1
n ‖L(H−2(Ω),H2

0(Ω)) ≤
1
α
, the sequence (A−1

n f1) is bounded in
H2

0(Ω), and has a weakly convergent subsequence which converges to Bf1. We repeat
the same procedure with that subsequence for f2 and denote the cluster point by Bf2;
analogously we do for f3, etc. Finally, we take a diagonal subsequence (Ank

) so that the
following holds:

(∀m ∈ N) A−1
nk
fm −⇀ Bfm in H2

0(Ω).

Let us now extend the operator B : G → H2
0(Ω) to linear operator in H−2(Ω). For arbitrary

f ∈ H−2(Ω), we take a sequence (fm) in G such that fm → f , as m→∞, in H−2(Ω), and
define Bf := lim

m→∞
Bfm. From this construction one can easily conclude that

(∀f ∈ H−2(Ω)) A−1
nk
f −⇀ Bf in H2

0(Ω),

which yields a well defined linear operator B : H−2(Ω)→ H2
0(Ω). This operator is bounded

by 1
α
, since

H−2(Ω)〈 f, A−1
nk
f 〉H2

0(Ω) = H−2(Ω)〈Ank
unk

, unk
〉H2

0(Ω) ≥ α‖A−1
nk
f‖2

H2
0(Ω),

and by taking the limit inferior in k we have:

‖Bf‖H2
0(Ω)‖f‖H−2(Ω) ≥ H−2(Ω)〈 f,Bf 〉H2

0(Ω) ≥ α lim inf
k
‖A−1

nk
f‖2

H2
0(Ω) ≥ α‖Bf‖2

H2
0(Ω).

Moreover, it is easy to show that B is coercive with α

β2 :

H−2(Ω)〈 f,Bf 〉H2
0(Ω) ≥ α lim inf

k
‖A−1

nk
f‖2

H2
0(Ω) ≥ α lim inf

k

1
β2‖f‖

2
H−2(Ω) = α

β2‖f‖
2
H−2(Ω).

By Lax-Milgram lemma B is invertible, and after denoting A∞ := B−1 it follows that
A−1
nk
−⇀ A−1

∞ weakly in the sense of operators.

If (unk
) is a sequence of solutions to (1.3), then

unk
−⇀ u∞ = Bf in H2

0(Ω).

The sequence (Mnk∇∇unk
) is bounded in L2(Ω; Sym), therefore, by using a diagonal

procedure once more, we can construct a subsequence (Mnk) (still denoted by nk) such
that for f ∈ G we have

Mnk∇∇unk
−⇀ Rf in L2(Ω; Sym),

9



Chapter 1. General homogenization theory for elastic plate equation

where unk
are solutions to (1.3) for that f . This defines an operator R : G → L2(Ω; Sym),

which is clearly bounded: since Mnk∇∇unk
= Mnk∇∇(A−1

nk
f), we have

‖Mnk∇∇unk
‖L2(Ω;Sym) ≤ β‖∇∇(A−1

nk
f)‖L2(Ω;Sym) ≤ β‖A−1

nk
f‖H2

0(Ω) ≤
β

α
‖f‖H−2(Ω).

Finally, after taking the limit inferior in k, we conclude that ‖R‖ ≤ β

α
. An analogous

construction as in the first part of the proof yields a linear operator R : H−2(Ω) →
L2(Ω; Sym), which completes the proof. �

Proof of Theorem 1. Let (An) and A∞ as in Lemma 2. First we prove that the
operator A∞ is of the same form as operators An, in the sense that there is a tensor M∞

such that A∞u = div div (M∞∇∇u). This can be shown by using the method of oscillating
test functions [66]. This method consists of constructing a sequence of functions (vn) in
H2(Ω) such that

vn −⇀ v∞ in H2(Ω),
div div

(
(Mn)T∇∇vn

)
−→ g∞ in H−2

loc(Ω), (1.4)

(Mn)T∇∇vn −⇀ W∞ in L2
loc(Ω; Sym).

In order to construct the sequence of oscillating test functions, we choose an open set
Ω′ which contains the closure of Ω. For x ∈ Ω′\Ω we define the extension of tensor
Mn(x) := αI4, and for a given g ∈ H−2(Ω′) define (vn) to be the sequence of solutions to
boundary value problems Ãnvn := div div ((Mn)T∇∇vn) = g

vn ∈ H2
0(Ω′)

.

Since we obviously have (Mn)T ∈ M2(α, β; Ω′), the sequence (vn) is bounded in H2
0(Ω′),

and therefore in H2(Ω), hence it has a subsequence satisfying (1.4). Finally, the associated
operator Ã∞ is an isomorphism between spaces H2

0(Ω′) and H−2(Ω′); therefore, by choosing
an arbitrary function g we can get any v∞ ∈ H2

0(Ω′) and vice versa.
Let (un) be the sequence of solutions of problems (1.3). By Lemma 1, we can pass to

the limit on both sides of the equality

Mn∇∇un : ∇∇vn = ∇∇un : (Mn)T∇∇vn,

which gives us Cu∞ : ∇∇v∞ = ∇∇u∞ : W∞, where C = RA∞ (see Lemma 2). By
choosing v∞(x) := 1

2xixj in Ω, we have (Cu∞)ij = ∇∇u∞ : Wij
∞, or, in other words,

there is a tensor M∞ such that Cu∞ = M∞∇∇u∞. The above construction yields
M∞ ∈ L2(Ω;L(Sym, Sym)).

10



1.1. Introduction

It remains to show that M∞ ∈ M2(α, β; Ω), i.e. we shall show the equivalent claim
that (M∞)T ∈ M2(α, β; Ω): let ϕ ∈ C∞c (Ω) and v∞(x) := 1

2Nx · x, N ∈ Sym. Since
(Mn)T ∈M2(α, β; Ω), we have:

∫
Ω

ϕ2(Mn)T∇∇vn : ∇∇vn dx ≥ α
∫
Ω

ϕ2|∇∇vn|2 dx. (1.5)

Applying the Lemma 1 to the left-hand side of (1.5), gives
∫
Ω

ϕ2(M∞)TN : N dx ≥ α lim inf
n

∫
Ω

ϕ2|∇∇vn|2 dx ≥ α
∫
Ω

ϕ2N : N dx.

This implies the coercivity of (M∞)T a. e. in Ω. Since (Mn)T belongs to M2(α, β; Ω), it
also satisfies

∫
Ω

ϕ2((Mn)T )−1(Mn)T∇∇vn : (Mn)T∇∇vn dx ≥
1
β

∫
Ω

ϕ2|(Mn)T∇∇vn|2 dx. (1.6)

Analogously as when showing coercivity of (Mn)T , from (1.6) we obtain:
∫
Ω

ϕ2(M∞)TN : N dx ≥ 1
β

∫
Ω

ϕ2|(M∞)TN|2 dx.

This implies the boundedness of (M∞)T a. e. in Ω, which completes the proof, i.e. (M∞)T ∈
M2(α, β; Ω). �

As it is already said, in this chapter we are also interested in the small-amplitude
homogenization limit of a sequence of periodic tensors. The small-amplitude homogeniza-
tion procedure of Tartar [72] consists in computing the first correction in the H-limit of
a sequence of coefficients, whose difference is proportional to a small parameter. More
precisely, after making an asymptotic expansion of the H-limit in terms of the small-
amplitude parameter, one wishes to explicitly characterize its first non-vanishing (usually
second-order) term. Its physical relevance is in deriving (approximate) effective properties
of (conducting or elastic) material that is made by mixing two materials under the so
called small-amplitude, small-contrast or small aspect ratio assumption, i.e. that origi-
nal materials have close coefficients or material properties (for some applications see for
example [3, 4, 39]).

The explicit formula for the correction in the case of second-order elliptic [68] (or
parabolic [12]) equation can in general be obtained by using H-measures [69, 70] (or their
variants [11]). However, in the case of periodic coefficients, the same can be done by using
Fourier expansions [13]. In this thesis we use the second approach and explicitly calculate
the first correction in the small-amplitude homogenization process for the periodic sequence
of tensors.

11



Chapter 1. General homogenization theory for elastic plate equation

We are interested in the following expansion of the H-limit:

Ap := A0 + pB0 + p2C0 + o(p2) in Ω,

where p is some positive real number, and thus we shall use a variant of Taylor’s theorem
which is appropriate for Banach spaces. We first recall the notion of Frechet differentiable
function [7], which is a natural extension of the usual definition the differential of a map
in Euclidean spaces to Banach spaces.

Let X and Y be Banach spaces, U an open subset of X, and we denote

Inv(X, Y ) = {A ∈ L(X, Y ) : A is invertible},

where L(X, Y ) is the space of linear continuous maps A : X → Y .

Definition 2 Let x0 ∈ U . We say that F is Frechet differentiable at x0 if there exists
A ∈ L(X, Y ), such that

R(h) := F (x0 + h)− F (x0)− A(h)

satisfies
R(h) = o(‖h‖X).

Such an operator A is uniquely determined (if it exists) and will be called the (Frechet)
differential of F at x0, with notation A = F ′(x0). If F is differentiable at all x0 ∈ U we
say that F is differentiable in U .

To define the n-th differential (n ≥ 2) we can proceed by induction. The n-th differential
at a point x0 ∈ U will be identified with a continuous n-linear map from X ×X × · · ·×X
(n times) to Y , and denoted by F (n)(x0).

Proposition 1 [7, p. 31, Proposition 1.1]

(i) Inv(X, Y ) is an open subset of L(X, Y ). More precisely, if A ∈ Inv(X, Y ) then any
T ∈ L(X, Y ) such that

‖T − A‖L(X,Y ) <
1

‖A−1‖L(Y,X)

is invertible.

(ii) The map J : Inv(X, Y ) → L(Y,X) defined by J(A) = A−1 is Ck for all k ≥ 1
(i.e. C∞). Additionally, J ′(A)(B) = −A−1 ◦B ◦ A−1, B ∈ L(X, Y ).

For u,v ∈ U let [u,v] := {tu + (1− t)v : t ∈ [0, 1]}.
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1.1. Introduction

Theorem 2 [7, p. 13, Theorem 1.8] Let F : U ⊆ X → Y be Frechet differentiable at
every point of U . Given u, v ∈ U such that [u,v] ⊆ U , it follows

‖F (u)− F (v)‖Y ≤ sup{‖F ′(w)‖L(X,Y ) : w ∈ [u,v]}‖u− v‖X .

Theorem 3 [59, p. 187, Theorem 6.1](Taylor’s theorem) Let F : U ⊆ R → Y be n times
Frechet differentiable at a point x0 ∈ U . Then

F (x0 + h) = F (x0) + F ′(x0)h+ · · ·+ 1
n!F

(n)(x0)hn + r(x0;h),

where r(x0;h) ∈ o(|h|n).

In order to state the small-amplitude homogenization results precisely, we need to show
that the H-limit of a sequence depending smoothly on a parameter is also smooth. Since
continuity is preserved by uniform convergence, we shall use the Arzelà-Ascoli theorem
for the purpose of constructing a uniformly converging subsequence.

Definition 3 Let (X, d1) and (Y, d2) be two metric spaces. A family F of functions defined
on a set E in a metric space X, with codomain Y , is said to be equicontinuous on E if

(∀ε > 0)(∃δ > 0)(∀x, y ∈ E)(∀f ∈ F) d1(x, y) < δ ⇒ d2(f(x), f(y)) < ε.

Theorem 4 [64, p. 158, Theorem 7.25](Arzelà-Ascoli) If K is compact, fn ∈ C(K),
n ∈ N, and if {fn : n ∈ N} is pointwise bounded and equicontinuous on K, then

(i) (fn) is bounded in C(K),

(ii) (fn) has a uniformly converging subsequence.

When dealing with periodic homogenization, we need the notion of a quotient space
[44, 53].

Let M be a subspace of a vector space X over a field K. We define an equivalence
relation on X such that for x, y ∈ X, x ∼ y if and only if x − y ∈ M . For x ∈ X, an
equivalence class is defined with

[x] := x +M = {x + m : m ∈M}.

On the quotient set
X/M := {x +M : x ∈ X}

the following operations are well defined:

(x +M) + (y +M) := (x + y) +M, x, y ∈ X,
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Chapter 1. General homogenization theory for elastic plate equation

and
α(x +M) := (αx) +M, x ∈ X, α ∈ K.

The vector space X/M over a field K, with the vector space operations given above, is
called the quotient space.

Theorem 5 [53, p. 51-53] LetM be a closed subspace of a normed space X. The quotient
norm of X/M is given by the formula

‖x +M‖X/M := inf{‖x + m‖X : m ∈M}, x ∈ X,

and it is a norm on X/M . Additionally, if X is a Banach space, then X/M is also a
Banach space.

We are also interested in duals of quotient spaces.

Definition 4 Let X be a normed space andM a subspace of X. We define its annihilator
by

M0 := {f ∈ X ′ : X′〈 f,x 〉X = 0, x ∈M}.

Obviously, M0 is a subspace of X ′.

Theorem 6 [75, p. 85, Theorem 4.4.3] Let X be a normed space andM a closed subspace
of X. Then (X/M)′ is isometrically isomorphic to M0.

Theorem 7 [60, p. 108, Theorem 7.2] Assume that Ω is a bounded, open subset of Rd

with Lipschitz boundary, and let Pk−1 be the space of polynomials of degree ≤ k−1. Then
there exist c1, c2 ∈ R+ such that

c1‖[u]‖Wk,p(Ω)/Pk−1 ≤

 ∑
|α|=k
‖Dαu‖pLp(Ω)

 1
p

≤ c2‖[u]‖Wk,p(Ω)/Pk−1 .

If p = 2, Hk(Ω)/Pk−1 is a Hilbert space with the scalar product

([v], [u]) :=
∑
|α|=k

∫
Ω

DαvDαū dx.

1.2 Properties of H-convergence
Using Tartar’s method of oscillating test functions, we give proofs for the above men-

tioned properties of H-convergence for the stationary plate equation, and additionally
prove a number of results, such as the metrizability and the corrector result. The rela-
tionship between H-convergence and some other types of convergence is studied in the
following theorem.

14



1.2. Properties of H-convergence

Theorem 8 Let (Mn) be a sequence of tensors in M2(α, β; Ω) that either converges
strongly to a limit tensor M in L1(Ω;L(Sym, Sym)), or converges to M almost everywhere
in Ω. Then, (Mn) also H-converges to M.

Proof. The sequence (Mn) belongs to M2(α, β; Ω) and therefore it is bounded in
L∞(Ω;L(Sym, Sym)). By the Lebesgue dominated convergence theorem (Mn) converges
strongly to M in Lp(Ω;L(Sym, Sym)), for any 1 ≤ p <∞. If un is the solution of

 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

,

then the sequence (un) is bounded in H2
0(Ω), and therefore (up to a subsequence) it

converges weakly to u ∈ H2
0(Ω).

Since (Mn) converges strongly to M in L2(Ω;L(Sym, Sym)) and (∇∇un) converges
to ∇∇u weakly in L2(Ω; Sym), we conclude that σn := Mn∇∇un converges weakly to
σ = M∇∇u in L1(Ω; Sym), and thus also in L2(Ω; Sym), as the sequence (σn) is bounded
in this space.

The homogenized equation in Definition 1 has a unique solution u ∈ H2
0(Ω), so each

subsequence of (un) converges to the same limit u and this implies that the entire sequence
(un) converges to u. Since f ∈ H−2(Ω) is arbitrary, it follows that (Mn) H-converges to
M.

�

H-convergence is related to the material properties of an elastic plate and it would
be desirable that properties of a given material do not depend on boundary conditions,
e.g. that it is not important whether the plate is clamped at the boundary or not. The next
theorem implies that the notion of H-convergence is not tied to the prescribed boundary
conditions: instead of homogeneous Dirichlet boundary conditions in Definition 1 we can
take any boundary conditions which ensure well posedness of the boundary value problem.

Theorem 9 (Irrelevance of boundary conditions) Let (Mn) be a sequence of tensors in
M2(α, β; Ω) that H-converges to M. For any sequence (zn) such that

zn −⇀ z in H2
loc(Ω)

div div (Mn∇∇zn) −→ f in H−2
loc(Ω),

the weak convergence Mn∇∇zn ⇀ M∇∇z in L2
loc(Ω; Sym) holds.

Proof. Let ω be an open set compactly embedded in Ω. The sequence (zn) is bounded in
H2(ω), implying that (Mn∇∇zn) is bounded in L2(ω; Sym). If we denote σn := Mn∇∇zn,
we can extract a weakly convergent subsequence such that σn ⇀ σ in L2(ω; Sym).

Since ω b Ω, there exists ϕ ∈ C∞c (Ω) such that ϕ|ω = 1. For arbitrary N ∈ Sym, we
define

w(x) := 1
2ϕ(x)Nx · x ,
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Chapter 1. General homogenization theory for elastic plate equation

g := div div (M∇∇w) ∈ H−2(Ω).

Let (wn) be a sequence of solutions to
 div div (Mn∇∇wn) = g

wn ∈ H2
0(Ω)

.

Since (Mn) H-converges to M, the following holds:

wn −⇀ w in H2
0(Ω),

Mn∇∇wn −⇀ M∇∇w in L2(Ω; Sym).

By coercivity of Mn we have

(Mn∇∇zn −Mn∇∇wn) : (∇∇zn −∇∇wn) ≥ 0 a. e. in Ω ,

which, after passing to the limit and using the compactness by compensation result,
becomes

(σ −M∇∇w) : (∇∇z −∇∇w) ≥ 0 a. e. in Ω.

If we consider the previous inequality only in ω, we have:

(σ −MN) : (∇∇z −N) ≥ 0 a. e. in ω. (1.7)

For any joint Lebesgue point x0 ∈ ω of ∇∇z, σ and M, let N = ∇∇z(x0) + tO, where
O ∈ Sym and t ∈ R+ are arbitrary. Now (1.7) yields

(
σ(x0)−M(x0)∇∇z(x0)− tM(x0)O

)
: (−tO) ≥ 0 ,

and after dividing this inequality by −t and taking the limit t→ 0+, it follows

(
σ(x0)−M(x0)∇∇z(x0)

)
: O ≤ 0.

By arbitrariness of O ∈ Sym, the equality σ(x0) = M(x0)∇∇z(x0) easily follows. Due to
uniqueness of the limit σ, the entire sequence Mn∇∇zn converges weakly to M∇∇z in
L2(ω; Sym), which completes the proof.

�

Remark 1 If we change the assumptions of Theorem 9, such that

zn −⇀ z in H2(Ω)
div div (Mn∇∇zn) −→ f in H−2(Ω),
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the weak convergence Mn∇∇zn ⇀ M∇∇z in L2(Ω; Sym) holds.

H-convergence also implies the convergence of energies, as stated in the sequel.

Theorem 10 (Energy convergence) Let (Mn) be a sequence of tensors in M2(α, β; Ω)
that H-converges to M. For any f ∈ H−2(Ω), the sequence (un) of solutions to

 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

satisfies
Mn∇∇un : ∇∇un ∗−−⇀ M∇∇u : ∇∇u

inM(Ω), and ∫
Ω

Mn∇∇un : ∇∇un dx −→
∫
Ω

M∇∇u : ∇∇u dx ,

where u is the solution of the homogenized equation div div (M∇∇u) = f

u ∈ H2
0(Ω)

.

Proof. If we apply Lemma 1, it can easily be seen that

Mn∇∇un : ∇∇un ∗−−⇀ M∇∇u : ∇∇u

in the space of Radon measures, which proves the first statement.
From the weak formulation of given homogeneous Dirichlet boundary value problems

we get
∫
Ω

Mn∇∇un : ∇∇un dx = H−2(Ω)〈 f, un 〉H2
0(Ω) ,∫

Ω

M∇∇u : ∇∇u dx = H−2(Ω)〈 f, u 〉H2
0(Ω) ,

and since (un) converges weakly to u in H2
0(Ω), we have

H−2(Ω)〈 f, un 〉H2
0(Ω) −→ H−2(Ω)〈 f, u 〉H2

0(Ω) ,

which concludes the proof.
�

Theorem 11 (Locality of H-convergence) Let (Mn) and (On) be two sequences of tensors
in M2(α, β; Ω), which H-converge to M and O, respectively. Let ω be an open subset
compactly embedded in Ω. If Mn(x) = On(x), x ∈ ω, then M(x) = O(x), x ∈ ω.
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Proof. The proof goes along the same lines as the proof of Theorem 9: since ω is compactly
embedded in Ω, there exists ϕ ∈ C∞c (Ω) such that ϕ|ω = 1. For arbitrary N ∈ Sym, let
us define

w(x) := 1
2ϕ(x)Nx · x ,

g := div div (M∇∇w) ∈ H−2(Ω) ,

and let wn be a sequence of solutions to div div (Mn∇∇wn) = g

wn ∈ H2
0(Ω)

.

Since (Mn) H-converges to M, it follows that

wn −⇀ w in H2
0(Ω),

Mn∇∇wn −⇀ M∇∇w in L2(Ω; Sym).

For sequence (On) we can proceed similarly: for any S ∈ Sym we introduce

v(x) := 1
2ϕ(x)Sx · x ,

f := div div (O∇∇v) ∈ H−2(Ω) ,

and let (vn) be a sequence of solutions to
 div div (On∇∇vn) = f

vn ∈ H2
0(Ω)

,

thus obtaining
vn −⇀ v in H2

0(Ω),

On∇∇vn −⇀ O∇∇v in L2(Ω; Sym).

By applying the compactness by compensation result, we get

(Mn∇∇wn −On∇∇vn) : (∇∇wn −∇∇vn) ∗−−⇀ (M∇∇w −O∇∇v) : (∇∇w −∇∇v)
(1.8)

in the space of Radon measures. On ω we have∇∇v = S and∇∇w = N, so by assumption
On = Mn in ω, the sequence in (1.8) equals

On(∇∇wn −∇∇vn) : (∇∇wn −∇∇vn) ,

which is nonnegative because of the coercivity of On. Therefore, the limit in (1.8) is also
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1.2. Properties of H-convergence

nonnegative, i.e. (MN−OS) : (N− S) ≥ 0 a. e. in ω. If we choose S = N + tZ, t ∈ R+,

Z ∈ Sym, we obtain

(MN−ON− tOZ) : (−tZ) ≥ 0 in ω ,

and after dividing this inequality by −t and letting t→ 0+, we achieve (M−O)N : Z ≤ 0.
Since Z and N are arbitrary, this implies M = O a. e. in ω.

�

We can rephrase the previous theorem by stating that values of the homogenized tensor
M in a region ω do not depend on values of the sequence (Mn) outside of this region.

The next theorem implies that H-convergence preserves the order of the tensors. Recall
that tensors describe the material properties of the given plate.

Theorem 12 (Ordering property) Let (Mn) and (On) be two sequences of symmetric
tensors in M2(α, β; Ω) that H-converge to the homogenized tensors M and O, respectively.
Assume that (Mn) and (On) are ordered: for each n ∈ N

Mnξ : ξ ≤ Onξ : ξ, ξ ∈ Sym .

Then the homogenized coefficients are also ordered:

Mξ : ξ ≤ Oξ : ξ, ξ ∈ Sym .

Proof. Let us define a sequence (vn) of oscillating test functions satisfying

vn −⇀
1
2Nx · x in H2(Ω) ,

div div (On∇∇vn) −→ gO in H−2
loc(Ω) ,

where N ∈ Sym is arbitrary. Existence of such a sequence is established in the proof
of Theorem 1. Note that ∇∇vn −⇀ N, and additionally we have On∇∇vn −⇀ ON in
L2

loc(Ω; Sym), by Theorem 9.
Similarly, let us take a sequence (wn) of oscillating test functions satisfying

wn −⇀
1
2Nx · x in H2(Ω) ,

div div (Mn∇∇wn) −→ gM in H−2
loc(Ω) ,

Mn∇∇wn −⇀ MN in L2
loc(Ω; Sym) .

Due to the coercivity of Mn, we have

Mn∇∇wn : ∇∇wn −Mn∇∇wn : ∇∇vn −Mn∇∇vn : ∇∇wn + Mn∇∇vn : ∇∇vn
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Chapter 1. General homogenization theory for elastic plate equation

= Mn(∇∇wn −∇∇vn) : (∇∇wn −∇∇vn) ≥ 0

in Ω. Since Mn ≤ On, it follows that

Mn∇∇wn : ∇∇wn−Mn∇∇wn : ∇∇vn−Mn∇∇vn : ∇∇wn+On∇∇vn : ∇∇vn ≥ 0 in Ω.

By applying the compactness by compensation result, we can pass to the limit in each
term of the above expression and get

MN : N−MN : N−MN : N + ON : N = (O−M)N : N ≥ 0 .

Since N is arbitrary, it follows that O ≥M.

�

In the following theorem we introduce bounds on homogenized tensor, in the sense of
the standard order on symmetric tensors. The bounds are given in terms of weak-∗ limits,
representing the harmonic and arithmetic mean of the corresponding sequence.

Theorem 13 Let (Mn) be a sequence of symmetric tensors in M2(α, β; Ω) that H-
converges to M. Assume that

Mn ∗−−⇀ M in L∞(Ω;L(Sym, Sym)),
(Mn)−1 ∗−−⇀ M−1 in L∞(Ω;L(Sym, Sym)).

Then the homogenized tensor satisfies

Mξ : ξ ≤Mξ : ξ ≤Mξ : ξ, ξ ∈ Sym.

Proof. As before, let us take a sequence (wn) of oscillating test functions satisfying

wn −⇀
1
2Nx · x in H2(Ω) ,

div div (Mn∇∇wn) −→ gM in H−2
loc(Ω) ,

Mn∇∇wn −⇀ MN in L2
loc(Ω; Sym) ,

where N ∈ Sym is an arbitrary matrix. Since Mn is coercive it follows

Mn(∇∇wn −N) : (∇∇wn −N) ≥ 0,

which, by symmetry of Mn, is equivalent to

Mn∇∇wn : ∇∇wn − 2Mn∇∇wn : N + MnN : N ≥ 0.
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1.2. Properties of H-convergence

By the compactness by compensation result, passing to the limit gives

MN : N− 2MN : N + MN : N ≥ 0 ,

thus proving inequality M ≥M, by arbitrariness of N.
Similarly, for σ ∈ Sym, the coercivity of (Mn)−1 implies

(Mn)−1(Mn∇∇wn − σ) : (Mn∇∇wn − σ) ≥ 0,

which is equivalent to

Mn∇∇wn : ∇∇wn − 2∇∇wn : σ + (Mn)−1σ : σ ≥ 0.

Passing to the limit as before gives

MN : N− 2N : σ + M−1σ : σ ≥ 0 ,

which for σ = MN becomes

MN : N− 2MN : N + MN : N ≥ 0,

i.e.
(M−M)N : N ≥ 0 .

This proves the second inequality, and concludes the proof.
�

Theorem 14 Let (Mn) be a sequence of tensors in M2(α, β; Ω). If (Mn) H-converges to
M in M2(α, β; Ω), then the sequence ((Mn)T ) H-converges to MT in M2(α, β; Ω).

Proof. For f ∈ H−2(Ω), let (un) be the sequence of solutions to
 div div ((Mn)T∇∇un) = f

un ∈ H2
0(Ω)

.

As sequences (un) and ((Mn)T∇∇un) are bounded in H2
0(Ω) and L2(Ω; Sym), respectively,

we can extract a weakly convergent subsequence such that

un −⇀ u in H2
0(Ω),

(Mn)T∇∇un −⇀ σ in L2(Ω; Sym).

On the other hand, since (Mn) H-converges to M, for g ∈ H−2(Ω) the sequence (vn) of
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Chapter 1. General homogenization theory for elastic plate equation

solutions to  div div (Mn∇∇vn) = g

vn ∈ H2
0(Ω)

satisfies
vn −⇀ v in H2

0(Ω),

Mn∇∇vn −⇀ M∇∇v in L2(Ω; Sym),

where v is the solution of the homogenized equation div div (M∇∇v) = g

v ∈ H2
0(Ω)

.

Applying the compactness by compensation result to

Mn∇∇vn : ∇∇un = ∇∇vn : (Mn)T∇∇un

leads to
M∇∇v : ∇∇u = ∇∇v : σ. (1.9)

For an arbitrary open set ω b Ω, there exists ϕ ∈ C∞c (Ω) such that ϕ|ω = 1. Choosing
g := div div

(
M∇∇

(
1
2ϕ(x)Nx · x

))
, N ∈ Sym, implies that v(x) = 1

2Nx · x in ω. Using
this, (1.9) becomes

MN : ∇∇u = N : σ a. e. in ω ,

which implies that σ = MT∇∇u almost everywhere in Ω, by arbitrariness of ω and N.
Due to uniqueness of the limit σ, the entire sequence ((Mn)T∇∇un) converges weakly to
MT∇∇u in L2(Ω; Sym), which gives the claim of the theorem. �

The following result states that H-convergence defines a metrizable topology on the
set M2(α, β; Ω).

Theorem 15 Let F = {fn : n ∈ N} be a dense countable family in H−2(Ω), M and O
tensors in M2(α, β; Ω), and (un), (vn) sequences of solutions to

 div div (M∇∇un) = fn

un ∈ H2
0(Ω)

and  div div (O∇∇vn) = fn

vn ∈ H2
0(Ω)

,

respectively. Then,

d(M,O) :=
∞∑
n=1

2−n‖un − vn‖L2(Ω) + ‖M∇∇un −O∇∇vn‖H−1(Ω;Sym)

‖fn‖H−2(Ω)
(1.10)
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1.2. Properties of H-convergence

is a metric function on M2(α, β; Ω) and H-convergence is equivalent to the convergence
with respect to d.

Proof. Since M2(α, β; Ω) is bounded in L∞(Ω;L(Sym, Sym)) and L2(Ω;L(Sym, Sym)) is
continuously imbedded in H−1(Ω;L(Sym, Sym)), there exists a constant c > 0 such that

(∀M ∈M2(α, β; Ω)) ‖un‖L2(Ω) + ‖M∇∇un‖H−1(Ω;Sym) ≤ c‖fn‖H−2(Ω) .

Clearly, the same is true if we replace M and (un) with tensor O and the corresponding
sequence (vn), which implies that the series in the definition of d converges. In order to
verify that d is a metric, we shall only prove that d(M,O) = 0 implies M = O, as other
properties are straightforward. The equality d(M,O) = 0 implies that for any f ∈ H−2(Ω),
the solutions u and v of  div div (M∇∇u) = f

u ∈ H2
0(Ω)

and  div div (O∇∇v) = f

v ∈ H2
0(Ω)

satisfy u = v and M∇∇u = O∇∇v in Ω. Indeed, by definition of d, this immediately
follows for f ∈ F , and then for any f ∈ H−2(Ω) by the density of F in H−2(Ω) and
continuity of the linear mappings f 7→ u and f 7→ v from H−2(Ω) to H2

0(Ω). For a set
ω compactly embedded in Ω let us take ϕ ∈ C∞c (Ω) such that ϕ|ω = 1. If we take
f = div div

(
M∇∇

(
1
2ϕ(x)Sx · x

))
, for arbitrary S ∈ Sym, this yields ∇∇u = ∇∇v = S

in ω, implying MS = OS in ω, and finally M = O, by arbitrariness of S and ω.
It remains to prove that H-convergence is equivalent to the convergence in this metric

space. Assume that sequence (Mm) in M2(α, β; Ω) H-converges to M in M2(α, β; Ω), and
let (umn ), (un) be the sequences of solutions of

 div div (Mm∇∇umn ) = fn

umn ∈ H2
0(Ω)

and  div div (M∇∇un) = fn

un ∈ H2
0(Ω)

,

respectively. Since (Mm) H-converges to M it follows

umn −⇀ un in H2
0(Ω) ,

Mm∇∇umn −⇀ M∇∇un in L2(Ω; Sym) ,

and by the Rellich compactness theorem we have strong convergences umn → un in L2(Ω)
and Mm∇∇umn →M∇∇un in H−1(Ω; Sym), which imply d(Mm,M)→ 0.

23



Chapter 1. General homogenization theory for elastic plate equation

In order to prove the converse statement, let a sequence (Mm) and M belong to
M2(α, β; Ω) and d(Mm,M) → 0. We take an arbitrary f ∈ H−2(Ω) and a sequence
(fn′) ⊆ F strongly converging to f in H−2(Ω). Let u, um, un′ and umn′ be solutions of

 div div (M∇∇u) = f

u ∈ H2
0(Ω)

,

 div div (Mm∇∇um) = f

um ∈ H2
0(Ω)

,

 div div (M∇∇un′) = fn′

un′ ∈ H2
0(Ω)

,

and  div div (Mm∇∇umn′) = fn′

umn′ ∈ H2
0(Ω)

,

respectively. For any n′ ∈ N the sequences (umn′)m and (Mm∇∇umn′)m are bounded in
H2

0(Ω) and L2(Ω; Sym), respectively, and therefore converge weakly on a subsequence.
However, from d(Mm,M) → 0 it follows that, for every n′ ∈ N, umn′ → un′ in L2(Ω)
and Mm∇∇umn′ → M∇∇un′ in H−1(Ω; Sym), which implies the convergence of whole
sequences:

umn′ −⇀ un′ in H2
0(Ω),

Mm∇∇umn′ −⇀ M∇∇un′ in L2(Ω; Sym), (1.11)

as m→∞.

If we subtract the equations for u and un′ , we get div div (M∇∇(u− un′)) = f − fn′
u− un′ ∈ H2

0(Ω)
,

and similarly for um and umn′ : div div (Mm∇∇(um − umn′)) = f − fn′
um − umn′ ∈ H2

0(Ω)
.

Since (fn′) strongly converges to f , the well-posedness result for these problems ensures
that un′ → u in H2

0(Ω) and thus M∇∇un′ →M∇∇u in L2(Ω; Sym), as well as umn′ → um

in H2
0(Ω) and thus Mm∇∇umn′ → Mm∇∇um in L2(Ω; Sym), uniformly in m as n′ → ∞.

Here, for the last convergence we have also used boundedness of the sequence (Mm) in
L∞(Ω;L(Sym, Sym)).
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1.3. Corrector result

Together with (1.11) this implies

um −⇀ u in H2
0(Ω)

Mm∇∇um −⇀ M∇∇u in L2(Ω; Sym) , (1.12)

i.e. (Mm) H-converges to M, by arbitrariness of f . Indeed, for an arbitrary f ∈ H−2(Ω)
and ε > 0, the above (uniform) convergences imply that first and third term on the
right-hand side of the inequality

∣∣∣H−2(Ω)〈 f, um − u 〉H2
0(Ω)

∣∣∣ ≤ ∣∣∣H−2(Ω)〈 f, um − umn′ 〉H2
0(Ω)

∣∣∣+
+
∣∣∣H−2(Ω)〈 f, umn′ − un′ 〉H2

0(Ω)

∣∣∣+
+
∣∣∣H−2(Ω)〈 f, un′ − u 〉H2

0(Ω)

∣∣∣
can be made ε small for n′ large enough, i.e.

∣∣∣H−2(Ω)〈 f, um − u 〉H2
0(Ω)

∣∣∣ ≤ 2ε+
∣∣∣H−2(Ω)〈 f, umn′ − un′ 〉H2

0(Ω)

∣∣∣
is valid for every m and n′ large enough. Taking the limit as m → ∞, from (1.11) and
arbitrariness of ε and f we get the first convergence in (1.12), while the second one can
be derived similarly. �

1.3 Corrector result
This section is devoted to the corrector result in dimension d = 2. Its goal is to improve

convergence of∇∇un by adding correctors, and ending up with strong convergence, instead
of the weak one given by the definition of H-convergence.

Definition 5 Let (Mn) be a sequence of tensors in M2(α, β; Ω) that H-converges to a
limit M. For 1 ≤ i, j ≤ 2 let (wijn )n be a sequence of oscillating test functions satisfying

wijn −⇀
1
2xixj in H2(Ω) ,

div div (Mn∇∇wijn ) −→ gij in H−2
loc(Ω) , (1.13)

where gij are some elements of H−2
loc(Ω). The tensor Wn with components W n

ijkm :=
[∇∇wkmn ]ij is called the corrector.

It is important to note that functions (wijn )1≤i,j≤2 are not uniquely defined. However,
for any other family of such functions, it is easy to see that their difference converges
strongly to zero in H2(Ω), and similar holds true for the corrector tensors.

Lemma 3 Let (Mn) be a sequence of tensors in M2(α, β; Ω) that H-converges to a tensor
M. A sequence of correctors (Wn) is unique in the sense that, for any two sequences
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of correctors (Wn) and (W̃n), their difference (Wn − W̃n) converges strongly to zero in
L2

loc(Ω;L(Sym, Sym)).

Proof. For 1 ≤ i, j ≤ 2, let (wijn )n and (w̃ijn )n be two sequence satisfying (1.13) and let
ϕ ∈ C∞c (Ω). Using coercivity of Mn, and integrating by parts two times we obtain:

α‖ϕ(∇∇wijn −∇∇w̃ijn )‖2
L2(Ω;Sym) ≤

∫
Ω

ϕ2Mn∇∇(wijn − w̃ijn ) : ∇∇(wijn − w̃ijn ) dx

= H−2
loc(Ω)〈 div div (Mn∇∇(wijn − w̃ijn ), ϕ2(wijn − w̃ijn ) 〉H2

c (Ω)+

+ H−1
loc(Ω)〈 div (Mn∇∇(wijn − w̃ijn )),∇(ϕ2)(wijn − w̃ijn ) 〉H1

c (Ω)−

− L2
loc(Ω)〈Mn∇∇(wijn − w̃ijn ),∇(wijn − w̃ijn )∇(ϕ2)) 〉L2

c(Ω) .

Each term on the right hand side tends to zero when n → ∞, the first one because
of the assumption (1.13), while the second one and the third one converge to zero by the
Rellich compactness theorem. Thus, we deduce that ∇∇(wijn − w̃ijn ) converges strongly to
zero in L2

loc(Ω; Sym), which proves the statement.
�

Lemma 4 Let (Mn) be a sequence of tensors in M2(α, β; Ω) that H-converges to a limit
M, and (Wn) the corresponding sequence of correctors. Then

Wn −⇀ I4 in L2(Ω;L(Sym, Sym)) ,
MnWn −⇀ M in L2(Ω;L(Sym, Sym)) ,

(Wn)TMnWn −⇀ M in D′(Ω;L(Sym, Sym)) .

Proof. The first convergence is a consequence of the definition of correctors. The second
one follows from the definition of H-convergence, and the third one from the compactness
by compensation result applied to the components of (Wn)T and MnWn. �

In the next theorem we clarify in what sense correctors transform a weak convergence
into the strong one.

Theorem 16 Let (Mn) be a sequence of tensors in M2(α, β; Ω) which H-converges to M.
For f ∈ H−2(Ω), let (un) be the sequence of solutions to

 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

.

Let u be the weak limit of (un) in H2
0(Ω), i.e., the solution of the homogenized equation

 div div (M∇∇u) = f

u ∈ H2
0(Ω)

.
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Then, if we denote rn := ∇∇un −Wn∇∇u, where Wn is a corrector, it holds that (rn)
converges strongly to zero in L1

loc(Ω; Sym).

Proof. Let ϕ ∈ C∞c (Ω), and let (vm) be a sequence in C∞c (Ω) such that vm → u in H2
0(Ω).

Since Mn is coercive we have

α‖ϕ(∇∇un −Wn∇∇vm)‖2
L2(Ω;Sym)

≤
∫
Ω

ϕ2Mn(∇∇un −Wn∇∇vm) : (∇∇un −Wn∇∇vm) dx

=
∫
Ω

ϕ2Mn∇∇un : ∇∇un dx−
∫
Ω

ϕ2Mn∇∇un : Wn∇∇vm dx−

−
∫
Ω

ϕ2MnWn∇∇vm : ∇∇un dx +
∫
Ω

ϕ2(Wn)TMnWn∇∇vm : ∇∇vm dx.

As n → +∞, the first term on the right hand side converges by Theorem 10, while the
second and the third term converge by the compensated compactness result. The last
term converges by Lemma 4, leading to

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇vm)‖2
L2(Ω;Sym) ≤

1
α

∫
Ω

ϕ2M∇∇(u− vm) : ∇∇(u− vm) dx .

If u is smooth (in that case we can choose vm = u), the proof is finished. If u is not
smooth, than after taking limit as n→ +∞ in the estimate (c is a generic constant below)

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ ‖ϕ(∇∇un −Wn∇∇vm)‖L1(Ω;Sym) + ‖ϕWn(∇∇vm −∇∇u)‖L1(Ω;Sym)

≤ ‖ϕ(∇∇un −Wn∇∇vm)‖L2(Ω;Sym) + ‖ϕWn‖L2(Ω;L(Sym,Sym))‖∇∇vm −∇∇u‖L2(Ω;Sym) ,

we get

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ c
(
‖ϕ(∇∇u−∇∇vm)‖L2(Ω;Sym) + ‖∇∇vm −∇∇u‖L2(Ω;Sym)

)
,

and finally

lim sup
n→∞

‖ϕ(∇∇un −Wn∇∇u)‖L1(Ω;Sym)

≤ c lim sup
m→∞

(‖ϕ(∇∇u−∇∇vm)‖L2(Ω;Sym) + ‖∇∇u−∇∇vm‖L2(Ω;Sym)) = 0 ,

which finishes the proof, by arbitrariness of ϕ.

�
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1.4 H-convergent sequence depending on a parameter
A prerequisite for the small-amplitude homogenization is that H-convergence preserves

a smooth (or analytic) dependence with respect to a parameter. More precisely, we shall
prove that, if a sequence Mn(·, p) depends smoothly on a parameter p, so does the H-limit
M(·, p). We shall begin with this simple lemma, whose proof mimics the one in the case
of the stationary diffusion equation [12, 72] but we present it here for completeness.

Lemma 5 If M ∈M2(α, β; Ω) and O ∈ L∞(Ω;L(Sym, Sym)) such that
‖O‖L∞(Ω;L(Sym,Sym)) ≤ δ < α, then

M + O ∈M2

(
α− δ, αβ − δ

2

α− δ
; Ω
)
.

Proof. One can easily see that

(M + O)ξ : ξ ≥ α|ξ|2 − δ|ξ|2, (1.14)

where | · | on the right-hand side of (1.14) denotes the Frobenius norm. This proves the
coercivity of M + O.

The other bound (M + O)ξ : ξ ≤ αβ − δ2

α− δ
ξ : ξ can be written in two equivalent forms,

as
(M + O)ξ : ξ ≥ 1

2L |(M + O)ξ|2 or |(M + O)ξ − Lξ| ≤ L|ξ|,

where L := αβ − δ2

2(α− δ) . Note that L > 1
2β, therefore we have

(−2Lδ + δ2)|ξ|2 = (β − 2L)α|ξ|2 ≥ (β − 2L)Mξ : ξ ≥ |Mξ|2 − 2LMξ : ξ,

and the obtained inequality can be rewritten as

|Mξ − Lξ|2 ≤ (L− δ)2|ξ|2.

Finally,

|(M + O)ξ − Lξ| ≤ |Mξ − Lξ|+ |Oξ| ≤ (L− δ)|ξ|+ δ|ξ| = L|ξ|,

or equivalently
(M + O)ξ : ξ ≥ 1

2L |(M + O)ξ|2.

�

Let us now describe a bound for the L∞-distance between the H-limits of two sequences
Mn ∈M2(α, β; Ω) and On ∈M2(α′, β′; Ω), that are nearby in L∞(Ω;L(Sym, Sym)).
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Lemma 6 Let Mn ∈ M2(α, β; Ω) and On ∈ M2(α′, β′; Ω) be two sequences of tensors
that H-converge to the homogenized tensors M and O, respectively. Assume that,

(∃ε > 0) (∀n ∈ N) ‖On −Mn‖L∞(Ω;L(Sym,Sym)) ≤ ε.

Then

‖O−M‖L∞(Ω;L(Sym,Sym)) ≤ ε

√
ββ′

αα′
.

Proof. For f, g ∈ H−2(Ω), let (un) and (vn) be sequences of solutions to
 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

and  div div ((On)T∇∇vn) = g

vn ∈ H2
0(Ω)

.

Since (Mn) H-converges to M, and (On)T H-converges to OT , it follows

un −⇀ u in H2
0(Ω),

Mn∇∇un −⇀ M∇∇u in L2(Ω; Sym),
vn −⇀ v in H2

0(Ω),
(On)T∇∇vn −⇀ OT∇∇v in L2(Ω; Sym).

By Lemma 1, we have that Mn∇∇un : ∇∇vn and ∇∇un : (On)T∇∇vn converge vaguely
to M∇∇u : ∇∇v and ∇∇u : OT∇∇v, respectively. Therefore, for every ϕ ∈ C∞c (Ω) one
has

lim
n

∫
Ω

ϕ(On −Mn)∇∇un : ∇∇vn dx =
∫
Ω

ϕ(O−M)∇∇u : ∇∇v dx.

For every ϕ ≥ 0 one can conclude∣∣∣∣∣∣
∫
Ω

ϕ(O−M)∇∇u : ∇∇v dx
∣∣∣∣∣∣ ≤ ε lim sup

n

∫
Ω

ϕ|∇∇un||∇∇vn| dx. (1.15)

Since for arbitrary a, b ∈ R+ such that 4abαα′ ≥ 1 it holds

|∇∇un||∇∇vn| ≤ aα|∇∇un|2 + bα′|∇∇vn|2,

and Mn ∈M2(α, β; Ω), On ∈M2(α′, β′; Ω), we have
∣∣∣∣∣∣
∫
Ω

ϕ(O−M)∇∇u : ∇∇v dx
∣∣∣∣∣∣ ≤ ε lim sup

n

∫
Ω

ϕ[a(Mn∇∇un : ∇∇un) + b(On∇∇vn : ∇∇vn)] dx
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= ε
∫
Ω

ϕ[a(M∇∇u : ∇∇u) + b(O∇∇v : ∇∇v)] dx

≤ εaβ
∫
Ω

ϕ|∇∇u|2 dx + εbβ′
∫
Ω

ϕ|∇∇v|2 dx.

Since this inequality is true for every ϕ ∈ C∞c (Ω), ϕ ≥ 0, it follows

|(O−M)∇∇u : ∇∇v| ≤ ε(aβ|∇∇u|2 + bβ′|∇∇v|2) a. e. in Ω. (1.16)

After minimizing the right-hand side of the previous inequality over all a, b satisfying the
condition 4abαα′ ≥ 1 we get

|(O−M)∇∇u : ∇∇v| ≤ ε

√
ββ′

αα′
|∇∇u||∇∇v| a. e. in Ω .

An alternative way to obtain the minimum (over a and b) for the right-hand side of (1.16)
is to use the arithmetic-geometric mean inequality and ab ≥ 1

4αα′ . Hence, the desired
inequality follows by arbitrariness of u and v, by using an analogous arguments as was
done in the proof of Theorem 15. �

Let us now prove that when passing to the H-limit in a sequence depending on a
parameter, the smoothness is preserved. This result appears to be very important since
we want to calculate first correction in the small-amplitude limit.

Theorem 17 Let Mn : Ω × P → L(Sym, Sym) be a sequence of tensors, such that
Mn(·, p) ∈M2(α, β; Ω), for p ∈ P , where P ⊆ R is an open set. Assume that (for some
k ∈ N0) a mapping p 7→ Mn(·, p) is of class Ck from P to L∞(Ω;L(Sym, Sym)), with all
derivatives up to order k being equicontinuous on every compact set K ⊆ P :

(∀K ∈ K(P )) (∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)(∀i ∈ {0, . . . , k})
|p− q| < δ ⇒ ‖(Mn)(i)(·, p)− (Mn)(i)(·, q)‖L∞(Ω;L(Sym,Sym)) < ε. (1.17)

Then there is a subsequence (Mnk) such that for every p ∈ P

Mnk(·, p) H−−⇀ M(·, p) in M2(α, β; Ω) (1.18)

and p 7→M(·, p) is a Ck mapping from P to L∞(Ω;L(Sym, Sym)).

Proof. For a countable dense subset Π of P, by the Cantor diagonal method and com-
pactness of M2(α, β; Ω) there exists a subsequence (Mnk) such that for every p ∈ Π
Mnk(·, p) H−−⇀ M(·, p) in M2(α, β; Ω). For arbitrary compact K ⊆ P , by (1.17), it follows
that

(∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)
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1.4. H-convergent sequence depending on a parameter

|p− q| < δ ⇒ ‖Mn(·, p)−Mn(·, q)‖L∞(Ω;L(Sym,Sym)) < ε.

Since for p, q ∈ K ∩ Π we have Mnk(·, p) H−−⇀ M(·, p) and Mnk(·, q) H−−⇀ M(·, q), by
Lemma 6 it follows

‖M(·, p)−M(·, q)‖L∞(Ω;L(Sym,Sym)) < ε
β

α
,

which implies uniform continuity of p 7→M(·, p) on K ∩Π, and thus it can be extended by
continuity to the entire set K. In order to prove that (1.18) holds for every p ∈ K, let us
suppose the opposite, i.e. that this H-convergence fails for some p ∈ K. Due to the compact-
ness of H-convergence, there exists a subsequence (Mnkr ) and N ∈ L∞(Ω;L(Sym, Sym))
such that Mnkr (·, p) H−−⇀ M(·, p) + N, where ε := ‖N‖L∞(Ω;L(Sym,Sym)) > 0. Using the
equicontinuity of (Mnkr ) and uniform continuity of M over K one can conclude that there
exists a δ > 0 such that for every q ∈ K such that |p− q| < δ, it follows

‖Mnkr (·, p)−Mnkr (·, q)‖L∞(Ω;L(Sym,Sym)) < ε
α

2β , and

‖M(·, p)−M(·, q)‖L∞(Ω;L(Sym,Sym)) <
ε

2 .

From the second inequality, it easily follows

‖M(·, p) + N−M(·, q)‖L∞(Ω;L(Sym,Sym))

≥ |‖N‖L∞(Ω;L(Sym,Sym)) − ‖M(·, p)−M(·, q)‖L∞(Ω;L(Sym,Sym))| >
ε

2 ,

while from the first one and Lemma 6 we have

‖M(·, p) + N−M(·, q)‖L∞(Ω;L(Sym,Sym)) <
ε

2 ,

for q ∈ Π ∩K and |p− q| < δ, which is a contradiction. Therefore, (1.18) holds for every
p ∈ K and, by arbitrariness of K, the mapping p 7→M(·, p) is well defined and continuous
on P.

In order to prove that p 7→ M(·, p) is a Ck mapping from P to L∞(Ω;L(Sym, Sym))
let us define a family of operators τn(p) : H2

0(Ω)→ H−2(Ω), for n ∈ N and p ∈ P , with

τn(p)v := div div (Mn(·, p)∇∇v), v ∈ H2
0(Ω).

Note that τn(p) may be written as a composition P ◦Mn(·, p), where
P : L∞(Ω;L(Sym, Sym)) → L(H2

0(Ω),H−2(Ω)) is defined as P(N) := div div (N∇∇·), for
N ∈ L∞(Ω;L(Sym, Sym)). Since P is linear and p 7→ Mn(·, p) is of class Ck one can
conclude that τn : P → L(H2

0(Ω),H−2(Ω)) is a sequence of Ck mappings. Additionally,
(τn) satisfies the same equicontinuity property as the sequence (Mn).

Since τn(p) is an isomorphism (for every p and n), and, by Proposition 1, taking
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Chapter 1. General homogenization theory for elastic plate equation

inverse is a C∞ mapping, it follows that the mapping p 7→ (τn(p))−1 is also a Ck mapping.
Moreover, one can conclude the following:

(∀K ∈ K(P )) (∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)(∀i ∈ {0, . . . , k})
|p− q| < δ ⇒ ‖((τn(p))−1)(i) − ((τn(q))−1)(i)‖L(H−2(Ω),H2

0(Ω)) < ε. (1.19)

We shall prove this only for i = 0, since for i ∈ {1, . . . , k} it can be shown analogously. By
Theorem 2 and using the notation as in Proposition 1, with X := H2

0(Ω), Y := H−2(Ω),
we have:

(∀K ∈ K(P )) (∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)|p− q| < δ ⇒

‖(τn(p))−1 − (τn(q))−1‖L(Y,X) = ‖J(τn(p))− J(τn(q))‖L(Y,X)

≤ sup
{
‖J ′(T )‖L(L(X,Y ),L(Y,X)) : T ∈ [τn(p), τn(q)]

}
· ‖τn(p)− τn(q)‖L(X,Y )

< sup
{
‖J ′(T )‖L(L(X,Y ),L(Y,X)) : T ∈ [τn(p), τn(q)]

}
· ε.

Due to equicontinuity property of the sequence (τn), one only has to check that
sup

{
‖J ′(T )‖L(L(X,Y ),L(Y,X)) : T ∈ [τn(p), τn(q)]

}
is finite:

‖J ′(T )‖L(L(X,Y ),L(Y,X)) = sup
‖B‖L(X,Y )=1

‖J ′(T )(B)‖L(Y,X)

= sup
‖B‖L(X,Y )=1

‖ − T−1 ◦B ◦ T−1‖L(Y,X)

≤ sup
‖B‖L(X,Y )=1

‖T−1‖L(Y,X)‖B‖L(X,Y )‖T−1‖L(Y,X)

= ‖T−1‖2
L(Y,X).

As T ∈ [τn(p), τn(q)], τn(p) = P ◦Mn(·, p), and by using convexity of the set M2(α, β; Ω),
for some M ∈M2(α, β; Ω) we have T = P ◦M ∈ L(H2

0(Ω),H−2(Ω)), which is a bounded
and coercive operator with constants independent of p, q and n. Thus, it follows that
‖T−1‖2

L(Y,X) <∞, i.e.

sup
{
‖J ′(T )‖L(L(X,Y ),L(Y,X)) : T ∈ [τn(p), τn(q)]

}
<∞.

Since the subsequence (Mnk(·, p)) H-converges to M(·, p) for every p ∈ P , it follows
that

(∀p ∈ P ) (∀f ∈ H−2(Ω)) (τnk
(p))−1f

H2
0(Ω)−−⇀ (τ(p))−1f, (1.20)

where τ(p) = P(M(·, p)). Let us define a family of functions Ψf,g
n : P → R, n ∈ N, and

Ψf,g : P → R as

Ψf,g
n (p) = H2

0(Ω)〈 (τn(p))−1f, g 〉H−2(Ω)

‖f‖H−2(Ω)‖g‖H−2(Ω)
,
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1.4. H-convergent sequence depending on a parameter

Ψf,g(p) = H2
0(Ω)〈 (τ(p))−1f, g 〉H−2(Ω)

‖f‖H−2(Ω)‖g‖H−2(Ω)
,

where f, g ∈ H−2(Ω) are arbitrary nonzero functions. Since p 7→ (τn(p))−1 is a Ck mapping
from P to L(H−2(Ω),H2

0(Ω)), we have that p 7→ Ψf,g
n (p) is of class Ck from P to R. Note

that due to equicontinuity properties of a sequence ((τn(p))−1) it follows that

(∀K ∈ K(P )) (∀ε > 0)(∃δ > 0)(∀p, q ∈ K)(∀n ∈ N)(∀i ∈ {0, . . . , k}) |p− q| < δ ⇒

|(Ψf,g
n )(i)(p)− (Ψf,g

n )(i)(q)| (1.21)

=

∣∣∣∣∣∣∣∣
H2

0(Ω)

〈 (
(τn(p))−1

)(i)
f, g

〉
H−2(Ω)

‖f‖H−2(Ω)‖g‖H−2(Ω)
−

H2
0(Ω)

〈 (
(τn(q))−1

)(i)
f, g

〉
H−2(Ω)

‖f‖H−2(Ω)‖g‖H−2(Ω)

∣∣∣∣∣∣∣∣
= 1
‖f‖H−2(Ω)‖g‖H−2(Ω)

∣∣∣∣∣H2
0(Ω)

〈 ((
(τn(p))−1

)(i)
−
(
(τn(q))−1

)(i)
)
f, g

〉
H−2(Ω)

∣∣∣∣∣ < ε.

Additionally, from (1.20) we have that

(∀p ∈ P ) Ψf,g
nk

(p) −→ Ψf,g(p) . (1.22)

By the Arzelà-Ascoli theorem it follows that the sequence (Ψf,g
nk

), with all its derivatives, is
bounded in C(K), where K ⊆ P is an arbitrary compact set, and pointwise convergence
in (1.22) is actually uniform, thus p→ Ψf,g(p) is of class Ck from P to R. After passing
to the limit in (1.21), one can conclude that Ψf,g has the same equicontinuity properties
as the sequence (Ψf,g

nk
). It follows that p 7→ (τ(p))−1 is a Ck mapping, and using the same

reasoning as before, the mapping p 7→ τ(p) is also of class Ck.

Let us now consider a sequence Zn : P → L(H2
0(Ω); L2(Ω; Sym)) defined by

Zn(p)v := Mn(·, p)∇∇((τn(p))−1τ(p)v), v ∈ H2
0(Ω).

Note that, with vn ∈ H2
0(Ω) defined as

τn(p)vn = τ(p)v,

one has
Zn(p)v = Mn(·, p)∇∇vn.

As it is a composition of Ck mappings it follows that each Zn is also of class Ck. By
H-convergence of a subsequence (Mnk(·, p)) to M(·, p), one can easily see that Znk

(p)v
converges weakly in L2(Ω; Sym) to Z(p)v := M(·, p)∇∇v, for arbitrary v ∈ H2

0(Ω). Sim-
ilarly as for (τ(p))−1 above, one can easily show that p 7→ Z(p) belongs to the class
Ck(P ;L(H2

0(Ω); L2(Ω; Sym))).
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Chapter 1. General homogenization theory for elastic plate equation

The Lebesgue measure λ is inner regular on Rd, hence for every ε > 0 there exists
a compact set K ⊆ Ω, such that λ(Ω\K) < ε. For O := K\∂K b Ω, and S ∈ Sym,
let us take v ∈ H2

0(Ω) such that v(x) = 1
2Sx · x on O. We easily conclude that p 7→

M(·, p)S belongs to the class Ck(P ; L∞(O; Sym)), and moreover, since λ(Ω\K) < ε, to
Ck(P ; L∞(Ω; Sym)). Due to arbitrariness of S, it follows that p 7→ M(·, p) is of class Ck

from P to L∞(Ω;L(Sym, Sym)), which concludes the proof.
�

Remark 2 It is easy to see that the above theorem is valid if we take P ⊆ Rd an open set.
Furthermore, it can be shown that H-convergence also preserves an analytic dependence
with respect to a parameter. To be precise, if we assume in the previous theorem that
every Mn is analytic mapping P −→ L∞(Ω;L(Sym, Sym)), then the corresponding H-limit
M (after extracting a subsequence) is also analytic. This can be proved using the fact
that any weakly converging sequence of analytic functions of operators has a limit which
is analytic as well [42], and by following the same technique as in the proof of Theorem
17.

1.5 Periodic homogenization
When studying homogenization theory, periodic homogenization [16] appears to be

the simplest case. There is a wide range of applications of periodic homogenization, for
example in mechanics, physics, chemistry and engineering, in the study of crystalline or
polymer structures, nuclear reactor design, etc. If the period of the observed structure
is small compared to size of a region in which the system is studied, then asymptotic
analysis is used. An example of a periodic domain is given in Figure 1.1, where x denotes
the width of Ω.

Ω y = x
n

Y

Figure 1.1: Periodic domain.

For the unit cube Y = [0, 1]d in Rd and p ∈ [1,∞], let us consider the following normed
spaces of Y -periodic functions [2]: Lp#(Y ) := {f ∈ Lploc(Rd) such that f is Y − periodic},
equipped with the norm ‖ · ‖Lp(Y ), H2

#(Y ) := {f ∈ H2
loc(Rd) such that f is Y − periodic}

with the norm ‖ · ‖H2(Y ), and the quotient space H2
#(Y )/R, equipped with the norm

‖∇∇ · ‖L2(Y ). For simplicity of notation, the class [u] in the quotient space will usually be
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1.5. Periodic homogenization

identified with a representative of the class u ∈ [u]. If we identify Y with the d-dimensional
torus T (by gluing together the opposite faces of Y ), which is a smooth compact manifold
without boundary, these spaces are isomorphic to L2(T ), H2(T ) and H2(T )/R, respectively.
They can also be defined for vector, matrix or tensor valued functions.

Furthermore, let Eij, for 1 ≤ i, j ≤ d, be d× d matrices, with entries

[Eij]kl =


1, if i = j = k = l
1
2 , if i 6= j, (k, l) ∈ {(i, j), (j, i)}
0, otherwise.

We are interested in what happens in the limit of the periodic case, i.e., we want to
derive the explicit formula for the homogenization limit of a periodic sequence of tensors.
To be precise, for a Y -periodic tensor function M ∈ L∞# (Y ;L(Sym, Sym)) ∩M2(α, β;Y )
and a bounded, open set Ω ⊆ Rd, we are interested in the H-limit of the sequence
Mn ∈M2(α, β; Ω) defined by

Mn(x) := M(nx), x ∈ Ω. (1.23)

Let us first remark that, for f ∈ (H2
#(Y )/R)′, the boundary value problem

 div div (M(y)∇∇w(y)) = f(y) in Y
y 7→ w(y) is Y -periodic

, (1.24)

has a unique solution in H2
#(Y )/R.

In order to prove that there exists a unique solution of (1.24), we shall check the
assumptions of the Lax-Milgram lemma. Obviously,

B(w,ϕ) =
∫
Y

M∇∇w : ∇∇ϕdy, w, ϕ ∈ H2
#(Y )/R, (1.25)

is a bilinear form and it doesn’t depend on the choice of representatives of the equivalence
classes. Since M ∈M2(α, β; Ω) and ‖∇∇ · ‖L2(Y ) is norm on the space H2

#(Y )/R, one can
easily conclude that bilinear form (1.25) is bounded and coercive:

B(w,ϕ) =
∫
Y

M∇∇w : ∇∇ϕdy ≤ β‖∇∇w‖L2(Y )‖∇∇ϕ‖L2(Y )

and

B(w,w) =
∫
Y

M∇∇w : ∇∇w dy ≥ α
∫
Y

‖∇∇w‖2
L2(Y ) dy = α‖∇∇w‖2

L2(Y ).

Now, by the Lax-Milgram lemma there exists a unique solution in H2
#(Y )/R of boundary
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Chapter 1. General homogenization theory for elastic plate equation

value problem (1.24).

Remark 3 Analogously as in [2, p. 58, Lemma 1.3.21], it can easily be shown that
f ∈ L2

#(Y ) belongs to (H2
#(Y )/R)′ if and only if

∫
Y

f(y) dy = 0.

Theorem 18 Let (Mn) be a sequence of tensors defined by (1.23). Then (Mn) H-converges
to a constant tensor M̂ ∈M2(α, β; Ω) with entries

m̂klij =
∫
Y

M(y)(Eij +∇∇wij(y)) : (Ekl +∇∇wkl(y)) dy, (1.26)

where (wij)1≤i,j≤d is the family of unique solutions in H2
#(Y )/R of boundary value problems

 div div (M(y)(Eij +∇∇wij(y))) = 0 in Y,
y 7→ wij(y) is Y -periodic.

i, j = 1, . . . , d (1.27)

Proof. The solution of (1.27), with right-hand side f ∈ (H2
#(Y )/R)′ instead of zero, is

any function wij ∈ H2
#(Y )/R satisfying

∫
Y

M(y)(Eij +∇∇wij(y)) : ∇∇ϕ(y) dy =
∫
Y

f(y)ϕ(y) dy, (1.28)

for arbitrary function ϕ ∈ H2
#(Y )/R.

By Theorem 1 there is a subsequence (Mnk) of (Mn) and a tensor valued function M̂
in M2(α, β; Ω) such that (Mnk) H-converges to M̂. Let us define

wijn (x) := 1
2xixj + 1

n2wij(nx) ,

where wij ∈ H2
#(Y )/R are unique solutions of (1.27). Since wij(n·) converges weakly to

the average of wij in H2(Ω), we easily conclude the convergence wijn −⇀
1
2xixj in H

2(Ω).
Since

div div (Mnk(x)∇∇wijnk
(x)) = div div (Mnk(x)(Eij +∇∇wij(nkx))) = 0 in Ω ,

Theorem 9 implies
Mnk∇∇wijnk

−⇀ M̂Eij in L2
loc(Ω; Sym) .

However, due to periodicity we have

Mnk∇∇wijnk
= M(nk·)(Eij +∇∇wij(nk·)) −⇀

∫
Y

M(y)(Eij +∇∇wij(y)) dy ,
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1.6. Small-amplitude homogenization in the periodic case

which implies that for components of M̂ we can conclude

m̂klij = M̂Eij : Ekl

=
∫
Y

M(y)(Eij +∇∇wij(y)) : Ekl dy

=
∫
Y

M(y)(Eij +∇∇wij(y)) : (Ekl +∇∇wkl(y)) dy,

where we used that wij is a weak solution of (1.27) and took wkl as test function in (1.28).
Since every H-converging subsequence of (Mn) has the same limit, it follows that the entire
sequence (Mn) H-converges to M̂. �

1.6 Small-amplitude homogenization in the periodic
case

Let us consider a sequence of small perturbations of a constant coercive tensor A0 ∈
L(Sym, Sym):

An
p (y) = A0 + pBn(y),

where Bn(y) := B(ny), y ∈ Ω, Ω ⊆ Rd is a bounded, open set and B ∈ L∞# (Y ;L(Sym, Sym))
such that

∫
Y

B(y) dy = 0. Note that p 7→ An
p is a Ck mapping from P ⊆ R an open set,

such that 0 ∈ ClP , to L∞# (Y ;L(Sym, Sym)), for every k ∈ N, thus we have a smooth
dependence with respect to a parameter p.

Theorem 17 implies that there is a subsequence (Ank
p ) such that for every p ∈ P ,

Ank
p

H−−⇀ Âp in M2(α, β; Ω), and p 7→ Âp is a Ck mapping from P to L∞# (Y ;L(Sym, Sym)).
By Theorem 18, every H-converging subsequence of (An

p) has the same limit, thus the
entire sequence (An

p) H-converges to Âp. Since p 7→ Âp is a Ck mapping from P to
L∞# (Y ;L(Sym, Sym)), by using Taylor’s theorem it follows that

Âp := A0 + pB0 + p2C0 + o(p2) in Ω. (1.29)

The goal of small-amplitude homogenization is to obtain the explicit formula for the leading
terms B0 and C0 in the expansion of the homogenization limit. Theorem 18 implies that

ÂpEmn : Ers =
∫
Y

(A0 + pB(y))(Emn +∇∇wpmn(y)) : (Ers +∇∇wprs(y)) dy , (1.30)

for m,n, r, s ∈ {1, 2, · · · , d}, where wpmn ∈ H2
#(Y )/R are solutions of (1.27) with A0 + pB
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instead of M, i.e. of div div ((A0 + pB(y))(Emn +∇∇wpmn(y))) = 0 in Y,
y 7→ wpmn(y) is Y -periodic.

m, n = 1, . . . , d (1.31)

By using the integration by parts in (1.30), one easily gets

ÂpEmn : Ers = A0Emn : Ers + p
∫
Y

B∇∇wpmn : Ers dy +
∫
Y

A0∇∇wpmn : ∇∇wprs dy+

+ p
∫
Y

BEmn : ∇∇wprs dy + p
∫
Y

B∇∇wpmn : ∇∇wprs dy. (1.32)

Let us define
T (p)v := div div ((A0 + pB)∇∇v), v ∈ H2

#(Y )/R.

Note that T (p) may be written as a composition P ◦ (A0 + pB), where
P : L∞# (Y ;L(Sym, Sym))→ L(H2

#(Y )/R, (H2
#(Y )/R)′) is defined withP(N) := div div (N∇∇·),

N ∈ L∞# (Y ;L(Sym, Sym)). Furthermore, going along the same lines as in the proof of
Theorem 17, it follows that the mapping p 7→ (T (p))−1 is also a Ck mapping from P ⊆ R
to L((H2

#(Y )/R)′,H2
#(Y )/R). By using this and the definition of wpmn, we conclude that

p 7→ wpmn is a Ck mapping from P ⊆ R to H2
#(Y )/R, for any k ∈ N. Hence, one can

write wpmn as
wpmn = wmn0 + pwmn1 + o(p).

Due to the given boundary value problem (1.31), after comparing expressions corresponding
to the same powers of p, it is easy to conclude that wmn0 = 0: first we insert wpmn in the
corresponding boundary value problem div div ((A0 + pB(y))(Emn +∇∇wpmn(y))) = 0 in Y,

y 7→ wpmn(y) is Y -periodic.
m, n = 1, . . . , d

By comparing expressions corresponding to the same powers of p, we obtain div div (A0(Emn +∇∇wmn0 )) = 0 in Y,
y 7→ wmn0 is Y -periodic.

m, n = 1, . . . , d

Uniqueness of the solution of this boundary value problem implies wmn0 = 0.

If we insert the expression for wpmn in formula (1.32), we have

ÂpEmn : Ers = A0Emn : Ers + p2
∫
Y

B∇∇wmn1 : Ers dy+

+ p2
∫
Y

A0∇∇wmn1 : ∇∇wrs1 dy+ (1.33)
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1.6. Small-amplitude homogenization in the periodic case

+ p2
∫
Y

BEmn : ∇∇wrs1 dy + o(p2).

By comparing (1.29) and (1.33) we easily conclude that B0 = 0 and

C0Emn : Ers =
∫
Y

B∇∇wmn1 : Ers dy +
∫
Y

A0∇∇wmn1 : ∇∇wrs1 dy +
∫
Y

BEmn : ∇∇wrs1 dy.

(1.34)
In order to fully describe C0 it remains to calculate wmn1 , which we shall do in terms of its
Fourier coefficients: if we insert pwmn1 +o(p) instead of wpmn in the corresponding boundary
value problem (1.31), by equating powers of p we can easily see that wmn1 solves

 div div (A0∇∇wmn1 ) = −div div (BEmn) in Y
wmn1 ∈ H2

#(Y )/R
m,n = 1, . . . , d. (1.35)

If we choose a representative of this solution satisfying
∫
Y

wmn1 (y) dy = 0, its Fourier series

expansion takes the form
wmn1 (y) =

∑
k∈J

amnk e2πik·y,

where amnk , k ∈ J := Zd\{0} are its Fourier coefficients. A simple calculation shows that

∇∇wmn1 =
∑
k∈J

(2πi)2amnk e2πik·yk⊗ k

and
div div (A0∇∇wmn1 ) =

∑
k∈J

(2πi)4amnk e2πik·yA0(k⊗ k) : (k⊗ k). (1.36)

If B(y) =
∑
k∈J

Bke
2πik·y is the Fourier series expansion of function B, similarly as above

we can calculate the right-hand side of (1.35):

div div (BEmn) =
∑
k∈J

(2πi)2e2πik·y(BkEmnk) · k. (1.37)

From (1.35), (1.36) and (1.37) it follows that

∑
k∈J

(2πi)4e2πik·yamnk A0(k⊗ k) : (k⊗ k) = −
∑
k∈J

(2πi)2e2πik·y(BkEmnk) · k, (1.38)

and consequently for Fourier coefficients we conclude

amnk = − BkEmnk · k
(2πi)2A0(k⊗ k) : (k⊗ k) , k ∈ J . (1.39)
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If we insert the Fourier expansions of B and wmn1 in (1.34) we get

C0Emn : Ers =
∫
Y

∑
k∈J

Bke
2πik·y ∑

k′∈J
(2πi)2amnk′ e

2πik′·yk′ ⊗ k′ : Ers dy+

+
∫
Y

A0
∑
k∈J

(2πi)2amnk e2πik·yk⊗ k :
∑

k′∈J
(2πi)2arsk′e

2πik′·yk′ ⊗ k′ dy+

+
∫
Y

∑
k∈J

e2πik·yBkEmn :
∑

k′∈J
(2πi)2arsk′e

2πik′·yk′ ⊗ k′ dy,

and by the orthogonality of Fourier basis, we finally conclude

C0Emn : Ers = (2πi)2 ∑
k∈J

amn−kBk(k⊗ k) : Ers+

+ (2πi)4 ∑
k∈J

amnk A0(k⊗ k) : ars−kk⊗ k+ (1.40)

+ (2πi)2 ∑
k∈J

BkEmn : ars−kk⊗ k .

The following theorem summarizes the previous results.

Theorem 19 Let A0 ∈ L(Sym, Sym) be a constant coercive tensor, Ω ⊆ Rd a bounded,
open set, B ∈ L∞# (Y ;L(Sym, Sym)), such that

∫
Y

B(y) dy = 0 and Bn(y) := B(ny), y ∈ Ω.

Additionally, let p ∈ P , where P ⊆ R is an open set such that 0 ∈ ClP , and

An
p (y) = A0 + pBn(y).

Then, An
p H-converges to

Âp := A0 + p2C0 + o(p2) in Ω

with coefficient C0 being (a constant tensor) given by (1.40), for m,n, r, s ∈ {1, 2, · · · , d},
where

amnk = − BkEmnk · k
(2πi)2A0(k⊗ k) : (k⊗ k) , k ∈ J, m, n ∈ {1, 2, · · · , d}

and Bk, k ∈ J , are the Fourier coefficients of B.
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Chapter 2

On the effective properties of
composite elastic plate

In this chapter we are interested in the application of the homogenization theory to
the modeling of composite elastic plate. After an introductory section, the rest of the
chapter is organized as follows: in the second section we show the local character of the
set of all possible composites, and prove that the set of composites obtained by periodic
homogenization is dense in that set. In the third section we describe the sequential
laminates, a particularly interesting class of composite materials. In the fourth section
we derive Hashin-Shtrikman bounds on primal energy, which are optimal bounds on
the effective energy of a composite material, and, in the next section, we consider an
analogous results for the complementary energy of a composite material. After that, we
give a characterisation of the G-closure for the Kirchhoff-Love plate in the low contrast
or small-amplitude regime. Finally, in the last two sections, we calculate explicit Hashin-
Shtrikman bounds on primal and complementary energy for mixtures of two isotropic
materials in dimension d = 2.

2.1 Introduction
In this chapter we apply previous results to the modeling of a composite elastic plate.

Composite materials are heterogeneous materials obtained by mixing several materials on
a very fine scale. It is impossible to imagine everyday life without composite materials.
They are generally used for buildings, bridges, structures such as boat hulls, storage tanks,
swimming pool panels, etc. Some widely used composite materials are wood, which is a
natural composite of cellulose fibers in a lignin matrix, and concrete, which is a composite
of aggregate (rock, sand or gravel), cement and water.

The main problem with composite materials is to determine their effective (macroscopic)
properties. However, homogenization theory allows one to define a composite material as
an H-limit. There is an extensive literature on this topic, we refer the interested reader
to [2, 6, 22, 46, 48, 54]. We shall mainly put the focus on composites obtained by mixing
only two different materials, i.e. two-phase composite materials. From the physical point
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of view, these materials are determined with its two phases A and B, their proportions θ
and 1− θ, respectively, and by their microstructure, i.e. by their geometric arrangement
in the mixture.

Although it will be defined later for m materials and in a more general setting, let us
now define a two-phase composite material [2].

Definition 6 Let χn ∈ L∞(Ω; {0, 1}) be a sequence of characteristic functions and (Mn)
be a sequence of tensors defined by

Mn(x) := χn(x)A + (1− χn(x))B,

where A and B are assumed to be positive definite fourth-order tensors. Assume that
there exist θ ∈ L∞(Ω; [0, 1]) and M ∈ L∞(Ω;L(Sym, Sym)) such that

χn
∗−−⇀ θ in L∞(Ω; [0, 1]),

Mn H−−⇀ M in M2(α, β; Ω),

where β > α > 0 are given. The H-limit M is said to be the homogenized tensor of a
two-phase composite material obtained by mixing A and B in proportions θ and (1− θ),
respectively, with a microstructure defined by the sequence (χn).

Before we proceed further with composite materials, let us introduce some definitions
and results which are necessary for better understanding this chapter.
Let F : X → R, where X is a Banach space.

Definition 7 Let F be Lipschitz near a given point x ∈ X and let v ∈ X. The upper
generalized directional derivative of F at x in the direction v, denoted F 0(x; v), is defined
as follows:

F 0(x; v) := lim sup
y→x
t→0+

F (y + tv)− F (y)
t

,

where y ∈ X and t ∈ R+.

Definition 8 The generalized gradient of F at x, denoted ∂F (x), is the subset of X ′

given by
{ξ ∈ X ′ : F 0(x; v) ≥ X′〈 ξ,v 〉X , v ∈ X}.

Remark 4 [25, p. 36, Proposition 2.2.7] If F is convex on U and Lipshitz near x, then
∂F (x) coincides with the subdifferential at x in the sense of convex analysis, and F 0(x; v)
coincides with the directional derivative, for each v.

Proposition 2 [25, p. 38, Proposition 2.3.2] If F attains a local minimum or maximum
at x, then 0 ∈ ∂F (x).

42



2.1. Introduction

The following theory can be found in [25]. One may find it helpful in the fourth section,
when showing the optimality of Hashin-Shtrikman bounds.

Let ft be a family of functions on a Banach space X, with codomain R, parametrized
by t ∈ T , where T is a topological space. Suppose that for some point x ∈ X, each
function ft is Lipshitz near x. First, we make the following hypotheses:

(i) T is a sequentially compact space.

(ii) For some neighborhood U of x, the map t 7→ ft(y) is upper semicontinuous for each
y ∈ U .

(iii) Each ft, t ∈ T , is Lipschitz on U , and {ft(x) : t ∈ T} is bounded.

Let us define a function f : X → R via

f(y) := max{ft(y) : t ∈ T}.

By M(y) we denote the set {t ∈ T : ft(y) = f(y)}, and for any subset S of T , P [S]
signifies the collection of probability Radon measures supported on S.

Theorem 20 [25, p. 86-87] In addition to the hypotheses given above, suppose thatX is a
vector space of finite dimension. Additionally, assume that each ft is Frechet differentiable
on U , and that f ′t(x) is continuous as a function of (t,x). Then, for each x ∈ U one has

∂f(x) =

∫
T

f ′t(x)µ(dt) : µ ∈ P [M(x)]
 .

Theorem 21 [1, p. 513, Theorem 15.11] If X is a compact metric space, the set P (X) of
probability measures on X is compact in the weak-∗ topology.

The notion of conjugate function appears to be a very useful tool in this chapter.

Definition 9 Let E be a normed vector space and ϕ : E → (−∞,+∞] a function such
that ϕ 6≡ +∞. We define the conjugate function ϕ∗ : E ′ → (−∞,+∞]:

ϕ∗(f) := sup
x∈E

[E′〈 f,x 〉E − ϕ(x)], f ∈ E ′.

The function ϕ∗ is called the Legendre transform of ϕ.

Remark 5 [17, p. 11-13] Note that ϕ∗ is convex and lower semicontinuous on E ′. If we
iterate the operation ∗, we could obtain a function ϕ∗∗ defined on E ′′. Instead of that, we
restrict ϕ∗∗ to E, i.e. we define

ϕ∗∗(x) := sup
f∈E′

[E′〈 f,x 〉E − ϕ∗(f)], x ∈ E.
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Theorem 22 [17, p. 13, Theorem 1.11](Fenchel-Moreau) Assume that ϕ : E → (−∞,+∞]
is convex, lower semicontinuous and ϕ 6≡ +∞. Then ϕ∗∗ = ϕ.

Remark 6 If ϕ1, ϕ2 : E → (−∞,+∞] are convex, lower semicontinuous and ϕ1, ϕ2 6≡
+∞, by using the Fenchel-Moreau theorem one can show that ϕ∗1 = ϕ∗2 ⇒ ϕ1 = ϕ2.

Furthermore, we are going to state some well-known and simple, but also crucial facts
which shall be used for calculating explicit Hashin-Shtrikman bounds for mixtures of two
isotropic materials in dimension d = 2.

Theorem 23 [56, Theorem 1] If A and B are hermitian d× d matrices with eigenvalues

κ1 ≥ · · · ≥ κd, λ1 ≥ · · · ≥ λd

respectively, then
d∑
i=1

κiλd−i+1 ≤ tr(AB) ≤
d∑
i=1

κiλi.

Definition 10 A simultaneously diagonalizable family F ⊆Md(R) is a family for which
there is a single nonsingular matrix S ∈ Md(R) such that S−1AS is diagonal for every
A ∈ F .

Definition 11 Let K be a closed, convex set. A point e of K is called an extreme point
of K if it is not the interior point of a line segment in K. Equivalently, x is not an extreme
point of K if there exist y, z ∈ K, y 6= z, such that

x = y + z
2 .

The set of extreme points of K is denoted by ExtK.

Theorem 24 [45, p. 195, Theorem 10](Carathéodory’s theorem) Let K be a nonempty
closed bounded convex set in a vector space X, dimX = n. Then every point of K can
be represented as a convex combination of at most (n+ 1) extreme points of K.

Theorem 25 [26, p. 147, Theorem 8.4], [36, p. 87, Proposition 5.22] Let X be a compact
Hausdorff topological space. Then P (X) is a convex set and

Ext(P (X)) = {δx : x ∈ X}.

Lemma 7 Let

C =


∫

Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν(e) : ν ∈ P [M(η)]

 ,
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where M(η) is a closed subset of Sd−1. Extreme points of C are exactly the points

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) ,

where e ∈M(η).

Proof. The idea is to prove that extreme points of the set C correspond to a measure ν
being a Dirac mass. Suppose that

M =
∫

Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν(e)

is an extreme point of the set C. Let us take a linear functional L on Sym4, and suppose
that

L

(
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)

is not a constant function on the support of ν. Following ideas from [2], we define the
essential infimum L− and essential supremum L+ with

L− = sup
[
α ∈ R : ν

{
e ∈ Sd−1 : L

(
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
≤ α

}
= 0

]

and
L+ = inf

[
β ∈ R : ν

{
e ∈ Sd−1 : L

(
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
≥ β

}
= 0

]
.

Our assumption that L
(

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
is not a constant function on the support

of ν implies that there exists some value of the functional L, denoted by L̄, such that
L− < L̄ < L+. With this we can define sets

E− =
{

e ∈ Sd−1 : L
(

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
≤ L̄

}

and
E+ =

{
e ∈ Sd−1 : L

(
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
> L̄

}
,

which are nonempty. Furthermore, ρ− = ν(E−) > 0, ρ+ = ν(E+) > 0 and ρ− + ρ+ = 1.
Now, we can decompose the measure ν as a convex combination of probability measures:

ν = ρ−
ν|E−
ρ−

+ ρ+ ν|E+

ρ+ .

Using this, the tensor M can also be decomposed as a convex combination of two points
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in C:
M = ρ−M− + ρ+M+,

where
M− = 1

ρ−

∫
Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν|E−

and
M+ = 1

ρ+

∫
Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν|E+ .

Since M− 6= M+ this is in contradiction with the fact that M is an extreme point of C.

Thus, the assumption was wrong, i.e. L
(

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)

)
is constant on the support

of ν and it can be replaced by a Dirac mass. It follows that every extreme point of C is
given as

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) ,

where e ∈M(η). �

Definition 12 We say that the sequence (un) in L2(Ω) does not oscillate in x1, if

(i) un −⇀ u in L2(Ω),

(ii) for every sequence of functions (fn) in L∞(Ω) depending only upon x1, such that
fn

∗−−−⇀f in L∞(Ω), it follows that fnun −⇀ fu in L2(Ω).

Lemma 8 [10, Lemma 6] Let (Dn) be a sequence in L2(Ω; Sym) that converges weakly
to D. If the sequence (div div Dn) is contained in a precompact set of the space H−2

loc(Ω),
then Dn

11 does not oscillate in x1.

2.2 The G-closure problem
Suppose that we want to fill a bounded and open set Ω ⊆ Rd with m different phases

M1,M2, . . . ,Mm ∈ L(Sym, Sym) which are assumed to be positive definite fourth-order
tensors. Let R : SO(Rd) × L(Sym, Sym) → L(Sym, Sym) be the operator of rotations
acting on the space L(Sym, Sym), as is defined in the Appendix, Rn ∈ L∞(Ω;SO(Rd)),
and χn = (χn1 , . . . , χnm) ∈ L∞(Ω;T ) a sequence of characteristic functions, where

T :=
{
θ = (θ1, . . . , θm) ∈ {0, 1}m :

m∑
i=1

θi = 1
}
.

By (Mn) we denote a sequence defined by

Mn(x) :=
m∑
i=1

χni (x)R (Rn(x),Mi) . (2.1)
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If

χn
∗−−⇀ ϑ in L∞(Ω; Rm),

Mn H−−⇀ M in M2(α, β; Ω),

we say that M is a homogenized tensor of a m-phase composite material obtained by
mixing M1,M2, . . . ,Mm with proportions ϑi, and microstructure defined by the sequence
(χn) and the sequence of rotations (Rn). Due to the characterisation of the weak-∗ closure
[73, p. 6, Theorem 6], note that function ϑ belongs to the set L∞(Ω;T ), where

T := Cl convT =
{
θ ∈ [0, 1]m :

m∑
i=1

θi = 1
}
.

For given materials M1,M2, . . . ,Mm and fixed proportions ϑi ∈ L∞(Ω; [0, 1]) of each
material Mi, respectively, it is of interest to find all possible homogenized tensors M,
which can be obtained in this way. This problem is well known under the name G-closure
problem and it appears to be quite difficult to solve. It was done in the conductivity
setting for mixtures of two isotropic conductors [48, 72], while in the elasticity setting
for two isotropic phases it is still an open problem (for partial results we refer to [55]
and references therein), even for the elastic plates [35, 51]. One can only obtain bounds
that must be satisfied by the effective properties, called Hashin-Shtrikman bounds in their
most general form [40]. However, results can be pushed much further under a simplifying
assumption of a small-amplitude or low contrast regime [2, 3, 4, 33, 38, 39, 69].

Due to its local character (see Theorem 26 below), the G-closure problem reduces to de-
scribing the set Gθ of all possible composite materials obtained by mixing M1,M2, . . . ,Mm

in constant proportion θ ∈ T :

Gθ :=
{

M ∈ L(Sym, Sym) :
(
∃ (χn) in L∞(Ω;T )

)(
∃ (Rn) in L∞(Ω;SO(Rd))

)
(2.2)

χn
∗−−⇀ θ in L∞(Ω; Rm) & Mn :=

m∑
i=1

χni R (Rn,Mi) H−−⇀ M inM2(α, β; Ω)
}
.

An interesting example of composite materials are periodic mixtures, which are ob-
tained in the following way: let Y = [0, 1]d, χ ∈ L∞(Y ;T ), R ∈ L∞(Y ;SO(Rd)),

M(x) :=
m∑
i=1

χi(x)R (R(x),Mi) and let us extend this functions periodically to Rd. Then,

for sequences defined by χn(x) := χ(nx), Rn(x) := R(nx) and Mn(x) := M(nx) =
m∑
i=1

χni (x)R (Rn(x),Mi), x ∈ Rd, by Lemma 18 and Theorem 18 the following conver-

gences hold (for any open and bounded set Ω ⊆ Rd):

χn
∗−−⇀ θ :=

∫
Y

χ dx, in L∞(Ω; Rm)
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Mn H−−⇀ M̂, in M2(α, β; Ω)

where the entries of M̂ ∈ Gθ are given by (1.26).
For fixed θ ∈ T , by Pθ ⊆ Gθ we denote the set of all constant homogenized tensors ob-

tained by periodic homogenization, as described above, i.e. by mixing M1,M2, . . . ,Mm in
the sense of (2.2), for some Y -periodic functions χ ∈ L∞(Rd;T ) and R ∈ L∞(Rd;SO(Rd)),
such that

∫
Y

χ dy = θ.

The following theorem asserts the local character of the set of all possible composites,
and together with the last theorem in this section, it implies that the set of composites
obtained by periodic homogenization is dense in the set of all possible composites. Actually,
the statements and the proofs of these two theorems mimic the ones in the case of stationary
diffusion equation (see [74] and references therein).

Theorem 26 Let (χn), (Rn) be a sequences in L∞(Ω;T ) and L∞(Ω;SO(Rd)), respectively,
and (Mn) defined with (2.1) such that

χn
∗−−⇀ ϑ in L∞(Ω; Rm), (2.3)

Mn H−−⇀ M in M2(α, β; Ω).

Then
M(x) ∈ Gϑ(x) a. e. in Ω. (2.4)

On the other hand, if for ϑ ∈ L∞(Ω;T ) and M ∈M2(α, β; Ω) (2.4) holds, then there exist
sequences (χn) in L∞(Ω;T ) and (Rn) in L∞(Ω;SO(Rd)) such that, for sequence (Mn)
given with (2.1), the convergences in (2.3) hold.

Proof. Assume that (χn), (Rn) are sequences in L∞(Ω;T ) and L∞(Ω;SO(Rd)), respec-
tively, and (Mn) is defined with (2.1) such that (2.3) holds. Let x0 ∈ Ω be any joint
Lebesgue point of ϑ and M. For r > 0 small enough, an open cube Qr with center at x0

and side length r is contained in Ω. An affine transformation x 7→ (x− x0)/r maps Qr to
a unit cube Y centered at the origin. The function f defined on Qr induces function fr
defined on Y in the following way:

fr(y) = f(x0 + ry), y ∈ Y.

Moreover, using this notation, by (2.3) we have

χnr
∗−−⇀ ϑr in L∞(Y ; Rm), (2.5)

Mn
r

H−−⇀ Mr in M2(α, β;Y ),
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as n→∞. Since x0 is a Lebesgue point of ϑ and M, it follows that

ϑr −→ ϑ(x0) in L1(Y ; Rm), (2.6)
Mr −→M(x0) in L1(Y ;L(Sym, Sym)),

as r → 0. Hence, by Theorem 8, Mr also H-converges to M(x0). Using (2.5) and (2.6),
by the Cantor diagonal method we conclude that there exists a sequence (rn), such that
rn → 0 and

χnrn

∗−−⇀ ϑ(x0) in L∞(Y ; Rm),
Mn

rn

H−−⇀ M(x0) in M2(α, β;Y ).

The definition of Gθ yields M(x0) ∈ Gϑ(x0). Since almost every point x0 ∈ Ω is a Lebesgue
point of ϑ and M, we get the claim.

On the other hand, suppose that for ϑ ∈ L∞(Ω;T ) and M ∈M2(α, β; Ω) (2.4) holds.
For ε > 0, let us divide the image of the mapping (ϑ,M) into measurable sets Qi,
i = 1, . . . , p, whose diameter is less than ε. Note that the image of the mapping (ϑ,M) is
a bounded set in Rm × L(Sym, Sym). Clearly, measurable sets Ei := (ϑ,M)−1(Qi), i =
1, . . . , p, form a partition of Ω. Furthermore, we choose xi ∈ Ei such that

M(xi) ∈ Gϑ(xi), i = 1, . . . , p,

and define on Ω a piecewise constant function

(ϑε,Mε)|Ei
= (ϑ(xi),M(xi)), i = 1, . . . , p.

We observe
‖ϑε − ϑ‖L∞(Ω;Rm) < ε, ‖Mε −M‖L∞(Ω;L(Sym,Sym)) < ε. (2.7)

Our goal is to replace measurable sets Ei with open sets Ui, such that (2.7) still holds,
eventually in some weaker norm. Let C1, . . . , Cp be a compact sets in Rd such that

Ci ⊆ Ei and λ(Ei\Ci) < ε/p, i = 1, . . . , p.

Since Ci, i = 1, . . . , p, are pairwise disjoint, there exist pairwise disjoint open sets Ui ⊇ Ci,
i = 1, . . . , p, which cover Ω, up to a set U ε whose measure is less than ε. Next, we define
a piecewise constant function

(ϑ̃ε, M̃ε)
∣∣∣
Ui

= (ϑ(xi),M(xi)), i = 1, . . . , p,

and extend it to Ω arbitrarily, such that ϑ̃ε
∣∣∣
Uε
∈ L∞(Ω; Rm) and M̃ε

∣∣∣
Uε
∈ L∞(Ω;L(Sym, Sym)).
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Let us notice that

‖ϑ̃ε − ϑε‖L1(Ω;Rm) < 2εµ(Ω), ‖M̃ε −Mε‖L1(Ω;L(Sym,Sym)) < 2εµ(Ω), (2.8)

which together with (2.7) gives

ϑ̃ε −→ ϑ in L1(Ω; Rm), (2.9)
M̃ε −→M in L1(Ω;L(Sym, Sym)),

as ε→ 0. According to the choice of points xi, i = 1, . . . , p, on Ω\U ε we have

M̃ε ∈ Gϑ̃ε .

Consequently, on every set Ui, i = 1, . . . , p, there exist sequences (χε,in ) and (Rε,i
n ) in

L∞(Ui;T ) and L∞(Ui;SO(Rd)), respectively, and a sequence (Mε,i
n ) defined with (2.1)

such that

χε,in
∗−−⇀ ϑ̃ε in L∞(Ui; Rm),

Mε,i
n

H−−⇀ M̃ε in M2(α, β;Ui),

as n → ∞. Let us denote by χεn and Mε
n functions on Ω whose restrictions on Ui are

equal to χε,in and Mε,i
n , respectively. On the set U ε we can define them arbitrarily (in the

permissible set of values). The locality of H-convergence, Banach-Alaoglu theorem [53]
and compactness of M2(α, β; Ω), imply that on a subsequence one has

χεn′
∗−−⇀ ϑ̃ε in L∞(Ω; Rm),

Mε
n′

H−−⇀ M̃ε in M2(α, β; Ω), (2.10)

as n′ → ∞, where we have predefined functions ϑ̃ε and M̃ε on the set U ε. Since the
measure of U ε is less than ε, (2.8) and (2.9) still hold. By using (2.9), (2.10) and the
Cantor diagonal method, we can extract a subsequence (ε(n′)) which converges to zero,
such that

χ
ε(n′)
n′

∗−−⇀ ϑ in L∞(Ω; Rm),
Mε(n′)

n′
H−−⇀ M in M2(α, β; Ω),

which gives the claim of the theorem. �

In the following lemma we use notation of Section 1.5.

Lemma 9 Let (Mn) be a sequence of Y-periodic tensor functions in M2(α, β; Rd) such
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2.2. The G-closure problem

that
Mn H−−⇀ M∞ in M2(α, β;Y ).

Then
M̂n −→ M̂∞ in L(Sym, Sym).

Proof. For E ∈ Sym and n ∈ N ∪ {∞}, by wnE ∈ H2
#(Y )/R we denote the solution of

boundary value problem div div (Mn(x)(E +∇∇wnE(x))) = 0 in Y
x 7→ wnE(x) is Y -periodic

. (2.11)

The sequence (wnE) is bounded in H2
loc(Rd), which implies that there is a subsequence

wnE −⇀ v in H2
loc(Rd).

Thus, we deduce that

un := 1
2Ex · x + wnE −⇀ u∞ := 1

2Ex · x + v in H2
loc(Rd).

By Theorem 9 it follows

Mn∇∇un −⇀ M∞∇∇u∞ in L2
loc(Ω; Sym). (2.12)

Furthermore, v is a solution of boundary value problem (2.11) for n =∞ and it coincides
with w∞E . Therefore, we have

u∞ = 1
2Ex · x + w∞E . (2.13)

By (2.12) and (2.13), we can pass to the limit in the following integral:

M̂nE =
∫
Y

Mn(x)(E +∇∇wnE(x)) dx −→
∫
Y

M∞(x)(E +∇∇w∞E (x)) dx = M̂∞E.

This finishes the proof by arbitrariness of E ∈ Sym. �

Theorem 27 For every θ ∈ T
Gθ = ClPθ.

Proof. In order to show that ClPθ ⊆ Gθ, it is enough to prove that Gθ is closed (obviously
Pθ ⊆ Gθ). Let (Mn) be a sequence in Gθ such that

Mn −→M in L(Sym, Sym).

Hence, for every n ∈ N, there exist sequences (χnk) in L∞(Ω;T ) and (Rn
k ) in L∞(Ω;SO(Rd))
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such that
Mn

k(x) =
m∑
i=1

(χnk)i(x)R (Rn
k (x),Mi)

and

χnk
∗−−⇀ θ in L∞(Ω; Rm),

Mn
k

H−−⇀ Mn in M2(α, β; Ω),

as k → ∞. Since convergence of constant tensors implies H-convergence on Ω, by the
Cantor diagonal method we have M ∈ Gθ.

To prove that Gθ ⊆ ClPθ, let us take M ∈ Gθ. There exist sequences (χn) in L∞(Y ;T )
and (Rn) in L∞(Y ;SO(Rd)), such that for Mn defined with (2.1), it follows

χn
∗−−⇀ θ in L∞(Y ; Rm),

Mn H−−⇀ M in M2(α, β;Y ).

Furthermore,
θn :=

∫
Y

χn dy → θ.

For n ∈ N, we predefine χn to χ̃n ∈ L∞(Y ;T ) such that
∫
Y

χ̃n dy = θ and ‖χn − χ̃n‖L1(Y ;T ) = ‖θ − θn‖Rm ,

and we extend it Y -periodically to Rd. Next, let us denote

M̃n(x) =
m∑
i=1

χ̃ni (x)R (Rn(x),Mi) .

From here we conclude that ‖Mn − M̃n‖L1 → 0, which implies that M̃n H−−⇀ M (on an
arbitrary bounded, open set Ω ⊆ Rd). By Lemma 9 we have

̂̃Mn −→ M̂ = M.

Since ̂̃Mn ∈ Pθ, the claim of the theorem follows. �

Remark 7 In this section, the characterisation of the G-closure, which is the set of all
homogenized tensors obtained by mixing m materials in fixed volume fractions such that
rotations of materials are allowed, has been given. Since the assumption that rotations of
materials are allowed makes further results highly nontrivial to derive (or sometimes even
impossible), from now on we shall consider only mixtures with no rotations. Actually, this
is a standard setting when dealing with composite materials. It is easy to check that all
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results of this section are valid if we replace the sequence (Mn) from (2.1), with a similar
one, but with rotations excluded:

Mn(x) =
m∑
i=1

χni (x)Mi,

for χn = (χn1 , . . . , χnm) ∈ L∞(Ω;T ).

2.3 Homogenization of laminated materials

In this section we shall study laminated composite materials which are homogeneous
in all directions orthogonal to some fixed unit vector e, which is called the direction of
lamination. For simplicity, let us take for the direction of lamination the first canonical
basis vector. In this case, the sequence of tensors (Mn) depends only on the first variable
x1. We are interested in elastic properties of laminated materials, which can be derived by
using the following theorem. Its proof goes along the same lines as proof of two-dimensional
result [9, 10, 57]

Theorem 28 Let Ω ⊆ Rd be an open and bounded set, and (Mn) a sequence of tensor
valued functions in M2(α, β; Ω), such that for each n, Mn depends on x1 only. Then (Mn)
H-converges to M if and only if its components mijkl satisfy the following:

1
mn

1111

∗−−−⇀ 1
m1111

,

mn
11jk

mn
1111

∗−−−⇀m11jk

m1111
, 1 ≤ j ≤ d, 2 ≤ k ≤ d,

mn
ik11

mn
1111

∗−−−⇀ mik11

m1111
, 1 ≤ i ≤ d, 2 ≤ k ≤ d,

mn
ikjl −

mn
ik11m

n
11jl

mn
1111

∗−−−⇀mikjl −
mik11m11jl

m1111
, 1 ≤ i, j ≤ d, 2 ≤ k, l ≤ d

(2.14)

in L∞(Ω).

Proof. Assume that the sequence (Mn) H-converges to M, and, for an arbitrary function
f ∈ H−2(Ω), let (un) be the sequence of solutions to

 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

.
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Since (Mn) H-converges to M, the following holds:

un −⇀ u in H2
0(Ω) ,

Mn∇∇un −⇀ M∇∇u in L2(Ω; Sym) .

For n ∈ N, we denote

En := ∇∇un, E := ∇∇u and Dn := MnEn.

Since div div Dn = f , by Lemma 8 Dn
11 does not oscillate in x1. Furthermore, let us define

D̃n ∈ L∞(Ω; Sym) with

D̃n
ij :=

 0, for i = j = 1
gnij, otherwise,

where functions gnij ∈ L∞(Ω), such that gnij = gnji, depend only upon x1. Assume that, for
every pair of indices (i, j),

gnij
∗−−−⇀gij in L∞(Ω).

After deducing that div div D̃n = 0, by Lemma 1 it follows

D̃n : En ∗−−−⇀D̃ : E

in the space of Radon measures on Ω. On the other hand, the sequence (D̃n : En) is
bounded in L2(Ω) and thus converges weakly to the same limit in that space. Convenient
choices of functions gnij lead to conclusion that for each pair of indices (i, j) 6= (1, 1),
En
ij does not oscillate in x1. This allows us to define matrices Gn,On ∈ L2(Ω; Sym),

respectively made from good (nonoscillating) and bad (oscillating) components of En and
Dn:

Gn
ij :=

 Dn
11, for i = j = 1

En
ij, otherwise

and

On
ij :=

 En
11, for i = j = 1

Dn
ij, otherwise

.

Additionally, we define a nonlinear mapping Ψ : L∞(Ω;L(Sym, Sym))→ L∞(Ω;L(Sym, Sym)),
and denote Kn := Ψ(Mn), where

Kn
1111 = 1

mn
1111

,

Kn
11jk = −

mn
11jk

mn
1111

, 1 ≤ j ≤ d, 2 ≤ k ≤ d,

Kn
ik11 = mn

ik11
mn

1111
, 1 ≤ i ≤ d, 2 ≤ k ≤ d,
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2.3. Homogenization of laminated materials

Kn
ikjl = mn

ikjl −
mn
ik11m

n
11jl

mn
1111

, 1 ≤ i, j ≤ d, 2 ≤ k, l ≤ d.

Now, we replace the relation Dn = MnEn by the equivalent relation

On = KnGn.

Since (Mn) belongs to the space M2(α, β; Ω), we conclude that

α ≤ mn
1111 ≤ β, for a. e. x ∈ Ω,

hence (Kn) is bounded in L∞(Ω;L(Sym, Sym)) and has an accumulation point K in the
weak-∗ topology. Using that (Gn) does not oscillate in x1 and that (Kn) depends only
upon x1, after passing to a subsequence, we obtain

O = KG,

where O, G ∈ L2(Ω; Sym) are weak limits of the sequences (On) and (Gn), respectively.
From here we conclude K = Ψ(M), i.e.

Ψ(Mnk) ∗−−−⇀Ψ(M) in L∞(Ω;L(Sym, Sym)).

Since this argument holds for every accumulation point, it follows that the entire sequence
Ψ(Mn) converges to Ψ(M).

In order to prove the reverse implication, by using notation introduced in the first part
of the proof, assume that

Ψ(Mn) ∗−−−⇀Ψ(M) in L∞(Ω;L(Sym, Sym)).

Similarly as before, let (un) be the sequence of solutions to
 div div (Mn∇∇un) = f

un ∈ H2
0(Ω)

for an arbitrary function f ∈ H−2(Ω). The sequences (un) and (Mn∇∇un) are bounded
in H2

0(Ω) and L2(Ω; Sym), respectively, and therefore converge weakly on a subsequence:

un −⇀ u in H2
0(Ω),

Mn∇∇un −⇀ σ in L2(Ω; Sym).
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In order to prove that Mn H−−⇀ M, we only need to show that

σ = M∇∇u.

In the same way as in the first part of the proof, we define matrices Gn,On ∈ L2(Ω; Sym),
respectively made from good (nonoscillating) and bad (oscillating) components of En and
Dn, such that

On = KnGn, (2.15)

with Kn := Ψ(Mn). By using an analogous arguments, we can pass to a subsequence in
(2.15) and obtain

O = KG, (2.16)

where K = Ψ(M). After some calculation, and using also that En = ∇∇un −⇀ ∇∇u in
L2(Ω; Sym), from (2.16) it follows that σ = M∇∇u. �

The previous theorem shows that H-convergence can be reduced to the weak-∗ con-
vergence of some combination of entries of the tensors Mn, n ∈ N, in the case when
they depend only on one variable. Its special case of particular interest is the following
lamination formula, which gives the elastic properties of a simple laminate of two materials.

Remark 8 In order to indicate dependence of a function f , defined on Ω, only on x · e,
for some e ∈ Rd, in the sequel we shall abuse the notation f(x · e) for both, the mapping
x 7→ f(x · e), as well as the value of this mapping at the point x ∈ Ω.

Corollary 1 Let A and B be two constant tensors inM2(α, β; Ω) and χn(x1) be a sequence
of characteristic functions that converges to θ(x1) in L∞(Ω; [0, 1]) weakly-∗. Then, a
sequence (Mn) of tensors in M2(α, β; Ω), defined as

Mn(x1) := χn(x1)A + (1− χn(x1))B

H-converges to

M = θA + (1− θ)B− θ(1− θ)(A− B)(e1 ⊗ e1)⊗ (A− B)T (e1 ⊗ e1)
(1− θ)A(e1 ⊗ e1) : (e1 ⊗ e1) + θB(e1 ⊗ e1) : (e1 ⊗ e1) , (2.17)

which also depends only on x1.

Proof. Since χn(x1) is a sequence of characteristic functions (i.e. it is always equal to 0 or
1), the above formula can be derived by using Theorem 28:

1
mn

1111
= 1
χn(x1)a1111 + (1− χn(x1))b1111

(2.18)

= χn(x1)
a1111

+ 1− χn(x1)
b1111

∗−−−⇀ θ

a1111
+ 1− θ
b1111

= 1
m1111

.
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Furthermore, for 1 ≤ j ≤ d, 2 ≤ k ≤ d,

mn
11jk

mn
1111

= χn(x1)a11jk + (1− χn(x1))b11jk

χn(x1)a1111 + (1− χn(x1))b1111
(2.19)

= χn(x1)a11jk

a1111
+ (1− χn(x1))b11jk

b1111

∗−−−⇀θ
a11jk

a1111
+ (1− θ)b11jk

b1111
= m11jk

m1111
.

Similarly, for 1 ≤ i ≤ d, 2 ≤ k ≤ d,

mn
ik11

mn
1111

= χn(x1)aik11 + (1− χn(x1))bik11

χn(x1)a1111 + (1− χn(x1))b1111
(2.20)

= χn(x1)aik11

a1111
+ (1− χn(x1)) bik11

b1111

∗−−−⇀θ
aik11

a1111
+ (1− θ) bik11

b1111
= mik11

m1111
.

Finally, for 1 ≤ i, j ≤ d, 2 ≤ k, l ≤ d,

mn
ikjl −

mn
ik11m

n
11jl

mn
1111

= χn(x1)aikjl + (1− χn(x1))bikjl−

− (χn(x1)aik11 + (1− χn(x1))bik11)(χn(x1)a11jl + (1− χn(x1))b11jl)
χn(x1)a1111 + (1− χn(x1))b1111

=

= χn(x1)
(
aikjl −

aik11a11jl

a1111

)
+ (1− χn(x1))

(
bikjl −

bik11b11jl

b1111

)
∗−−−⇀

θ
(
aikjl −

aik11a11jl

a1111

)
+ (1− θ)

(
bikjl −

bik11b11jl

b1111

)
= mikjl −

mik11m11jl

m1111
. (2.21)

It remains to validate that entries of the H-limit M, calculated above, coincide with those
given by formula (2.17). This requires some simple, but rather technical computation:
from (2.18) we have that m1111 = a1111b1111

(1− θ)a1111 + θb1111
, and by using this, from (2.19),

(2.20) and (2.21) we obtain other entries of the tensor M. �

Remark 9 If we take some other unit vector e ∈ Rd for the lamination direction, and let
θ(x · e) be the weak limit of the sequence χn(x · e), then the formula (2.17) is still valid,
in an analogous form:

M = θA + (1− θ)B− θ(1− θ)(A− B)(e⊗ e)⊗ (A− B)T (e⊗ e)
(1− θ)A(e⊗ e) : (e⊗ e) + θB(e⊗ e) : (e⊗ e) . (2.22)

This can be derived by a simple change of variables in the result of Theorem 28. The
composite M is called a simple laminate in the direction e, obtained by mixing the phases
A and B in proportions θ and 1− θ, respectively.

This approach for deriving the lamination formula was used by Tartar (see e.g. [72])
in the conductivity setting. A different approach was considered in [51] (see also [47]),
by using the average values of strain and moment over the given area, which is assumed
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Figure 2.1: Layers orthogonal to the vector e.

to be physically small. Then, the lamination formula was derived under the additional
assumption that along the boundaries dividing the layers, the conditions of continuity for
the normal and tangential component of strain hold.

The process of lamination can be repeated in an iterative way. It is of interest to
consider a particular subset of laminated materials, obtained by an iterative process of
lamination, where the previous laminate is laminated again with a single pure phase
(always the same one). The composite material obtained by this process is called a
sequential laminate. Since it is quite difficult to iterate formula (2.22), we shall express it
in a different form, by using the following lemma, whose idea is due to Tartar [67].

Lemma 10 If N is an invertible fourth-order tensor, E ∈ Sym and c ∈ R such that
1 + c(NE : E) 6= 0, then the inverse of N + c(NE)⊗ (NTE) is

N−1 − c

1 + c(NE : E)E⊗ E.

Proof. This can be proved by using a variation of the well-known Sherman-Morrison
formula [27], but it can also be done straightforwardly: by denoting A := N + c(NE)⊗
(NTE) and B := N−1 − c

1 + c(NE : E)E⊗ E, one easily checks that AB = BA = I4. �

Corollary 2 If (A− B) is an invertible fourth-order tensor, then formula (2.22) for M is
equivalent to

θ(M− B)−1 = (A− B)−1 + 1− θ
B(e⊗ e) : (e⊗ e)(e⊗ e)⊗ (e⊗ e). (2.23)

Proof. First, let us write formula (2.22) in the following way:

M− B = θ(A− B) + θ(θ − 1)(A− B)(e⊗ e)⊗ (A− B)T (e⊗ e)
(1− θ)A(e⊗ e) : (e⊗ e) + θB(e⊗ e) : (e⊗ e) .
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Denoting
c = θ − 1

(1− θ)A(e⊗ e) : (e⊗ e) + θB(e⊗ e) : (e⊗ e) ,

as a consequence of Lemma 10, with N = A− B and E = e⊗ e, we have

θ(M− B)−1 = (A− B)−1 − c

1 + c(A− B)(e⊗ e) : (e⊗ e)(e⊗ e)⊗ (e⊗ e)

= (A− B)−1 + 1− θ
B(e⊗ e) : (e⊗ e)(e⊗ e)⊗ (e⊗ e),

which is the required formula. �

Let A∗1 be a simple laminate, obtained from the materials A and B, in proportions θ1

and (1− θ1), respectively, in the direction e1 of lamination:

θ1(A∗1 − B)−1 = (A− B)−1 + 1− θ1

B(e1 ⊗ e1) : (e1 ⊗ e1)(e1 ⊗ e1)⊗ (e1 ⊗ e1).

A∗1 can be laminated again with the material B, in proportion θ2 of material A∗1 and 1− θ2

of material B, in the direction of lamination e2, to obtain a new laminate A∗2:

θ2(A∗2 − B)−1 = (A∗1 − B)−1 + 1− θ2

B(e2 ⊗ e2) : (e2 ⊗ e2)(e2 ⊗ e2)⊗ (e2 ⊗ e2),

i.e.

θ1θ2(A∗2 − B)−1 = (A− B)−1 + (1− θ1) (e1 ⊗ e1)⊗ (e1 ⊗ e1)
B(e1 ⊗ e1) : (e1 ⊗ e1)+

+ θ1(1− θ2) (e2 ⊗ e2)⊗ (e2 ⊗ e2)
B(e2 ⊗ e2) : (e2 ⊗ e2) .

If we continue this iterative process and in p-th step laminate the previously obtained
laminate A∗p−1 with material B in the lamination direction ep and proportion θp of A∗p−1,
we obtain a composite material called a rank-p sequential laminate with matrix B and
core A, which is determined by the following formula: p∏

j=1
θj

 (A∗p − B)−1 = (A− B)−1 +
p∑
i=1

(1− θi)
i−1∏
j=1

θj

 (ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

. (2.24)

The overall volume fraction of material A in this rank-p sequential laminate is θ =
p∏
i=1

θi.

The following result is a simple consequence of (2.24) (for an analogous result in the
context of stationary diffusion see [2]).

Lemma 11 Let θ be a volume fraction in [0, 1], (ei)1≤i≤p unit vectors in Rd, and (mi)1≤i≤p

nonnegative real numbers such that
p∑
i=1

mi = 1. Then, there exists a rank-p sequential
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laminate A∗p with core A and matrix B, and with lamination directions e1, e2, . . . , ep, such
that

θ(A∗p − B)−1 = (A− B)−1 + (1− θ)
p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

. (2.25)

Proof. One should compare formulas (2.24) and (2.25), which gives the following equality:

(1− θ)mi = (1− θi)
i−1∏
j=1

θj, (2.26)

for 1 ≤ i ≤ p. Knowing the parameters (mi)1≤i≤p and θ, it is easy to compute proportions

(θi)1≤i≤p such that
p∏
i=1

θi = θ, since
p∑
i=1

mi = 1. On the contrary, if (θi)1≤i≤p are known,

parameters (mi)1≤i≤p can easily be computed from (2.26) upon defining θ =
p∏
i=1

θi. �

One could interchange the roles of A and B and obtain a symmetric class of sequential
laminates, i.e. if we repeat the iterative lamination process p times, in lamination directions
(ei)1≤i≤p and proportions (θi)1≤i≤p of material A, we obtain a rank-p sequential laminate
with matrix A and core B, which is defined by the following formula: p∏

j=1
(1− θj)

 (A∗p−A)−1 = (B−A)−1+
p∑
i=1

θi i−1∏
j=1

(1− θj)
 (ei ⊗ ei)⊗ (ei ⊗ ei)

A(ei ⊗ ei) : (ei ⊗ ei)
. (2.27)

In this case an analogous of Lemma 11 holds true:

Lemma 12 Let θ be a volume fraction in [0, 1], (ei)1≤i≤p unit vectors in Rd, (mi)1≤i≤p

nonnegative real numbers such that
p∑
i=1

mi = 1. Then, there exists a rank-p sequential

laminate A∗p with core B and matrix A, and with lamination directions e1, e2, . . . , ep, such
that

(1− θ)(A∗p − A)−1 = (B− A)−1 + θ
p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

. (2.28)

2.4 Hashin-Shtrikman bounds on the primal energy
In the sequel we want to derive optimal bounds on the effective energy of a two-

phase composite material, obtained by mixing A,B ∈ Sym4 in proportions θ and 1 − θ,
respectively. These bounds are based on the Hashin-Shtrikman variational principle [40]
which applies only when materials are well-ordered, i.e. we assume that

Aξ : ξ ≤ Bξ : ξ, ξ ∈ Sym.

Otherwise, when materials are not well-ordered, one could apply the translation method as
was done in [5]. The notion of an optimal bound is introduced in the following definition.
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Definition 13 The function f−(θ,A,B; ·) : Sym → R (respectively, f+(θ,A,B; ·) :
Sym→ R), is said to be a lower bound (respectively, an upper bound) if for any A∗ ∈ Gθ

it holds

(∀ξ ∈ Sym) A∗ξ : ξ ≥ f−(θ,A,B; ξ), (respectively, (∀ξ ∈ Sym) A∗ξ : ξ ≤ f+(θ,A,B; ξ)).

A lower bound f−(θ,A,B; ·) (respectively, the upper bound f+(θ,A,B; ·)) is said to be
optimal if for any ξ ∈ Sym there exists A∗ ∈ Gθ such that

A∗ξ : ξ = f−(θ,A,B; ξ) (respectively, A∗ξ : ξ = f+(θ,A,B; ξ)).

Theorem 29 The effective energy of a composite material A∗ ∈ Gθ satisfies the following
bounds:

(∀ξ ∈ Sym) A∗ξ : ξ ≥ Aξ : ξ + (1− θ) max
η∈Sym

[2ξ : η − (B− A)−1η : η − θg(η)], (2.29)

where g(η) is defined by

g(η) := sup
k∈Zd,k 6=0

|(k⊗ k) : η|2
A(k⊗ k) : (k⊗ k) (2.30)

and

(∀ξ ∈ Sym) A∗ξ : ξ ≤ Bξ : ξ + θ min
η∈Sym

[2ξ : η + (B− A)−1η : η − (1− θ)h(η)], (2.31)

where h(η) is defined by

h(η) := inf
k∈Zd,k 6=0

|(k⊗ k) : η|2
B(k⊗ k) : (k⊗ k) . (2.32)

These bounds are called the Hashin-Shtrikman bounds. Moreover, (2.29) and (2.31) are
optimal in the sense of Definition 13 and optimality can be achieved by a rank-p sequential
laminate, where p = (d+ 3)(d+ 2)(d+ 1)d

24 + 1.

Remark 10 The supremum and infimum in formulas (2.30) and (2.32) can also be taken
over Rd\{0}. By using the fact that Q · Zd is dense in Rd and continuity of functions

k 7→ |(k⊗ k) : η|2
A(k⊗ k) : (k⊗ k) and k 7→ |(k⊗ k) : η|2

B(k⊗ k) : (k⊗ k) , k ∈ Rd\{0},

we obtain

h(η) = inf
k∈Zd,k 6=0

|(k⊗ k) : η|2
B(k⊗ k) : (k⊗ k)
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= inf
k∈Zd,k 6=0
λ∈Q

|(λk⊗ λk) : η|2
B(λk⊗ λk) : (λk⊗ λk)

= inf
k∈Rd,k 6=0

|(k⊗ k) : η|2
B(k⊗ k) : (k⊗ k) .

An analogous result can be shown for function g.

Remark 11 It follows straightforwardly from the definition of a convex function that the
function under the supremum in the definition of g is convex on Sym. This, together with
the fact that the maximum of convex functions is also a convex function [8], implies that g is
convex, so the lower Hashin-Shtrikman bound is given as the result of a finite-dimensional
concave maximization.

On the other hand, it can be shown that h(η) ≤ B−1η : η: for arbitrary k ∈ Rd\{0},
by substituting k⊗k = B− 1

2 X, X ∈ Sym, and by using the Cauchy–Bunyakovsky–Schwarz
inequality, we obtain that

|(k⊗ k) : η|2
B(k⊗ k) : (k⊗ k) ≤ B−1η : η,

hence h(η) ≤ B−1η : η. Together with (B − A)−1 − (1 − θ)B−1 ≥ 0, this implies that
the upper Hashin-Shtrikman bound is given as the result of a finite-dimensional convex
minimization.

Proof of Theorem 29. Since ClPθ = Gθ, it is enough to prove that these bounds hold
for A∗ obtained by periodic homogenization. We begin with the lower Hashin-Shtrikman
bound. By using the weak formulation of the periodic boundary value problem (1.27)
introduced in Theorem 18, with M(y) = χ(y)A + (1− χ(y))B, we have that

A∗ξ : ξ = min
w∈H2

#(Y )

∫
Y

(χ(y)A + (1− χ(y))B)(ξ +∇∇w(y)) : (ξ +∇∇w(y)) dy, (2.33)

where ξ ∈ Sym and χ ∈ L∞# (Y ;L(Sym, Sym)) is a characteristic function such that∫
Y

χ(y) dy = θ. If we subtract and add from χA + (1− χ)B the tensor A, we obtain

A∗ξ : ξ = min
w∈H2

#(Y )

(∫
Y

(1− χ(y))(B− A)(ξ +∇∇w(y)) : (ξ +∇∇w(y)) dy+

+
∫
Y

A(ξ +∇∇w(y)) : (ξ +∇∇w(y)) dy
)
. (2.34)
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We denote ζ := ξ +∇∇w ∈ L2
#(Y ; Sym), and

ϕ(ζ) :=
∫
Y

(1− χ(y))(B− A)ζ(y) : ζ(y) dy.

Since B− A ≥ 0, by using the Legendre transform, one can easily conclude that

ϕ∗(η) = sup
ζ∈L2

#(Y ;Sym)

 ∫
Y

ζ(y) : η(y) dy − ϕ(ζ)


= 1
4

∫
Y

(1− χ(y))(B− A)−1η(y) : η(y) dy.

Next, by the Fenchel-Moreau theorem

ϕ(ζ) = (ϕ∗)∗(ζ)

= sup
η∈L2

#(Y ;Sym)

 ∫
Y

ζ(y) : η(y) dy − ϕ∗(η)


= max
η∈L2

#(Y ;Sym)

∫
Y

(1− χ(y))
[
2(ξ +∇∇w(y)) : η(y)− (B− A)−1η(y) : η(y)

]
dy

≥ max
η∈Sym

∫
Y

(1− χ(y))
[
2(ξ +∇∇w(y)) : η − (B− A)−1η : η

]
dy

≥
∫
Y

(1− χ(y))
[
2(ξ +∇∇w(y)) : η − (B− A)−1η : η

]
dy,

hence

ϕ(ζ) ≥ (1− θ)
[
2ξ : η − (B− A)−1η : η

]
− 2

∫
Y

χ(y)∇∇w(y) : η dy, η ∈ Sym. (2.35)

Furthermore, by periodicity of w ∈ H2
#(Y ) it follows:

∫
Y

A(ξ +∇∇w(y)) : (ξ +∇∇w(y)) dy = Aξ : ξ +
∫
Y

A∇∇w(y) : ∇∇w(y) dy. (2.36)

By using (2.34), (2.35) and (2.36), similarly as in [2, Proposition 2.2.6], we conclude that

A∗ξ : ξ ≥ min
w∈H2

#(Y )

(
(1− θ)

(
2ξ : η − (B− A)−1η : η

)
− 2

∫
Y

χ(y)∇∇w(y) : η dy+

+ Aξ : ξ +
∫
Y

A∇∇w(y) : ∇∇w(y) dy
)

=

= Aξ : ξ + (1− θ)
(
2ξ : η − (B− A)−1η : η

)
− g(χ,η),
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where

g(χ,η) = − min
w∈H2

#(Y )

∫
Y

A∇∇w(y) : ∇∇w(y) dy − 2
∫
Y

χ(y)∇∇w(y) : η dy
 . (2.37)

To obtain an explicit formula for g, one can use Fourier analysis since (2.37) represents
minimization over periodic functions. Note that the function to be minimized in (2.37)
involves only bilinear terms depending on y. Thus, by periodicity, one can write χ and w
as

χ(y) =
∑

k∈Zd

χ̂(k)e2πik·y,

w(y) =
∑

k∈Zd

ŵ(k)e2πik·y.

These are complex Fourier series [31, 37], and since functions χ and w are real valued,
their Fourier coefficients must satisfy χ̂(k) = χ̂(−k) and ŵ(k) = ŵ(−k). The Parseval’s
relation gives:

∫
Y

A∇∇w(y) : ∇∇w(y) dy − 2
∫
Y

χ(y)∇∇w(y) : η dy

=
∑

k∈Zd

(
16π4|ŵ(k)|2A(k⊗ k) : (k⊗ k) + 8π2χ̂(k)ŵ(k)k⊗ k : η

)
=

∑
k∈Zd

(
16π4|ŵ(k)|2A(k⊗ k) : (k⊗ k) + 8π2Re(χ̂(k)ŵ(k)k⊗ k : η)

)
. (2.38)

The minimization over w ∈ H2
#(Y ) in (2.37) is equivalent to the minimization over ŵ(k) ∈

C, for each k ∈ Zd, and the minimization can be performed on each component of the
sum (2.38) independently. Note that k = 0 contributes nothing to the sum (2.38). Now,
it is easily seen that the above minimum is attained when

ŵ(k) = −χ̂(k)(k⊗ k) : η
4π2A(k⊗ k) : (k⊗ k) , k ∈ Zd\{0}.

Therefore

g(χ,η) =
∑

k∈Zd,k 6=0

|χ̂(k)|2|(k⊗ k) : η|2
A(k⊗ k) : (k⊗ k)

≤ sup
k∈Zd,k 6=0

|(k⊗ k) : η|2
A(k⊗ k) : (k⊗ k)

∑
k∈Zd,k 6=0

|χ̂(k)|2

= g(η)
∑

k∈Zd,k 6=0
|χ̂(k)|2,
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where g(η) is given by (2.30). Now, the Parseval’s relation implies

∑
k∈Zd,k 6=0

|χ̂(k)|2 =
∫
Y

χ2(y) dy − θ2 =
∫
Y

χ(y) dy − θ2 = θ(1− θ),

which yields the lower Hashin-Shtrikman bound. The upper Hashin-Shtrikman bound can
be derived analogously.

Let us now prove that the lower bound is optimal in the sense of Definition 13: first,
we denote

φ(η) := 2ξ : η − (B− A)−1η : η − θg(η). (2.39)

As φ is strictly concave in η (see Remark 11) and −φ is coercive, there exists a unique
maximum point η∗ of φ. Since φ is usually not a smooth function, the first-order (both
necessary and sufficient) optimality condition for (2.39) reads 0 ∈ ∂φ(η∗), where ∂φ(η∗)
is the subdifferential of function φ at η∗. To calculate the subdifferential of φ, one should
calculate the subdifferential of g.

By simple change k = ‖k‖e, e ∈ Sd−1, we have

g(η) = sup
k∈Zd,k 6=0

|(k⊗ k) : η|2
A(k⊗ k) : (k⊗ k) = max

e∈Sd−1

|(e⊗ e) : η|2
A(e⊗ e) : (e⊗ e) . (2.40)

We denote
M(η) =

{
e ∈ Sd−1 : g(η) = |(e⊗ e) : η|2

A(e⊗ e) : (e⊗ e)

}

and let P [M(η)] be the collection of probability Radon measures on the unit sphere,
supported on M(η). By Theorem 20 it follows that

∂g(η) =

2
∫

Sd−1

(e⊗ e) : η
A(e⊗ e) : (e⊗ e)e⊗ e dν(e) : ν ∈ P [M(η)]


=

2

 ∫
Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν(e)

η : ν ∈ P [M(η)]

 .

Now, let X be the space of fully symmetric fourth-order tensors M satisfying

Mijkl = Mkjil = Mklij = Mjikl, 1 ≤ i, j, k, l ≤ d

with dimension n = (d+ 3)(d+ 2)(d+ 1)d
24 , and we denote

K :=


∫

Sd−1

(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) dν(e) : ν ∈ P [M(η)]

 .
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Since K is a nonempty, closed, bounded, convex subset of a vector space X of finite
dimension n, by Carathéodory’s theorem (see Theorem 24) and Lemma 7, every point
from K can be represented as a convex combination of at most n + 1 extreme points of
K, i.e. as

n+1∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

,

for some ei ∈ M(η) and mi ≥ 0, such that
n+1∑
i=1

mi = 1. Now, the first-order optimality

condition for maximizing (2.39): η∗ is optimal if and only if

2ξ − 2(B− A)−1η∗ ∈ θ∂g(η∗), (2.41)

which is equivalent to

ξ − (B− A)−1η∗ − θ
n+1∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

η∗ = 0, (2.42)

for some ei ∈M(η∗) and mi ≥ 0, such that
n+1∑
i=1

mi = 1. Note that in deriving (2.41), the

symmetry of A and B is used, otherwise the optimality condition would be given as

2ξ − (B− A)−1η∗ −
(
(B− A)−1

)T
η∗ ∈ θ∂g(η∗),

which would significantly complicate further algebraic calculations.

Taking the inner product of (2.42) with η∗ gives:

ξ : η∗ = (B− A)−1η∗ : η∗ + θ
n+1∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

η∗ : η∗

= (B− A)−1η∗ : η∗ + θg(η∗). (2.43)

By (2.39) and (2.43) we have

φ(η∗) = ξ : η∗ + ξ : η∗ − (B− A)−1η∗ : η∗ − θg(η∗)
= ξ : η∗.

Thus, the lower bound (2.29) can be expressed as

A∗ξ : ξ ≥ Aξ : ξ + (1− θ)ξ : η∗. (2.44)

In order to achieve equality in (2.44), let us consider the sequential laminate given by
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formula (2.28):

(1− θ)(A∗n+1 − A)−1 = (B− A)−1 + θ
n+1∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

. (2.45)

Multiplying (2.45) by η∗ and using (2.42) gives

(1− θ)(A∗n+1 − A)−1η∗ = ξ, (2.46)

which equals
A∗n+1ξ = (1− θ)η∗ + Aξ. (2.47)

After taking the inner product of (2.47) with ξ, we obtain

A∗n+1ξ : ξ = (1− θ)η∗ : ξ + Aξ : ξ = (1− θ)φ(η∗) + Aξ : ξ,

thus optimality is achieved by a sequential laminate of rank n+ 1 given with (2.28), where

ei ∈M(η∗) and mi ≥ 0, such that
n+1∑
i=1

mi = 1. For the upper Hashin-Shtrikman bound a

similar conclusion holds, i.e. the optimality is achieved by a finite-rank sequential laminate
(2.25). �

The previous theorem extends easily to the sum of energies.

Theorem 30 For any ξ1, . . . ξp ∈ Sym, a homogenized tensor A∗ ∈ Gθ satisfies the
following bounds:

p∑
i=1

A∗ξi : ξi ≥
p∑

i=1
Aξi : ξi +(1−θ) max

ηi∈Sym
i=1,...,p

[
p∑

i=1

(
2ξi : ηi − (B− A)−1ηi : ηi

)
− θg(η1, . . . ,ηp)

]
, (2.48)

where g(η1, . . . ,ηp) is defined by

g(η1, . . . ,ηp) := sup
k∈Zd,k 6=0

p∑
i=1

|(k⊗ k) : ηi|2
A(k⊗ k) : (k⊗ k) (2.49)

and
p∑

i=1
A∗ξi : ξi ≤

p∑
i=1

Bξi : ξi+θ min
ηi∈Sym
i=1,...,p

[
p∑

i=1

(
2ξi : ηi + (B− A)−1ηi : ηi

)
− (1− θ)h(η1, . . . ,ηp)

]
, (2.50)

where h(η1, . . . ,ηp) is defined by

h(η1, . . . ,ηp) := inf
k∈Zd,k 6=0

p∑
i=1

|(k⊗ k) : ηi|2
B(k⊗ k) : (k⊗ k) .

Moreover, (2.48) and (2.50) are optimal in the sense of Definition 13 and optimality can

be achieved by a rank-p sequential laminate, where p = (d+ 3)(d+ 2)(d+ 1)d
24 + 1.
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Proof. The proof goes along the same lines as the proof for a single effective energy. Let
us just highlight the main differences (only for the lower Hashin-Shtrikman bound, as it
was done in the proof of Theorem 29). We have:

p∑
i=1

A∗ξi : ξi =
p∑
i=1

 min
wi∈H2

#(Y )

∫
Y

(χ(y)A + (1− χ(y))B)(ξi +∇∇wi(y)) : (ξi +∇∇wi(y)) dy


≥
p∑
i=1

(
Aξi : ξi + (1− θ) (2ξi : ηi − (B− A)−1 ηi : ηi)− g(χ,ηi)

)
,

where

g(χ,ηi) = − min
wi∈H2

#(Y )

∫
Y

A∇∇wi(y) : ∇∇wi(y) dy − 2
∫
Y

χ(y)∇∇wi(y) : ηi dy
 .

Again, by using Fourier analysis, we obtain

p∑
i=1

g(χ,ηi) =
p∑
i=1

 ∑
k∈Zd,k 6=0

|χ̂(k)|2|(k⊗ k) : ηi|2
A(k⊗ k) : (k⊗ k)


=

∑
k∈Zd,k 6=0

( p∑
i=1

|χ̂(k)|2|(k⊗ k) : ηi|2
A(k⊗ k) : (k⊗ k)

)

=
∑

k∈Zd,k 6=0
|χ̂(k)|2

p∑
i=1

|(k⊗ k) : ηi|2
A(k⊗ k) : (k⊗ k)

≤ sup
k∈Zd,k 6=0

p∑
i=1

|(k⊗ k) : ηi|2
A(k⊗ k) : (k⊗ k)

∑
k∈Zd,k 6=0

|χ̂(k)|2

= θ(1− θ)g(η1, . . . ,ηp),

where g(η1, . . . ,ηp) is given with (2.49). This yields the lower Hashin-Shtrikman bound.
The upper Hashin-Shtrikman bound can be derived analogously.

Let us now prove the optimality of the lower Hashin-Shtrikman bound on the sum of
energies. Similarly as before, we denote:

φ(η1, . . . ,ηp) :=
p∑
i=1

(
2ξi : ηi − (B− A)−1ηi : ηi

)
− θg(η1, . . . ,ηp),

which is a strictly concave function in (η1, . . . ,ηp), such that −φ is coercive, and conse-
quently there exists a unique maximum point (η∗1, . . . ,η∗p) of φ. Furthermore, the same
arguments as in the proof of Theorem 29 show that the first-order optimality condition

p∑
i=1

(2ξi − 2(B− A)−1η∗i ) ∈ θ∂g(η∗1, . . . ,η∗p)
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is equivalent to

p∑
i=1

(ξi − (B− A)−1η∗i )− θ
p∑
i=1

n+1∑
k=1

mk
(ek ⊗ ek)⊗ (ek ⊗ ek)
A(ek ⊗ ek) : (ek ⊗ ek)

η∗i = 0,

for some ek ∈ M(η∗1, . . . ,η∗p) and mk ≥ 0, such that
n+1∑
k=1

mk = 1. By using this, an

analogous reasoning as for the single effective energy implies the claim. �

The following corollary is an immediate consequence of the Theorem 29.

Corollary 3 Let A∗ ∈ Gθ. A lower Hashin-Shtrikman bound (2.29) is equivalent to

(∀η ∈ Sym) (1− θ)(A∗ − A)−1η : η ≤ (B− A)−1η : η + θg(η).

Similarly, an upper Hashin-Shtrikman bound (2.31) is equivalent to

(∀η ∈ Sym) θ(B− A∗)−1η : η ≤ (B− A)−1η : η − (1− θ)h(η).

Proof. Let us start with the upper bound. First, we denote

ϕ1(ξ) := 1
θ

(B− A∗)ξ : ξ,

and

ϕ2(ξ) = − min
η∈Sym

[2ξ : η + (B− A)−1η : η − (1− θ)h(η)]

= max
η∈Sym

[2ξ : η − (B− A)−1η : η + (1− θ)h(η)].

Obviously, (2.31) is equivalent to ϕ1(ξ) ≥ ϕ2(ξ), ξ ∈ Sym, and ϕ1, ϕ2 are convex functions.
By Fenchel-Moreau theorem, the Legendre transform of ϕ∗2 is again ϕ2:

(ϕ∗2)∗(ξ) = ϕ2(ξ) = max
η∈Sym

[
2ξ : η − (B− A)−1η : η + (1− θ)h(η)

]
= max

η∈Sym

[
ξ : η − 1

4
(
(B− A)−1η : η − (1− θ)h(η)

)]
(2.51)

= sup
η∈Sym

[ξ : η − ϕ∗2(η)] ,

where the third equality in (2.51) follows after replacing η by η2 . Thus, by Remark 6

ϕ∗2(η) = 1
4
(
(B− A)−1η : η − (1− θ)h(η)

)
.
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Similarly,

ϕ∗1(η) = sup
ξ∈Sym

[
η : ξ − 1

θ
(B− A∗)ξ : ξ

]

= θ

4(B− A∗)−1η : η.

Since ϕ1 and ϕ2 are convex and continuous, the inequality

ϕ1(ξ) ≥ ϕ2(ξ), ξ ∈ Sym

is equivalent to
ϕ∗1(η) ≤ ϕ∗2(η), η ∈ Sym.

In other words, an upper Hashin-Shtrikman bound is equivalent to

θ(B− A∗)−1η : η ≤ (B− A)−1η : η − (1− θ)h(η), η ∈ Sym.

The assertion for the lower bound can be proved analogously. �

2.5 Hashin-Shtrikman bounds on the complementary
energy and lamination formulas

In this section we want to derive bounds on the complementary energy of a two-
phase composite material, obtained by mixing A,B ∈ Sym4 in proportions θ and 1 − θ,
respectively. Furthermore, we assume that

Aξ : ξ ≤ Bξ : ξ, (2.52)

for any ξ ∈ Sym.

Recall that, in the case of the primal energy, when considering bounds on A∗ξ : ξ,
we concluded that optimality of Hashin-Shtrikman bounds is achieved by a finite-rank
sequential laminate. Now, when our focus is on A∗−1σ : σ, first we want to derive
lamination formulas in terms of A∗p−1, where A∗p is a rank-p sequential laminate with core
A and matrix B, and with lamination directions e1, e2, . . . , ep.

Let us briefly recall the following result: if A and B are two constant tensors in
M2(α, β; Ω) and χn(x · e) a sequence of characteristic functions that converges to θ(x · e)
in L∞(Ω; [0, 1]) weakly-∗, then the sequence (Mn) of tensors in M2(α, β; Ω), defined as

Mn(x · e) = χn(x · e)A + (1− χn(x · e))B
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H-converges to

M = θA + (1− θ)B− θ(1− θ)(A− B)(e⊗ e)⊗ (A− B)T (e⊗ e)
(1− θ)A(e⊗ e) : (e⊗ e) + θB(e⊗ e) : (e⊗ e) , (2.53)

which also depends only on x · e. By Corollary 2, if (A− B) is an invertible fourth-order
tensor, then formula (2.53) for M is equivalent to

θ(M− B)−1 = (A− B)−1 + 1− θ
B(e⊗ e) : (e⊗ e)(e⊗ e)⊗ (e⊗ e). (2.54)

Before we proceed further, let us mention that the basic tool for deriving desired lamination
formulas will be the following identity:

(B− A)−1 = A−1(A−1 − B−1)−1A−1 − A−1, (2.55)

which holds for two invertible fourth-order tensors A and B, such that B−A and A−1−B−1

are also invertible. Note that this is satisfied by constant tensors A, B ∈ M2(α, β; Ω)
defined with (2.52).

By applying identitity (2.55) to terms (M−B)−1 and (A−B)−1, we obtain that (2.54)
is equivalent to

θ(M−1 − B−1)−1 = (A−1 − B−1)−1 + (1− θ)
[
B− B (e⊗ e)⊗ (e⊗ e)

B(e⊗ e) : (e⊗ e)B
]
. (2.56)

For the purpose of deriving the desired formula in the terms of A∗p−1, let us recall the
following statement:

Lemma 13 Let θ be a volume fraction in [0, 1], (ei)1≤i≤p unit vectors in Rd, (mi)1≤i≤p

nonnegative real numbers such that
p∑
i=1

mi = 1. Then, there exists a rank-p sequential

laminate A∗p with core A and matrix B, and with lamination directions e1, e2, . . . , ep, such
that

θ(A∗p − B)−1 = (A− B)−1 + (1− θ)
p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

. (2.57)

Now, after applying the identity (2.55) to terms (A∗p −B)−1 and (A−B)−1, it follows
that (2.57) is equivalent to

θ(A∗p
−1−B−1)−1 = (A−1−B−1)−1 +(1−θ)

[
B−

p∑
i=1

miB
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

B
]
. (2.58)

One could interchange the roles of A and B and obtain a symmetric class of sequential
laminates written in terms of A∗p−1:

Lemma 14 Let θ be a volume fraction in [0, 1], (ei)1≤i≤p unit vectors in Rd, (mi)1≤i≤p
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nonnegative real numbers such that
p∑
i=1

mi = 1. Then, there exists a rank-p sequential

laminate A∗p with core B and matrix A, and with lamination directions e1, e2, . . . , ep, such
that

(1−θ)(A∗p
−1−A−1)−1 = (B−1−A−1)−1 +θ

[
A−

p∑
i=1

miA
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

A
]
. (2.59)

Our next step is to derive bounds for the effective energy written in terms of stress,
i.e. bounds on the complementary or dual energy. These bounds, as well as bounds on
the primal energy, will pave the way for new results concerning optimal design of a thin,
elastic plates.

Theorem 31 The homogenized tensor A∗ ∈ Gθ satisfies

(∀σ ∈ Sym) A∗−1σ : σ ≥ B−1σ : σ+θ max
η∈Sym

[
2σ : η − (A−1 − B−1)−1η : η − (1− θ)gc(η)

]
,

(2.60)
where

gc(η) := Bη : η − hB(η), (2.61)

while hB(η) is defined with

hB(η) := min
e∈Sd−1

|(e⊗ e) : Bη|2
B(e⊗ e) : (e⊗ e) . (2.62)

Moreover,

(∀σ ∈ Sym) A∗−1σ : σ ≤ A−1σ : σ+(1−θ) min
η∈Sym

[
2σ : η + (A−1 − B−1)−1η : η − θhc(η)

]
,

(2.63)
where

hc(η) := Aη : η − gA(η), (2.64)

while gA(η) is defined with

gA(η) := max
e∈Sd−1

|(e⊗ e) : Aη|2
A(e⊗ e) : (e⊗ e) . (2.65)

Additionally, (2.60) and (2.63) are optimal in the sense of Definition 13 and optimality is

achieved by a rank-p sequential laminate, where p = (d+ 3)(d+ 2)(d+ 1)d
24 + 1.

Remark 12 Analogously as for the Hashin-Shtrikman bounds on the primal energy, one
can show that the function

F1(η) := 2σ : η − (A−1 − B−1)−1η : η − (1− θ)gc(η)
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is concave, hence the bound (2.60) is given as the result of a finite-dimensional concave
maximization, and that the function

F2(η) := 2σ : η + (A−1 − B−1)−1η : η − θhc(η)

is convex, which implies that the bound (2.63) is given as the result of a finite-dimensional
convex minimization.

Proof of Theorem 31. The idea of the proof is to show that (2.60) is equivalent to
the upper Hashin-Shtrikman bound given with (2.31) and that (2.63) is equivalent to the
lower Hashin-Shtrikman bound, given with (2.29).

Let us start with the lower bound (2.60). By Corollary 3 we have that (2.31) is
equivalent to

θ(B− A∗)−1η : η ≤ (B− A)−1η : η − (1− θ)h(η), η ∈ Sym. (2.66)

Next, we show that (2.60) is equivalent to

θ(A∗−1 − B−1)−1η : η ≤ (A−1 − B−1)−1η : η + (1− θ)gc(η), η ∈ Sym. (2.67)

Let us first denote

ϕ1(σ) = max
η∈Sym

[
2σ : η − (A−1 − B−1)−1η : η − (1− θ)gc(η)

]
and

ϕ2(σ) = 1
θ

(
A∗−1 − B−1

)
σ : σ.

Obviously, (2.60) is equivalent to ϕ1(σ) ≤ ϕ2(σ), σ ∈ Sym, and ϕ1, ϕ2 : Sym → R
are convex functions. By Fenchel-Moreau theorem, since ϕ1 is continuous, convex and
ϕ1 6≡ +∞, the Legendre transform of ϕ∗1 is again ϕ1:

(ϕ∗1)∗(σ) = ϕ1(σ) = max
η∈Sym

[
2σ : η − (A−1 − B−1)−1η : η − (1− θ)gc(η)

]
= max

η∈Sym

[
σ : η − 1

4
(
(A−1 − B−1)−1η : η + (1− θ)gc(η)

)]
= sup

η∈Sym
[σ : η − ϕ∗1(η)] .

By Remark 6, it easily follows that

ϕ∗1(η) = 1
4
(
(A−1 − B−1)−1η : η + (1− θ)gc(η)

)
.
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Furthermore,

ϕ∗2(η) = sup
σ∈Sym

[
σ : η − 1

θ
(A∗−1 − B−1)σ : σ

]

= θ

4(A∗−1 − B−1)−1η : η.

Since ϕ1 and ϕ2 are both convex and continuous,

ϕ1(σ) ≤ ϕ2(σ), σ ∈ Sym

is equivalent to
ϕ∗1(η) ≥ ϕ∗2(η), η ∈ Sym.

Thus, we have that (2.31)⇔(2.66) and (2.60)⇔(2.67). It remains to show that (2.66) is
equivalent to (2.67), which will complete the proof. Replacing η by B−1η in (2.67) gives

θ(A∗−1 − B−1)−1B−1η : B−1η ≤ (A−1 − B−1)−1B−1η : B−1η + (1− θ)gc(B−1η),

which, by symmetry of B−1, can be written as

θB−1(A∗−1−B−1)−1B−1η : η ≤ B−1(A−1−B−1)−1B−1η : η+(1−θ)B−1η : η−(1−θ)h(η).

By using (2.55) and after some calculation, one easily verifies that (2.67) is equivalent to
(2.66), which completes this part of the proof. The upper Hashin-Shtrikman bound on
the complementary energy can be derived analogously.

Let us now prove that the lower bound (2.60) is optimal in the sense of Definition
13. The proof is analogous as for the optimality of Hashin-Shtrikman bounds on primal
energy, hence, we shall just highlight the main parts. We denote

φ(η) = 2σ : η − (A−1 − B−1)−1η : η − (1− θ)gc(η). (2.68)

It is easy to see that

hB(η) = min
e∈Sd−1

(e⊗ e)⊗ (e⊗ e)
B(e⊗ e) : (e⊗ e)Bη : Bη

= min
e∈Sd−1

B (e⊗ e)⊗ (e⊗ e)
B(e⊗ e) : (e⊗ e)Bη : η.

By Theorem 20, the subdifferential of hB is given with

∂hB(η) =

2
∫

Sd−1

B (e⊗ e)⊗ (e⊗ e)
B(e⊗ e) : (e⊗ e)Bη dν(e) : ν ∈ P [M(η)]


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=

2B

 ∫
Sd−1

(e⊗ e)⊗ (e⊗ e)
B(e⊗ e) : (e⊗ e) dν(e)

Bη : ν ∈ P [M(η)]

 ,
where

M(η) =
{

e ∈ Sd−1 : hB(η) = |(e⊗ e) : Bη|2
B(e⊗ e) : (e⊗ e)

}

and P [M(η)] is the collection of probability Radon measures on the unit sphere, supported
on M(η). By using Carathéodory’s theorem, similarly as in the proof of the Theorem 29,
the subdifferential of hB(η) is equivalently defined by

∂hB(η) =
{

2B
( p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

)
Bη

}
,

for some ei ∈M(η) and mi ≥ 0, such that
p∑
i=1

mi = 1, where p = (d+ 3)(d+ 2)(d+ 1)d
24 +

1.

Furthermore, the optimality condition 0 ∈ ∂φ(η∗) is equivalent to

σ − (A−1 − B−1)−1η∗ − (1− θ)
[
Bη∗ −

p∑
i=1

miB
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

Bη∗
]

= 0. (2.69)

Taking the inner product of (2.69) with η∗ gives

σ : η∗ − (A−1 − B−1)−1η∗ : η∗ − (1− θ)
[
Bη∗ : η∗ −

p∑
i=1

miB
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

Bη∗ : η∗
]

= σ : η∗ − (A−1 − B−1)−1η∗ : η∗ − (1− θ) [Bη∗ : η∗ − hB(η∗)] (2.70)
= σ : η∗ − (A−1 − B−1)−1η∗ : η∗ − (1− θ)gc(η∗) = 0.

To achieve equality in the lower Hashin-Shtrikman bound on the complementary energy,
let us consider the sequential laminate provided by formula (2.58):

θ(A∗p
−1−B−1)−1 = (A−1−B−1)−1 +(1−θ)

[
B−

p∑
i=1

miB
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

B
]
. (2.71)

By using (2.69) and (2.71), we have

A∗p
−1σ : σ = B−1σ : σ + θσ : η∗.

In order to conclude that optimality is achieved by a finite-rank sequential laminate given
with (2.58), it remains to show that φ(η∗) = σ : η∗, which easily follows from (2.70). For
the upper Hashin-Shtrikman bound on the complementary energy a similar conclusion
holds, i.e. the optimality is achieved by a finite-rank sequential laminate (2.59). �
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2.6 G-closure in the small-amplitude regime
In this section we shall give a characterisation of the G-closure for the Kirchhoff-

Love plate in one simplified regime, namely the low-contrast or small-amplitude regime:
we mix two materials A,B ∈ Sym4, in proportions θ and 1 − θ, respectively, with a
microstructure defined by the sequence (χn), and additionally we assume that A and
B have close properties. More precisely, we assume that there exists a small positive
parameter γ and a coercive, symmetric fourth order tensor D such that

B− A = γD.

In order to describe the G-closure in the low-contrast regime, we shall use H-measures.
They were introduced independently for weakly convergent sequences in L2(Rd) by Tartar
[69] and Gérard [34] (under the name microlocal defect measures). An idea is to asso-
ciate a measure to a weakly converging (sub)sequence, and such measure is called the
H-measure associated with that (sub)sequence. The main result which assures existence
of such measure is the existence theorem for H-measures [69, Theorem 1.1]. In the case
when the sequence is defined with χn(x) := χ(nx), x ∈ Rd, for a Y -periodic function
χ ∈ L∞(Rd; {0, 1}) such that

∫
Y

χ(y) dy = θ, this theorem implies that there exists a

probability measure ν on Sd−1 such that

θ(1− θ)
∫

Sd−1

f(e) dν(e) =
∑

k∈Zd,k 6=0
|χ̂(k)|2f

(
k
‖k‖

)

for any f ∈ C(Sd−1), where χ̂(k) are Fourier coefficients of the function χ. Since the
sequence (χn) is uniquely described with function χ (in this periodic case), we shall say
that probability measure ν is the H-measure of χ [2, 3].

In the following theorem we give a formula for the composite M∗ obtained by periodic
homogenization, up to a second order in γ, in terms of the H-measure ν of characteristic
function χ.

Theorem 32 Let M∗ be a homogenized tensor in Pθ, associated to a characteristic function
χ. For any ξ ∈ Sym it follows that

M∗ξ : ξ = (θA + (1− θ)B)ξ : ξ − γ2θ(1− θ)D

 ∫
Sd−1

fA(e)dν(e)

Dξ : ξ +O(γ3),

where
fA(e) = (e⊗ e)⊗ (e⊗ e)

A(e⊗ e) : (e⊗ e) .

Additionally, the remainder is uniform with respect to M∗ in the sense that there exists a
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2.6. G-closure in the small-amplitude regime

positive constant c, independent of γ and χ, such that

|O(γ3)| ≤ cγ3.

Proof. The theorem will be proved in two steps.

I In the periodic case we have an explicit formula for the homogenization limit, i.e. by
Theorem 18, for any ξ ∈ Sym

M∗ξ : ξ =
∫
Y

M(y)(ξ +∇∇w(y)) : ξ dy, (2.72)

where M(y) = χ(y)A+(1−χ(y))B,
∫
Y

χ(y) dy = θ and w ∈ H2
#(Y )/R is the unique

solution of the boundary value problem div div (M(y)(ξ +∇∇w(y))) = 0 in Y
y 7→ w(y) is Y -periodic

.

Substituting B− A = γD, we have

M(y) = A + γ(1− χ(y))D, (2.73)

and therefore the solution w depends analytically on the small parameter γ, although
this fact shall not be used. Let us rather introduce a, b ∈ H2

#(Y )/R such that

w(y) = γa(y) + γ2b(y),

where a ∈ H2
#(Y )/R is the unique solution of

 div div (A∇∇a(y) + (1− χ(y))Dξ) = 0 in Y
y 7→ a(y) is Y -periodic

, (2.74)

and b ∈ H2
#(Y )/R is the unique solution of

 div div (M(y)∇∇b(y) + (1− χ(y))D∇∇a(y)) = 0 in Y
y 7→ b(y) is Y -periodic

. (2.75)

If we insert expressions for M and w in formula (2.72), we have

M∗ξ : ξ =
∫
Y

(A + γ(1− χ(y))D)(ξ + γ∇∇a(y) + γ2∇∇b(y)) : ξ dy. (2.76)
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After applying the integration by parts in (2.76), one easily gets

M∗ξ : ξ =
∫
Y

(A + γ(1− χ(y))D)ξ : ξ dy + γ2
∫
Y

(1− χ(y))D∇∇a(y) : ξ dy+

+ γ3
∫
Y

(1− χ(y))D∇∇b(y) : ξ dy =

=
∫
Y

(
χ(y)A + (1− χ(y))B

)
ξ : ξ dy + γ2

∫
Y

(1− χ(y))D∇∇a(y) : ξ dy+

+ γ3
∫
Y

(1− χ(y))D∇∇b(y) : ξ dy =

= (θA + (1− θ)B)ξ : ξ + γ2
∫
Y

(1− χ(y))D∇∇a(y) : ξ dy+

+ γ3
∫
Y

(1− χ(y))D∇∇b(y) : ξ dy.

In order to compute the term of order γ2, we use the weak formulation of the
boundary value problem (2.74) with a ∈ H2

#(Y )/R as a test function, which yields:
∫
Y

(1− χ(y))D∇∇a(y) : ξ dy = −
∫
Y

A∇∇a(y) : ∇∇a(y) dy.

Moreover, using the fact that the solution of (2.74) is also a unique solution of the
corresponding minimization problem, we obtain

− min
w∈H2

#(Y )

(∫
Y

A∇∇w(y) : ∇∇w(y) dy − 2
∫
Y

χ(y)Dξ : ∇∇w(y) dy
)

(2.77)

=
∫
Y

A∇∇a(y) : ∇∇a(y) dy.

The minimum in (2.77) can be computed by using Fourier analysis, in an analogous
way as it was done in the proof of Theorem 29, when calculating the function g

given by (2.37):

− min
w∈H2

#(Y )

∫
Y

A∇∇w(y) : ∇∇w(y) dy − 2
∫
Y

χ(y)Dξ : ∇∇w(y) dy


=
∑

k∈Zd,k 6=0

|χ̂(k)|2|(k⊗ k) : Dξ|2
A(k⊗ k) : (k⊗ k) =

∑
k∈Zd,k 6=0

|χ̂(k)|2 (k⊗ k)⊗ (k⊗ k)
A(k⊗ k) : (k⊗ k)(Dξ) : (Dξ)

=
∑

k∈Zd,k 6=0
|χ̂(k)|2fA

(
k
‖k‖

)
(Dξ) : (Dξ),

where
fA(e) = (e⊗ e)⊗ (e⊗ e)

A(e⊗ e) : (e⊗ e) , e ∈ Sd−1.
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Introducing the H-measure ν of characteristic function χ and using that D is a
symmetric tensor, yields

∑
k∈Zd,k 6=0

|χ̂(k)|2fA

(
k
‖k‖

)
(Dξ) : (Dξ)

= θ(1− θ)

 ∫
Sd−1

fA(e)dν(e)

 (Dξ) : (Dξ)

= θ(1− θ)D

 ∫
Sd−1

fA(e)dν(e)

Dξ : ξ.

Thus,

M∗ξ : ξ =(θA + (1− θ)B)ξ : ξ − γ2θ(1− θ)D

 ∫
Sd−1

fA(e)dν(e)

Dξ : ξ+

+ γ3
∫
Y

(1− χ(y))D∇∇b(y) : ξ dy.

II To conclude the proof, one only has to show that the term of order γ3 can be estimated
with a positive constant c, independent of γ and χ. Note that the solution a of
boundary value problem (2.74) is independent of γ, but that is not the case for the
solution b of (2.75). However, since

M(y)ξ : ξ ≥ Aξ : ξ ≥ α|ξ|2, ξ ∈ Sym,

one can show that b satisfies an a priori estimate

‖b‖H2
#(Y )/R = ‖∇∇b‖L2(Y ;Sym) ≤ C|ξ|, C ∈ R+, (2.78)

as will be proved in the sequel.

For simplicity, we identify the unit cube Y with the unit d-dimensional torus T ,
which can be done by gluing together opposite faces of Y , and in the sequel, due
to this identification, a periodic function in Y is actually defined as a function on
the unit torus [37]. Moreover, equations (2.74) and (2.75) can be seen as posed in
the unit torus, which is a smooth compact manifold without boundary, and thus
H2

0(T ) = H2(T ) [15, 41].

From the boundary value problem (2.75), and by using an a priori estimate based
on Lax-Milgram lemma, we have:

‖b‖H2(T )/R ≤
1
α
‖div div ((1− χ)D∇∇a)‖(H2(T )/R)′
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= 1
α
‖div div ((1− χ)D∇∇a)‖H−2(T ), (2.79)

where the last equality in (2.79) follows by Theorem 6. Next, since div div :
L2(T ; Sym) → H−2(T ) is linear and continuous, and by definition of the norm
on the quotient space H2(T )/R, it follows (C is a generic constant below):

1
α
‖div div ((1− χ)D∇∇a)‖H−2(T ) ≤ C‖(1− χ)D∇∇a‖L2(T ;Sym)

≤ C‖∇∇a‖L2(T ;Sym) ≤ C‖a‖H2(T )/R. (2.80)

By using an analogous arguments, from the boundary value problem (2.74), we
conclude

C‖a‖H2(T )/R ≤ C‖div div (1− χ)Dξ‖(H2(T )/R)′

= C‖div div (1− χ)Dξ‖H−2(T ) (2.81)
≤ C‖(1− χ)Dξ‖L2(T ;Sym) ≤ C|ξ|, C ∈ R+.

Therefore, by (2.79), (2.80) and (2.81),

‖b‖H2(T )/R ≤ C|ξ|, C ∈ R+. (2.82)

Using (2.82), it is easy to conclude that the remainder is uniform with respect to
M∗, i.e. ∣∣∣∣∣∣

∫
Y

(1− χ(y))D∇∇b(y) : ξ dy
∣∣∣∣∣∣ ≤ C|ξ|2, C ∈ R+,

which completes the proof.

�

Theorem 32 can be extended to any composite tensor M∗ ∈ Gθ.

Theorem 33 Let M∗ ∈ Gθ be the homogenized tensor obtained by mixing two materials
A,B ∈ Sym4, in proportions θ and 1−θ, respectively, with a microstructure defined by the
sequence χn, such that there exists a small positive parameter γ and a coercive, symmetric
fourth order tensor D so that

B− A = γD.

We take Mn := χ̃nA + (1− χ̃n)B, n ∈ N, to be a sequence in Pθ such that Mn →M∗

((Mn) exists by Theorem 27), and for n ∈ N, let νn be the H-measure associated to a
characteristic function χ̃n. Then νn ⇀ ν weakly-∗ in P (Sd−1) (on a subsequence), and,
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for any ξ ∈ Sym,

M∗ξ : ξ = (θA + (1− θ)B)ξ : ξ − γ2θ(1− θ)D

 ∫
Sd−1

fA(e)dν(e)

Dξ : ξ +O(γ3),

where
fA(e) = (e⊗ e)⊗ (e⊗ e)

A(e⊗ e) : (e⊗ e) .

Additionally, the remainder is uniform with respect to M∗ in the sense that there exists a
positive constant c, independent of γ and χ, such that

|O(γ3)| ≤ cγ3.

Proof. By Theorem 32, for every n ∈ N, Mn is given by

Mnξ : ξ = (θA + (1− θ)B)ξ : ξ − γ2θ(1− θ)D

 ∫
Sd−1

fA(e)dνn(e)

Dξ : ξ +O(γ3),

for arbitrary ξ ∈ Sym.
From the compactness of the set P (Sd−1) in the weak-∗ topology, the claim of the

theorem directly follows, i.e. the small amplitude formula of Theorem 32 can be extended
to any composite tensor M∗ ∈ Gθ. �

2.7 Explicit Hashin-Shtrikman bounds on the primal
energy for mixtures of two isotropic materials in

dimension d = 2
In the sequel we consider elastic composite materials obtained by mixing two isotropic

phases A and B in proportions θ1 := θ and θ2 := 1− θ, respectively. The following results
will be stated in dimension d = 2, due to the fact that they all refer to the Kirchhoff
model for pure bending of a thin, solid symmetric plate under a transverse load. Isotropic
phases A and B are defined by

A = 2µ1I4 + (κ1 − µ1)I2 ⊗ I2

B = 2µ2I4 + (κ2 − µ2)I2 ⊗ I2,

where κ1, κ2 are the bulk moduli, while µ1, µ2 are the shear moduli. Since A and B are
assumed to be well-ordered, the following holds for bulk and shear moduli:

0 < κ1 ≤ κ2, 0 < µ1 ≤ µ2.
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In order to explicitly calculate the Hashin-Shtrikman bounds, first we have to evaluate
functions g and h from Theorem 29.

Lemma 15 If we label the eigenvalues of η by η1 and η2, the function g defined by (2.30)
equals

g(η) = 1
µ1 + κ1

 η2
1, if |η1| ≥ |η2|
η2

2, if |η2| ≥ |η1|
, (2.83)

and the maximum in (2.30) is achieved when k is an eigenvector of η associated with an
eigenvalue of the largest absolute value.

The function h defined by (2.32) equals

h(η) = 1
µ2 + κ2


η2

2, if η1 ≤ η2 ≤ 0 or 0 ≤ η2 ≤ η1

0, if η1 < 0 < η2 or η2 < 0 < η1

η2
1, if η2 ≤ η1 ≤ 0 or 0 ≤ η1 ≤ η2

, (2.84)

and the minimum in (2.32), in any case except for η1 < 0 < η2 and η2 < 0 < η1, is achieved
when k is an eigenvector of η associated with an eigenvalue of the least absolute value.

Proof. Let us first express the functions g and h in the terms of bulk and shear moduli of
isotropic materials A and B:

g(η) = max
e∈S1

|(e⊗ e) : η|2
(2µ1I4 + (κ1 − µ1)I2 ⊗ I2)(e⊗ e) : (e⊗ e)

= max
e∈S1

(ηe · e)2

(µ1 + κ1)(e · e)2 .

Since e ∈ S1 we have
g(η) = 1

µ1 + κ1
max
e∈S1

(ηe · e)2, (2.85)

and analogously,
h(η) = 1

µ2 + κ2
min
e∈S1

(ηe · e)2. (2.86)

It is easy to notice that functions under the maximum in (2.85) and minimum in (2.86)
are actually the same:

f(e) = (ηe · e)2.

The assertion now follows from the fact that ηi ≤ ηj implies

ηi ≤ ηe · e ≤ ηj, e ∈ S1,

where equalities are achieved by the corresponding eigenvectors of the matrix η. �

Theorem 34 After denoting by ξ1 and ξ2 the eigenvalues of ξ, and θ1 := θ, θ2 := 1− θ
as before, the explicit formula for the lower Hashin-Shtrikman bound (2.29) is given as
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follows:

(i) if

θ1(κ2 − κ1)|ξ1 + ξ2| < (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2| & (2.87)
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| > θ1(µ2 − µ1)|ξ1 − ξ2|,

then

A∗ξ : ξ ≥ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)|ξ1 + ξ2|+ (µ2 − µ1)|ξ1 − ξ2|]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) ;

(ii) if
θ1(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2|, (2.88)

then
A∗ξ : ξ ≥ µ1(ξ1 − ξ2)2 + κ1κ2 + µ1(θ1κ1 + θ2κ2)

θ1κ2 + θ2κ1 + µ1
(ξ1 + ξ2)2;

(iii) if
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| ≤ θ1(µ2 − µ1)|ξ1 − ξ2|, (2.89)

then
A∗ξ : ξ ≥ κ1(ξ1 + ξ2)2 + µ1µ2 + κ1(θ1µ1 + θ2µ2)

θ1µ2 + θ2µ1 + κ1
(ξ1 − ξ2)2.

Cases (i) − (iii) are disjoint, and the union of all (ξ1, ξ2) ∈ R2 which satisfy one of the
conditions (2.87), (2.88) and (2.89), equals R2.

Proof. Firstly, note that the expression

(B− A)−1η : η = 1
2(µ2 − µ1)(η2

1 + η2
2) + 1

4

(
1

κ2 − κ1
− 1
µ2 − µ1

)
(η1 + η2)2,

as well as the function g(η) = g(η1, η2), depend only on the eigenvalues η1 and η2 of the
matrix η. Therefore, in order to explicitly compute the lower Hashin-Shtrikman bound,
we shall use the classical von Neumann result (see Theorem 23), which implies that the

maximum of ξ : η equals
2∑
i=1

ηiξi, and it is obtained when η and ξ are simultaneously

diagonalizable. This reduces the problem of computing the maximum on the right-hand
side of (2.29) to maximization of the concave function

F (η1, η2) = 2(ξ1η1 + ξ2η2)− 1
2(µ2 − µ1)(η2

1 + η2
2)−

− 1
4

(
1

κ2 − κ1
− 1
µ2 − µ1

)
(η1 + η2)2 − θ1g(η1, η2),
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over all real numbers η1 and η2. Note that the function F is quadratic by parts. An
analogous argument was used in [5], for computing the explicit Hashin-Shtrikman bounds
in the context of 2D linearized elasticity. In each of the cases (i) − (iii), and for θ1 =
0.6, µ1 = 1, µ2 = 3, κ1 = 2, κ2 = 4, the graph of the function F is given in Figure 2.2.

(a) Case (i). (b) Case (ii).

(c) Case (iii).

Figure 2.2: Graphs of the function F .

Due to expression (2.83) for g, we shall consider several cases (note that g is differen-
tiable everywhere except on the lines η1 = η2 and η1 = −η2).

I If |η1| > |η2|, then the first-order optimality conditions for F are

∂F

∂η1
= ξ1 −

η1

2(µ2 − µ1) −
1
4

(
1

κ2 − κ1
− 1
µ2 − µ1

)
(η1 + η2)− θ1η1

µ1 + κ1
= 0,

∂F

∂η2
= ξ2 −

η2

2(µ2 − µ1) −
1
4

(
1

κ2 − κ1
− 1
µ2 − µ1

)
(η1 + η2) = 0.

This linear system has a unique solution:

η1 =(µ1 + κ1)((µ2 − µ1)(ξ1 − ξ2) + (κ2 − κ1)(ξ1 + ξ2))
θ2(µ1 + κ1) + θ1(µ2 + κ2) (2.90)

η2 =[(µ1 + κ1)(κ2 − κ1) + 2θ1(κ2 − κ1)(µ2 − µ1)](ξ1 + ξ2)
θ2(µ1 + κ1) + θ1(µ2 + κ2)

− [(µ1 + κ1)(µ2 − µ1) + 2θ1(κ2 − κ1)(µ2 − µ1)](ξ1 − ξ2)
θ2(µ1 + κ1) + θ1(µ2 + κ2) .
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If this solution fits the case |η1| > |η2| then the maximum of F is

maxF (η1, η2) = (κ2 − κ1)(µ1 + κ1 + θ1(µ2 − µ1))(ξ1 + ξ2)2

θ1(µ2 + κ2) + θ2(µ1 + κ1) +

+ (µ2 − µ1)(µ1 + κ1 + θ1(κ2 − κ1))(ξ1 − ξ2)2 − 2θ1(κ2 − κ1)(µ2 − µ1)(ξ2
1 − ξ2

2)
θ1(µ2 + κ2) + θ2(µ1 + κ1) ,

and the lower bound is given with

A∗ξ : ξ ≥ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ1 − ξ2)]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) . (2.91)

The requirement that the solution (2.90) satisfies |η1| > |η2| is fulfilled if and only if

|(µ1 + κ1)((µ2 − µ1)(ξ1 − ξ2) + (κ2 − κ1)(ξ1 + ξ2))| > (2.92)∣∣∣[(µ1 + κ1)(κ2 − κ1) + 2θ1(κ2 − κ1)(µ2 − µ1)](ξ1 + ξ2)−

− [(µ1 + κ1)(µ2 − µ1) + 2θ1(κ2 − κ1)(µ2 − µ1)](ξ1 − ξ2)
∣∣∣.

Taking the square and factorizing the inequality (2.92) yields

[−θ1(κ2 − κ1)(ξ1 + ξ2) + (θ1κ2 + θ2κ1 + µ1)(ξ1 − ξ2)] (2.93)
· [(θ1µ2 + θ2µ1 + κ1)(ξ1 + ξ2)− θ1(µ2 − µ1)(ξ1 − ξ2)] > 0.

Thus, (2.93) is equivalent to either

θ1(κ2 − κ1)(ξ1 + ξ2)− (θ1κ2 + θ2κ1 + µ1)(ξ1 − ξ2) < 0,
(θ1µ2 + θ2µ1 + κ1)(ξ1 + ξ2)− θ1(µ2 − µ1)(ξ1 − ξ2) > 0, (2.94)
ξ1 − ξ2 > 0 & ξ1 + ξ2 > 0

or

θ1(κ2 − κ1)(ξ1 + ξ2)− (θ1κ2 + θ2κ1 + µ1)(ξ1 − ξ2) > 0,
(θ1µ2 + θ2µ1 + κ1)(ξ1 + ξ2)− θ1(µ2 − µ1)(ξ1 − ξ2) < 0, (2.95)
ξ1 − ξ2 < 0 & ξ1 + ξ2 < 0.

II The case |η1| < |η2| is symmetric to the previous one, and one only has to change
the roles of ξ1 and ξ2 in (2.91), (2.94) and (2.95):

A∗ξ : ξ ≥ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ2 − ξ1)]2

θ1(µ2 + κ2) + θ2(µ1 + κ1)
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if and only if ξ1, ξ2 satisfy

θ1(κ2 − κ1)(ξ1 + ξ2)− (θ1κ2 + θ2κ1 + µ1)(ξ2 − ξ1) < 0,
(θ1µ2 + θ2µ1 + κ1)(ξ1 + ξ2)− θ1(µ2 − µ1)(ξ2 − ξ1) > 0, (2.96)
ξ2 − ξ1 > 0 & ξ1 + ξ2 > 0

or

θ1(κ2 − κ1)(ξ1 + ξ2)− (θ1κ2 + θ2κ1 + µ1)(ξ2 − ξ1) > 0,
(θ1µ2 + θ2µ1 + κ1)(ξ1 + ξ2)− θ1(µ2 − µ1)(ξ2 − ξ1) < 0, (2.97)
ξ2 − ξ1 < 0 & ξ1 + ξ2 < 0.

Cases I and II, using some standard algebraic calculations, can jointly be written
as follows: the bound (2.29) is equivalent to

A∗ξ : ξ ≥ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)|ξ1 + ξ2|+ (µ2 − µ1)|ξ1 − ξ2|]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) (2.98)

if and only if ξ1 and ξ2 satisfy

θ1(κ2 − κ1)|ξ1 + ξ2| − (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2| < 0 & (2.99)
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| − θ1(µ2 − µ1)|ξ1 − ξ2| > 0.

Note that this corresponds to the case (i) in the statement of the theorem.

III If condition (2.99) is not satisfied, then the maximum of F is attained on one of
the lines η1 = η2 or η1 = −η2.

(ii) If η := η1 = η2, an easy calculation gives us that the maximum of F is reached
for

η = (κ2 − κ1)(µ1 + κ1)(ξ1 + ξ2)
µ1 + θ1κ2 + θ2κ1

. (2.100)

If the maximum is attained in this case, the corresponding bound is

A∗ξ : ξ ≥ µ1(ξ1 − ξ2)2 + κ1κ2 + µ1(θ1κ1 + θ2κ2)
θ1κ2 + θ2κ1 + µ1

(ξ1 + ξ2)2. (2.101)

(iii) If η := η1 = −η2, the maximum of F is attained when

η = (µ2 − µ1)(µ1 + κ1)(ξ1 − ξ2)
θ1µ2 + θ2µ1 + κ1

, (2.102)
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and the explicit Hashin-Shtrikman bound is given with

A∗ξ : ξ ≥ κ1(ξ1 + ξ2)2 + µ1µ2 + κ1(θ1µ1 + θ2µ2)
θ1µ2 + θ2µ1 + κ1

(ξ1 − ξ2)2. (2.103)

By the following inequality, which can easily be derived by using elementary
algebraic operations,

θ2
1(κ2 − κ1)(µ2 − µ1) ≤ (θ1µ2 + θ2µ1 + κ1)(θ1κ2 + θ2κ1 + µ1),

it is easy to check that the maximum is attained on the line η1 = η2 if and only
if

θ1(κ2 − κ1)|ξ1 + ξ2| − (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2| ≥ 0.

Conversely, the maximum is attained on the line η1 = −η2 if and only if

(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| − θ1(µ2 − µ1)|ξ1 − ξ2| ≤ 0.

�

Figure 2.3: Domain division for eigenvalues of ξ in the case of the lower HS bound.

It is interesting to see, for some arbitrary parameters θ1, µ1, µ2, κ1, κ2, how the division
of R2 in conditions (2.87), (2.88) and (2.89) looks like. For µ1 = 26, κ1 = 40 (parameters of
the first material, i.e. glass), µ2 = 79, κ2 = 160 (steel) and θ1 = 0.4, ξ1, ξ2 ∈ [−1000, 1000],
in Figure 2.3 one can see that if (ξ1, ξ2) belongs to the blue area then condition (2.87) is
satisfied and maximum is attained in one of the cases |η2| < |η1| or |η1| < |η2|. If (ξ1, ξ2)
belongs to the yellow area, then maximum is attained on the line η1 = −η2, and the green
area represents (ξ1, ξ2) such that maximum is attained on the line η1 = η2.

It remains to explicitly describe the optimal microstructures which saturate the lower
Hashin-Shtrikman bound. Theorem 29 assures that the lower Hashin-Shtrikman bound is
optimal and that optimality is achieved by a finite-rank sequential laminate. An optimality
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condition for the maximization problem on the right-hand side of (2.29) is given by (2.42),
i.e.

ξ − (B− A)−1η = θ1

p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

η, (2.104)

where mi ≥ 0,
p∑
i=1

mi = 1 and each ei is extremal for

g(η) = max
e∈S1

|(e⊗ e) : η|2
A(e⊗ e) : (e⊗ e) . (2.105)

If g is differentiable at the optimal η, then the optimality condition simplifies to

ξ − (B− A)−1η = θ1
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e)η, (2.106)

where e is an extremal for (2.105). By using an analogous algebraic calculations as in the
proof of Theorem 29, we show that the lower bound (2.29) can be expressed as

A∗ξ : ξ ≥ Aξ : ξ + θ2ξ : η∗, (2.107)

where η∗ is the optimal point for the maximization problem on the right-hand side of
(2.29). One can conclude that the equality in (2.107) is obtained with laminate A∗1 defined
by the formula

θ2(A∗1 − A)−1 = (B− A)−1 + θ1
(e⊗ e)⊗ (e⊗ e)
A(e⊗ e) : (e⊗ e) . (2.108)

To be precise, after multiplying (2.108) by η∗ and using (2.106), we obtain

θ2(A∗1 − A)−1η∗ = ξ, (2.109)

which after taking the inner product with ξ gives the claim. Clearly, in this case the
optimality is achieved by a rank-one laminate with the lamination direction e, where e
is an extremal for g(η∗) given with (2.105). This corresponds to the first case in the
Theorem 34, i.e. when the maximum in (2.29) is achieved for |η1| 6= |η2|.

It remains to specify the optimal microstructure in the other two cases, i.e. when
η1 = η2 and η1 = −η2.

a) Let η := η1 = η2, p = 2 and note that we can write η = ηI2, where η is given
with (2.100). Obviously, every unit vector is an eigenvector of η and, by Lemma
15, it is also an extremal vector for function (2.105). Thus, for the direction of
lamination we can arbitrarily choose unit eigenvectors v1 and v2 of ξ, since η and
ξ are simultaneously diagonalizable.
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Additionally, using the fact that ξ and η are simultaneously diagonalizable and
symmetric, it follows that there exists orthogonal matrix Q such that QTξQ and
QTηQ are diagonal matrices with eigenvalues of ξ and η as the diagonal entries,
respectively. If we multiply (2.104) from the left by QT and from the right by Q,
we conclude that (2.104) is equivalent to

 ξ1 0
0 ξ2

− η

2(κ2 − κ1)

 1 0
0 1

 = θ1η

µ1 + κ1

 m1 0
0 m2

 .
This determines m1 and m2:

m1 = 2ξ1(θ1κ2 + θ2κ1 + µ1)− (µ1 + κ1)(ξ1 + ξ2)
2θ1(κ2 − κ1)(ξ1 + ξ2) ,

m2 = 2ξ2(θ1κ2 + θ2κ1 + µ1)− (µ1 + κ1)(ξ1 + ξ2)
2θ1(κ2 − κ1)(ξ1 + ξ2) ,

and it is easy to check that m1 +m2 = 1 and m1, m2 ≥ 0, as a consequence of the
condition

θ1(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2|

which defines this regime. In this case, the bound is obviously achieved by a second
rank laminate in the following way: we first layer B with A in volume fractions
ρ = 1 − θ1m1 and 1 − ρ respectively, in the direction of lamination v1, to get
composite C. After that, we layer C with A in volume fractions ρ′ = θ2

1− θ1m1
and

1 − ρ′, respectively, in the direction of lamination v2, and obtain a composite A∗

which saturates the lower Hashin-Shtrikman bound.

b) Let η1 = −η2, p = 2 and let v1, v2 be the associated unit eigenvectors of η, such
that they are also eigenvectors of ξ. Additionally, by Lemma 15, these vectors are
extremal for function (2.105). By denoting η := η1 = −η2, we have that η is given
with (2.102), and using the fact that ξ and η are simultaneously diagonalizable, we
conclude that (2.104) is equivalent to

 ξ1 0
0 ξ2

− η

2(µ2 − µ1)

 1 0
0 −1

 = θ1η

µ1 + κ1

 m1 0
0 −m2

 .
This determines m1 and m2:

m1 = 2ξ1(θ1µ2 + θ2µ1 + κ1)− (µ1 + κ1)(ξ1 − ξ2)
2θ1(µ2 − µ1)(ξ1 − ξ2) ,

m2 = −2ξ2(θ1µ2 + θ2µ1 + κ1)− (µ1 + κ1)(ξ1 − ξ2)
2θ1(µ2 − µ1)(ξ1 − ξ2) ,

and it is easy to check that m1 +m2 = 1 and m1, m2 ≥ 0, as a consequence of the
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condition
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| − θ1(µ2 − µ1)|ξ1 − ξ2| ≤ 0,

which defines this regime. Now, we conclude that the bound is achieved by a second
rank laminate in an analogous way as for η1 = η2.

The following theorem summarizes the previous results.

Theorem 35 Let ξ1 and ξ2 be the eigenvalues of ξ, and θ1 := θ, θ2 := 1− θ.

(i) If

θ1(κ2 − κ1)|ξ1 + ξ2| < (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2| &
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| > θ1(µ2 − µ1)|ξ1 − ξ2|,

then the optimal microstructure for which the bound (2.29) is saturated is a simple
laminate with layers orthogonal to the eigenvector associated with an eigenvalue of
the largest absolute value, of the extremal η in (2.29).

(ii) If
θ1(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ1)|ξ1 − ξ2|,

then the optimal microstructure for which the bound (2.29) is saturated is a rank-2
laminate with directions of lamination given with eigenvectors v1 and v2 of ξ, and
corresponding lamination parameters

m1 = 2ξ1(θ1κ2 + θ2κ1 + µ1)− (µ1 + κ1)(ξ1 + ξ2)
2θ1(κ2 − κ1)(ξ1 + ξ2) ,

m2 = 2ξ2(θ1κ2 + θ2κ1 + µ1)− (µ1 + κ1)(ξ1 + ξ2)
2θ1(κ2 − κ1)(ξ1 + ξ2) .

(iii) If
(θ1µ2 + θ2µ1 + κ1)|ξ1 + ξ2| ≤ θ1(µ2 − µ1)|ξ1 − ξ2|,

then the optimal microstructure for which the bound (2.29) is saturated is a rank-
2 laminate with directions of lamination given with eigenvectors v1 and v2 of the
extremal η in (2.29) (which are also eigenvectors of ξ), and corresponding lamination
parameters

m1 = 2ξ1(θ1µ2 + θ2µ1 + κ1)− (µ1 + κ1)(ξ1 − ξ2)
2θ1(µ2 − µ1)(ξ1 − ξ2) ,

m2 = −2ξ2(θ1µ2 + θ2µ1 + κ1)− (µ1 + κ1)(ξ1 − ξ2)
2θ1(µ2 − µ1)(ξ1 − ξ2) .

Theorem 36 After denoting by ξ1 and ξ2 the eigenvalues of ξ, and θ1 := θ, θ2 := 1− θ
as before, the explicit formula for the bound (2.31) is given as follows:

90



2.7. Explicit Hashin-Shtrikman bounds on the primal energy for mixtures of two isotropic materials in
dimension d = 2

(i) if

θ2(κ2 − κ1)|ξ1 + ξ2| < (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2| & (2.110)
(κ2 − κ1)|ξ1 + ξ2| ≥ (µ2 − µ1)|ξ2 − ξ1|,

then

A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)|ξ1 + ξ2| − (µ2 − µ1)|ξ1 − ξ2|]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) ;

(ii) if
(κ2 − κ1)|ξ1 + ξ2| < (µ2 − µ1)|ξ2 − ξ1|, (2.111)

then
A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ;

(iii) if
θ2(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2|, (2.112)

then
A∗ξ : ξ ≤ µ2(ξ1 − ξ2)2 + κ1κ2 + µ2(θ2κ2 + θ1κ1)

µ2 + θ1κ2 + θ2κ1
(ξ1 + ξ2)2.

Cases (i) − (iii) are disjoint, and the union of all (ξ1, ξ2) ∈ R2 which satisfy one of the
conditions (2.110), (2.111) and (2.112), equals R2.

Proof. It is easy to see that (2.31) is equivalent to

(∀ξ ∈ Sym) A∗ξ : ξ ≤ Bξ : ξ − θ1 max
η∈Sym

[2ξ : η − (B− A)−1η : η + θ2h(η)]. (2.113)

Similarly as for the lower Hashin-Shtrikman bound, the problem is equivalent to maximiz-
ing the concave function

F (η1, η2) = 2(ξ1η1+ξ2η2)− 1
2(µ2 − µ1)(η2

1+η2
2)−1

4

(
1

κ2 − κ1
− 1
µ2 − µ1

)
(η1+η2)2+θ2h(η1, η2)

over all real numbers η1 and η2. In each of the cases (i) − (iii), and for θ1 = 0.6, µ1 =
1, µ2 = 3, κ1 = 2, κ2 = 4, the graph of the function F is given in Figure 2.4.
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(a) Case (i). (b) Case (ii).

(c) Case (iii).

Figure 2.4: Graphs of the function F .

Obviously, the function h defined by (2.84) is differentiable everywhere except on the
line η1 = η2.

I Assume η1 < η2 ≤ 0. After solving the system of equations

∂F

∂η1
= 0 & ∂F

∂η2
= 0,

we obtain that

η1 =[(µ2 + κ2)(κ2 − κ1)− 2θ2(µ2 − µ1)(κ2 − κ1)](ξ1 + ξ2)
θ1(µ2 + κ2) + θ2(µ1 + κ1)

− [(µ2 + κ2)(µ2 − µ1)− 2θ2(µ2 − µ1)(κ2 − κ1)](ξ2 − ξ1)
θ1(µ2 + κ2) + θ2(µ1 + κ1)

η2 =(µ2 + κ2)((κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ2 − ξ1))
θ1(µ2 + κ2) + θ2(µ1 + κ1) ,

and therefore

maxF (η1, η2) = (κ2 − κ1)(κ2 + θ1µ2 + θ2µ1)(ξ1 + ξ2)2

θ1(µ2 + κ2) + θ2(µ1 + κ1) +
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+ (µ2 − µ1)(µ2 + θ1κ2 + θ2κ1)(ξ1 − ξ2)2 + 2θ2(κ2 − κ1)(µ2 − µ1)(ξ2
2 − ξ2

1)
θ1(µ2 + κ2) + θ2(µ1 + κ1) .

We see that the bound (2.31) is given with

A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ− θ1θ2
[(κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ2 − ξ1)]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) (2.114)

when ξ1 and ξ2 satisfy

θ2(κ2 − κ1)(ξ1 + ξ2) > (µ2 + θ1κ2 + θ2κ1)(ξ1 − ξ2),
(κ2 − κ1)(ξ1 + ξ2) ≤ (µ2 − µ1)(ξ1 − ξ2),
ξ1 − ξ2 < 0 & ξ1 + ξ2 < 0.

II Assume 0 ≤ η1 < η2. Similarly as above we obtain optimal

η1 =(µ2 + κ2)((κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ1 − ξ2))
θ1(µ2 + κ2) + θ2(µ1 + κ1)

η2 =[(µ2 + κ2)(κ2 − κ1)− 2θ2(µ2 − µ1)(κ2 − κ1)](ξ1 + ξ2)
θ1(µ2 + κ2) + θ2(µ1 + κ1)

− [(µ2 + κ2)(µ2 − µ1)− 2θ2(µ2 − µ1)(κ2 − κ1)](ξ1 − ξ2)
θ1(µ2 + κ2) + θ2(µ1 + κ1) .

After an easy calculation, we get

maxF (η1, η2) = (κ2 − κ1)(κ2 + θ1µ2 + θ2µ1)(ξ1 + ξ2)2

θ1(µ2 + κ2) + θ2(µ1 + κ1) +

+ (µ2 − µ1)(µ2 + θ1κ2 + θ2κ1)(ξ1 − ξ2)2 + 2θ2(κ2 − κ1)(µ2 − µ1)(ξ2
1 − ξ2

2)
θ1(µ2 + κ2) + θ2(µ1 + κ1) ,

and the bound (2.31) in this case is

A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ− θ1θ2
[(κ2 − κ1)(ξ1 + ξ2) + (µ2 − µ1)(ξ1 − ξ2)]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) (2.115)

when ξ1 and ξ2 satisfy

θ2(κ2 − κ1)(ξ1 + ξ2) < (µ2 + θ1κ2 + θ2κ1)(ξ2 − ξ1),
(κ2 − κ1)(ξ1 + ξ2) ≥ (µ2 − µ1)(ξ2 − ξ1), (2.116)
ξ2 − ξ1 > 0 & ξ1 + ξ2 > 0.

The case 0 ≤ η2 < η1 is symmetric to 0 ≤ η1 < η2, and one only has to change the
roles of ξ1 and ξ2 in (2.115) and (2.116). A similar statement holds for the cases
η2 < η1 ≤ 0 and η1 < η2 ≤ 0. Cases I and II can jointly be written as: the bound
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(2.31) is equivalent to

A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ − θ1θ2
[(κ2 − κ1)|ξ1 + ξ2| − (µ2 − µ1)|ξ1 − ξ2|]2

θ1(µ2 + κ2) + θ2(µ1 + κ1) (2.117)

if and only if ξ1 and ξ2 satisfy

θ2(κ2 − κ1)|ξ1 + ξ2| < (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2| & (2.118)
(κ2 − κ2)|ξ1 + ξ2| ≥ (µ2 − µ1)|ξ2 − ξ1|.

Note that cases I and II written jointly, correspond to case (i) given above.

III Assume η1 < 0 < η2. Similar computation as before gives us

η1 = (κ2 − κ1)(ξ1 + ξ2)− (µ2 − µ1)(ξ2 − ξ1)
η2 = (κ2 − κ1)(ξ1 + ξ2)− (µ2 − µ1)(ξ1 − ξ2).

Furthermore,

maxF (η1, η2) = (µ2 − µ1)(ξ1 − ξ2)2 + (κ2 − κ1)(ξ1 + ξ2)2,

which yields
A∗ξ : ξ ≤ (θ1A + θ2B)ξ : ξ (2.119)

when ξ1 and ξ2 satisfy

(µ1 − µ2)(ξ2 − ξ1) + (κ2 − κ1)(ξ1 + ξ2) < 0 & (2.120)
(µ2 − µ1)(ξ2 − ξ1) + (κ2 − κ1)(ξ1 + ξ2) > 0.

In the case η2 < 0 < η1, function F is the same as for η1 < 0 < η2, as well as the
obtained bound. An easy computation shows that the bound (2.31) is equivalent to
(2.119) if and only if ξ1 and ξ2 satisfy

(κ2 − κ1)|ξ1 + ξ2| < (µ2 − µ1)|ξ2 − ξ1|. (2.121)

This case corresponds to the case (ii) in the statement of the theorem.

IV If ξ1 and ξ2 satisfy neither of the conditions (2.118) and (2.121), then the maximum
of F is attained on the line η1 = η2. In this case the maximum is reached for

η1 = η2 = (µ2 + κ2)(κ2 − κ1)(ξ1 + ξ2)
θ1κ2 + θ2κ1 + µ2

, (2.122)
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and the upper Hashin-Shtrikman bound is given by

A∗ξ : ξ ≤ µ2(ξ1 − ξ2)2 + κ1κ2 + µ2(θ2κ2 + θ1κ1)
µ2 + θ1κ2 + θ2κ1

(ξ1 + ξ2)2.

This case corresponds to the case (iii) in the statement of the theorem.

�

Figure 2.5: Domain division for eigenvalues of ξ in the case of the upper HS bound.

Let us check how the division of R2 in conditions (2.110), (2.111) and (2.112) looks
like, for some given parameters θ1, µ1, µ2, κ1, κ2, as for the lower Hashin-Shtrikman bound.
For µ1 = 26, κ1 = 40 (parameters of glass), µ2 = 79, κ2 = 160 (steel) and θ1 = 0.4,
ξ1, ξ2 ∈ [−1000, 1000], in Figure 2.5 one can see that if (ξ1, ξ2) belongs to the blue area
then condition (2.110) is satisfied and the maximum is attained in one of the cases
0 ≤ η1 < η2, 0 ≤ η2 < η1, η1 < η2 ≤ 0 or η2 < η1 ≤ 0 . If (ξ1, ξ2) belongs to the yellow
area, then the maximum is attained in one of the cases η2 < 0 < η1 or η1 < 0 < η2 , and
the green area represents (ξ1, ξ2) such that the maximum is attained on the line η1 = η2.

It remains to explicitly describe the optimal microstructures for which the upper Hashin-
Shtrikman bound is saturated. Theorem 29 assures that the upper Hashin-Shtrikman
bound is optimal and that it is saturated by a sequentially laminated microstructures.
The optimality condition for the maximization problem on the right-hand side of (2.113)
can be derived analogously as for (2.29):

−ξ + (B− A)−1η = θ2

p∑
i=1

mi
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

η, (2.123)

where mi ≥ 0,
p∑
i=1

mi = 1 and each ei is extremal for

h(η) = min
e∈S1

|(e⊗ e) : η|2
B(e⊗ e) : (e⊗ e) . (2.124)
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If h is differentiable at the optimal η then the optimality condition simplifies to

−ξ + (B− A)−1η = θ2
(e⊗ e)⊗ (e⊗ e)
B(e⊗ e) : (e⊗ e)η,

where e is an extremal for h(η) given with (2.124), for this optimal η. Analogously as for
the lower Hashin-Shtrikman bound, one can conclude that in this case the optimality is
achieved by a rank-one laminate with the lamination direction e. This is true for every
case, except for η1 = η2. It remains to specify the optimal microstructure in that case.

Let η := η1 = η2, p = 2 and note that η = ηI2, where η is given with (2.122). Obviously,
every unit vector is an eigenvector of η and, by Lemma 15, it is also an extremal vector
for function (2.124). Thus, for the direction of lamination we can arbitrarily choose unit
eigenvectors v1 and v2 of ξ, since η and ξ are simultaneously diagonalizable, and we
conclude that (2.123) is equivalent to

 −ξ1 0
0 −ξ2

+ η

2(κ2 − κ1)

 1 0
0 1

 = θ2η

µ2 + κ2

 m1 0
0 m2

 .
This determines m1 and m2:

m1 = −2ξ1(θ1κ2 + θ2κ1 + µ2) + (µ2 + κ2)(ξ1 + ξ2)
2θ2(κ2 − κ1)(ξ1 + ξ2) ,

m2 = −2ξ2(θ1κ2 + θ2κ1 + µ2) + (µ2 + κ2)(ξ1 + ξ2)
2θ2(κ2 − κ1)(ξ1 + ξ2) ,

and it is easy to check thatm1 +m2 = 1 andm1, m2 ≥ 0, as a consequence of the condition

θ2(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2|

which defines this regime. It follows that the bound is achieved by a second rank laminate
in the following way: we first layer A with B in volume fractions ρ = 1− θ2m1 and 1− ρ
respectively, using layers orthogonal to v1, to get composite C. After that, we layer C
with B in volume fractions ρ′ = θ1

1− θ2m1
and 1− ρ′, respectively, using layers orthogonal

to v2, and obtain a composite A∗, which saturates the upper Hashin-Shtrikman bound.
The following theorem summarizes the previous results.

Theorem 37 Let ξ1 and ξ2 be the eigenvalues of ξ, and θ1 := θ, θ2 := 1− θ.

(i) If

θ2(κ2 − κ1)|ξ1 + ξ2| < (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2| &
(κ2 − κ1)|ξ1 + ξ2| ≥ (µ2 − µ1)|ξ2 − ξ1|,

then the optimal microstructure for which the bound (2.31) is saturated is a simple
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laminate with layers orthogonal to the eigenvector associated with an eigenvalue of
the least absolute value, of the extremal η in (2.31).

(ii) If
(κ2 − κ1)|ξ1 + ξ2| < (µ2 − µ1)|ξ2 − ξ1|,

then the optimal microstructure for which the bound (2.31) is saturated is a simple
laminate with layers orthogonal to e, such that e is an extremal for (2.124), where
h is function of extremal η in (2.31).

(iii) If
θ2(κ2 − κ1)|ξ1 + ξ2| ≥ (θ1κ2 + θ2κ1 + µ2)|ξ1 − ξ2|,

then the optimal microstructure for which the bound (2.31) is saturated is a rank-2
laminate with directions of lamination given with eigenvectors v1 and v2 of ξ, and
corresponding lamination parameters

m1 = −2ξ1(θ1κ2 + θ2κ1 + µ2) + (µ2 + κ2)(ξ1 + ξ2)
2θ2(κ2 − κ1)(ξ1 + ξ2) ,

m2 = −2ξ2(θ1κ2 + θ2κ1 + µ2) + (µ2 + κ2)(ξ1 + ξ2)
2θ2(κ2 − κ1)(ξ1 + ξ2) .

2.8 Explicit Hashin-Shtrikman bounds on the
complementary energy for mixtures of two

isotropic materials in dimension d = 2

In the sequel we consider elastic composite materials obtained by mixing two well-
ordered isotropic phases A and B in proportions θ1 := θ and θ2 := 1 − θ, respectively,
in an analogous way as it was done when calculating explicit Hashin-Shtrikman bounds
on primal energy. The following results will be stated in dimension d = 2. In order to
explicitly calculate the Hashin-Shtrikman bounds on the complementary energy, first we
have to evaluate functions gA(η) and hB(η). By using that

A = 2µ1I4 + (κ1 − µ1)I2 ⊗ I2,

B = 2µ2I4 + (κ2 − µ2)I2 ⊗ I2,

where κ1, κ2 are the bulk moduli, while µ1, µ2 are the shear moduli such that

0 < κ1 ≤ κ2, 0 < µ1 ≤ µ2,
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we have

Aη = 2µ1η + (κ1 − µ1)trη I2,

Bη = 2µ2η + (κ2 − µ2)trη I2.

If we label the eigenvalues of η by η1 and η2, it easily follows that the eigenvalues of Aη
are equal to

λ1 = η1(µ1 + κ1) + η2(κ1 − µ1), (2.125)
λ2 = η1(κ1 − µ1) + η2(µ1 + κ1),

while eigenvalues of Bη are given in the similar way with

ν1 = η1(µ2 + κ2) + η2(κ2 − µ2), (2.126)
ν2 = η1(κ2 − µ2) + η2(µ2 + κ2).

By using Lemma 15, for the isotropic phase A, the function gA(η) defined by

gA(η) = max
e∈S1

|(e⊗ e) : Aη|2
A(e⊗ e) : (e⊗ e) (2.127)

equals

gA(η) = 1
µ1 + κ1

 λ2
1, if |λ1| ≥ |λ2|
λ2

2, if |λ2| ≥ |λ1|
, (2.128)

where λ1, λ2 are given by (2.125), while for the isotropic phase B the function hB(η)
defined by

hB(η) = min
e∈S1

|(e⊗ e) : Bη|2
B(e⊗ e) : (e⊗ e) (2.129)

equals

hB(η) = 1
µ2 + κ2


ν2

2 , if ν1 ≤ ν2 ≤ 0 or 0 ≤ ν2 ≤ ν1

0, if ν1 < 0 < ν2 or ν2 < 0 < ν1

ν2
1 , if ν2 ≤ ν1 ≤ 0 or 0 ≤ ν1 ≤ ν2

, (2.130)

where ν1, ν2 are given by (2.126).

Theorem 38 After denoting by σ1 and σ2 the eigenvalues of σ, and θ1 := θ, θ2 := 1− θ
as before, the explicit formula for the bound (2.60) is given as follows:

(i) if

θ2µ2(κ2 − κ1)|σ1 + σ2| < (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)|σ1 − σ2| & (2.131)
(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| ≥ (µ2 − µ1)(θ1κ1 + θ2κ2)|σ1 − σ2|,
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then

A∗−1σ : σ ≥ (θ1A−1 + θ2B−1)σ : σ−

− θ1θ2
[µ1µ2(κ2 − κ1)|σ1 + σ2|+ κ1κ2(µ2 − µ1)|σ1 − σ2|]2

4µ1µ2κ1κ2[µ1κ1θ1(µ2 + κ2) + µ2κ2θ2(κ1 + µ1)] ;

(ii) if

(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| < (µ2 − µ1)(θ1κ1 + θ2κ2)|σ1 − σ2|, (2.132)

then

A∗−1σ : σ ≥ B−1σ : σ + θ1

4

[
(µ2 − µ1)(σ1 − σ2)2

µ2(θ1µ1 + θ2µ2) + (κ2 − κ1)(σ1 + σ2)2

κ2(θ1κ1 + θ2κ2)

]
;

(iii) if
µ2θ2(κ2 − κ1)|σ1 + σ2| ≥ (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)|σ1 − σ2|, (2.133)

then
A∗−1σ : σ ≥ B−1σ : σ + θ1(κ2 − κ1)(µ2 + κ2)(σ1 + σ2)2

4κ2[κ1(µ2 + κ2) + µ2(κ2 − κ1)θ2] .

Cases (i) − (iii) are disjoint, and the union of all (σ1, σ2) ∈ R2 which satisfy one of the
conditions (2.131), (2.132) and (2.133), equals R2.

Proof. Firstly, note that the expression

(A−1 − B−1)−1η : η = 2µ1µ2

µ2 − µ1
(η2

1 + η2
2) +

(
µ1µ2

µ1 − µ2
− κ1κ2

κ1 − κ2

)
(η1 + η2)2,

as well as the function gc(η) = gc(η1, η2), depend only on the eigenvalues η1 and η2 of the
matrix η. Accordingly, in order to explicitly compute the lower Hashin-Shtrikman bound
on the complementary energy, we shall use the von Neumann result, which implies that
the maximum of σ : η is obtained when η and σ are simultaneously diagonalizable and

therefore equals
2∑
i=1

ηiσi.

This simplifies the problem, which is now equivalent to maximizing the concave function

F (η1, η2) =2(σ1η1 + σ2η2)− 2µ1µ2

µ2 − µ1
(η2

1 + η2
2)−

(
µ1µ2

µ1 − µ2
− κ1κ2

κ1 − κ2

)
(η1 + η2)2

− 2θ2µ2(η2
1 + η2

2)− θ2(κ2 − µ2)(η1 + η2)2 + θ2hB(η1, η2),

in R2. Note that the function F is quadratic by parts, analogously as in the case of
explicit Hashin-Shtrikman bounds on primal energy.
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Due to the expression (2.130) for hB, we shall consider several cases (note that hB is
differentiable everywhere except on the line ν1 = ν2).

I Assume ν1 < ν2 ≤ 0. After solving the system of equations

∂F

∂η1
= 0 & ∂F

∂η2
= 0,

we obtain that

η1 =(µ2 + κ2)[(κ2 − κ1)µ1µ2(σ1 + σ2)− (µ2 − µ1)κ1κ2(σ2 − σ1)]
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1)

η2 = (κ2 − κ1)µ2[µ1(µ2 + κ2) + 2θ2(µ2 − µ1)κ2](σ1 + σ2)
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1)+

+ (µ2 − µ1)κ2[κ1(µ2 + κ2) + 2θ2(κ2 − κ1)µ2](σ2 − σ1)
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1) .

One can easily calculate maxF (η1, η2), which yields that the bound (2.60) is given
by

A∗−1σ : σ ≥ (θ1A−1 + θ2B−1)σ : σ−

− θ1θ2
[κ1κ2(µ1 − µ2)(σ1 − σ2) + µ1µ2(κ1 − κ2)(σ1 + σ2)]2

4µ1µ2κ1κ2[µ1κ1θ1(µ2 + κ2) + µ2κ2θ2(κ1 + µ1)]

and, due to ν1 < ν2 ≤ 0, it follows that σ1 and σ2 satisfy

θ2(κ2 − κ1)µ2(σ1 + σ2) > (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)(σ1 − σ2),
(κ2 − κ1)(θ1µ1 + θ2µ2)(σ1 + σ2) ≤ (µ2 − µ1)(θ1κ1 + θ2κ2)(σ1 − σ2),
σ1 − σ2 < 0 & σ1 + σ2 < 0.

II Assume 0 ≤ ν1 < ν2. After solving the linear system ∇F (η1, η2) = 0 we obtain that

η1 = (κ2 − κ1)µ2[µ1(µ2 + κ2) + 2θ2(µ2 − µ1)κ2](σ1 + σ2)
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1)+

+ (µ2 − µ1)κ2[κ1(µ2 + κ2) + 2θ2(κ2 − κ1)µ2](σ1 − σ2)
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1)

η2 =(µ2 + κ2)[(κ2 − κ1)µ1µ2(σ1 + σ2)− (µ2 − µ1)κ1κ2(σ1 − σ2)]
4µ2κ2(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1) .

The bound (2.60) in this case equals

A∗−1σ : σ ≥ (θ1A−1 + θ2B−1)σ : σ− (2.134)

− θ1θ2
[κ1κ2(µ2 − µ1)(σ1 − σ2) + µ1µ2(κ1 − κ2)(σ1 + σ2)]2

4µ1µ2κ1κ2[µ1κ1θ1(µ2 + κ2) + µ2κ2θ2(κ1 + µ1)]
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when σ1 and σ2 satisfy

θ2(κ2 − κ1)µ2(σ1 + σ2) < (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)(σ2 − σ1),
(κ2 − κ1)(θ1µ1 + θ2µ2)(σ1 + σ2) ≥ (µ2 − µ1)(θ1κ1 + θ2κ2)(σ2 − σ1), (2.135)
σ1 − σ2 < 0 & σ1 + σ2 > 0.

The case 0 ≤ ν2 < ν1 is symmetric to 0 ≤ ν1 < ν2, and one only has to change the
roles of σ1 and σ2 in (2.134) and (2.135). Similar holds for the cases ν2 < ν1 ≤ 0
and ν1 < ν2 ≤ 0.

Cases I and II, using some standard, but rather technical algebraic calculations, can
jointly be written as: the bound (2.60) is equivalent to

A∗−1σ : σ ≥ (θ1A−1 + θ2B−1)σ : σ−

− θ1θ2
[µ1µ2(κ2 − κ1)|σ1 + σ2|+ κ1κ2(µ2 − µ1)|σ1 − σ2|]2

4µ1µ2κ1κ2(µ1κ1θ1(µ2 + κ2) + µ2κ2θ2(κ1 + µ1))

if and only if σ1 and σ2 satisfy

θ2µ2(κ2 − κ1)|σ1 + σ2| < (θ1µ2κ1 + θ2κ2µ2 + κ1κ2)|σ1 − σ2| & (2.136)
(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| ≥ (µ2 − µ1)(θ1κ1 + θ2κ2)|σ1 − σ2|.

Note that cases I and II written jointly, correspond to the case (i) given above.

III Assume ν1 < 0 < ν2. Similar computation as before gives

η1 = 1
4

[
(µ2 − µ1)(σ1 − σ2)
µ2(θ1µ1 + θ2µ2) + (κ2 − κ1)(σ1 + σ2)

κ2(θ1κ1 + θ2κ2)

]

η2 = 1
4

[
(µ2 − µ1)(σ2 − σ1)
µ2(θ1µ1 + θ2µ2) + (κ2 − κ1)(σ1 + σ2

κ2(θ1κ1 + θ2κ2)

]
.

Furthermore, this yields that

A∗−1σ : σ ≥ B−1σ : σ + θ1

4

[
(µ2 − µ1)(σ1 − σ2)2

µ2(θ1µ1 + θ2µ2) + (κ2 − κ1)(σ1 + σ2)2

κ2(θ1κ1 + θ2κ2)

]
(2.137)

when σ1 and σ2 satisfy

(κ2 − κ1)(θ1µ1 + θ2µ2)(σ1 + σ2) < (µ2 − µ1)(θ1κ1 + θ2κ2)(σ2 − σ1) & (2.138)
(µ2 − µ1)(θ1κ1 + θ2κ2)(σ1 − σ2) < (κ2 − κ1)(θ1µ1 + θ2µ2)(σ1 + σ2).

In the case ν2 < 0 < ν1, the function F is the same as for ν1 < 0 < ν2, as well as the
obtained bound. An easy computation shows that the bound (2.60) is equivalent to
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(2.137) if and only if σ1 and σ2 satisfy

(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| < (µ2 − µ1)(θ1κ1 + θ2κ2)|σ2 − σ1|. (2.139)

This case corresponds to case (ii) in the statement of the theorem.

IV If σ1 and σ2 satisfy neither of the conditions (2.136) and (2.139), then the maximum of
F is attained on the line ν1 = ν2, i.e. η1 = η2. In this case the maximum is reached
for

η1 = η2 = (µ2 + κ2)(κ2 − κ1)(σ1 + σ2)
4κ2[κ1(µ2 + κ2) + θ2µ2(κ2 − κ1)] , (2.140)

and the lower Hashin-Shtrikman bound on the complementary energy is given by

A∗−1σ : σ ≥ B−1σ : σ + θ1
(µ2 + κ2)(κ2 − κ1)(σ1 + σ2)2

4κ2[κ1(µ2 + κ2) + θ2µ2(κ2 − κ1)] .

This case corresponds to the case (iii) in the statement of the theorem.

�

It remains to explicitly describe the optimal microstructures for which the lower Hashin-
Shtrikman bound on the complementary energy is saturated. Theorem 31 assures that
the lower Hashin-Shtrikman bound on the complementary energy is optimal and that it
is saturated by a sequentially laminated microstructure. The optimality condition for the
maximization problem on the right-hand side of (2.60) is given by

σ − (A−1 − B−1)−1η − θ2

[
Bη −

p∑
i=1

miB
(ei ⊗ ei)⊗ (ei ⊗ ei)
B(ei ⊗ ei) : (ei ⊗ ei)

Bη
]

= 0, (2.141)

where mi ≥ 0,
p∑
i=1

mi = 1 and each ei is extremal for (2.129). If hB is differentiable at the

optimal η then the optimality condition simplifies to

σ − (A−1 − B−1)−1η − θ2

[
Bη − B (e⊗ e)⊗ (e⊗ e)

B(e⊗ e) : (e⊗ e)Bη
]

= 0,

where e is an extremal for (2.129). In this case optimality is achieved by a rank-one
laminate with the lamination direction e. It remains to specify the microstructures in the
case ν1 = ν2.

Let η := η1 = η2, p = 2 and note that η = ηI2, where η is given by (2.140). Obviously,
every unit vector is an eigenvector of η and it is also an extremal vector for function
(2.129). Thus, for the direction of lamination we can arbitrarily choose unit eigenvectors
v1 and v2 of σ, since η and σ are simultaneously diagonalizable, and we conclude that
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(2.141) is equivalent to
 σ1 0

0 σ2

− (2θ2κ2η −
2ηκ1κ2

κ1 − κ2

) 1 0
0 1

 =

− 2θ2κ2ηm1

µ2 + κ2

 µ2 + κ2 0
0 κ2 − µ2

− 2θ2κ2ηm2

µ2 + κ2

 κ2 − µ2 0
0 µ2 + κ2

 .
This determines m1 and m2:

m1 = 2θ2µ2(κ1 − κ2)σ2 + κ1(µ2 + κ2)(σ1 − σ2)
2θ2µ2(κ1 − κ2)(σ1 + σ2) ,

m2 = 2θ2µ2(κ1 − κ2)σ1 − κ1(µ2 + κ2)(σ1 − σ2)
2θ2µ2(κ1 − κ2)(σ1 + σ2) ,

and it is easy to check thatm1 +m2 = 1 andm1, m2 ≥ 0, as a consequence of the condition

µ2θ2(κ2 − κ1)|σ1 + σ2| ≥ (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)|σ1 − σ2|

which defines this regime. It follows that the bound is achieved by a second rank laminate
in the following way: we first layer A with B in volume fractions ρ = 1− θ2m1 and 1− ρ
respectively, using layers orthogonal to v1, to get composite C. After that, we layer C
with B in volume fractions ρ′ = θ1

1− θ2m1
and 1− ρ′, respectively, using layers orthogonal

to v2, to get composite A∗ which achieves equality in the lower Hashin-Shtrikman bound
on the complementary energy.

The previous results are summarized in the following theorem.

Theorem 39 Let σ1 and σ2 be the eigenvalues of σ, and θ1 := θ, θ2 := 1− θ.

(i) If

θ2µ2(κ2 − κ1)|σ1 + σ2| < (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)|σ1 − σ2| &
(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| ≥ (µ2 − µ1)(θ1κ1 + θ2κ2)|σ1 − σ2|,

then the optimal microstructure for which the bound (2.60) is saturated is a simple
laminate with layers orthogonal to the eigenvector associated with an eigenvalue of
the least absolute value, of the extremal η in (2.60).

(ii) If
(κ2 − κ1)(θ1µ1 + θ2µ2)|σ1 + σ2| < (µ2 − µ1)(θ1κ1 + θ2κ2)|σ1 − σ2|,

then the optimal microstructure for which the bound (2.60) is saturated is a simple
laminate with layers orthogonal to e, such that e is an extremal for (2.129), where
hB is function of extremal η in (2.60).

103



Chapter 2. On the effective properties of composite elastic plate

(iii) If
µ2θ2(κ2 − κ1)|σ1 + σ2| ≥ (θ1µ2κ1 + θ2µ2κ2 + κ1κ2)|σ1 − σ2|,

then the optimal microstructure for which the bound (2.60) is saturated is a rank-2
laminate with directions of lamination given by eigenvectors v1 and v2 of σ, and
corresponding lamination parameters

m1 = 2θ2µ2(κ1 − κ2)σ2 + κ1(µ2 + κ2)(σ1 − σ2)
2θ2µ2(κ1 − κ2)(σ1 + σ2) ,

m2 = 2θ2µ2(κ1 − κ2)σ1 − κ1(µ2 + κ2)(σ1 − σ2)
2θ2µ2(κ1 − κ2)(σ1 + σ2) .

Theorem 40 After denoting by σ1 and σ2 the eigenvalues of σ, and θ1 := θ, θ2 := 1− θ
as before, the explicit formula for the bound (2.63) is given as follows:

(i) if

θ1µ1(κ2 − κ1)|σ1 + σ2| < (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1| & (2.142)
θ1κ1(µ2 − µ1)|σ2 − σ1| < (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|,

then

A∗−1σ : σ ≤ (θ1A−1 + θ2B−1)σ : σ−

− θ1θ2
[µ1µ2(κ1 − κ2)|σ1 + σ2|+ κ1κ2(µ2 − µ1)|σ1 − σ2|]2

4µ1µ2κ1κ2[µ1κ1θ1(µ2 + κ2) + µ2κ2θ2(κ1 + µ1)] ;

(ii) if
θ1µ1(κ2 − κ1)|σ1 + σ2| ≥ (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1|, (2.143)

then
A∗−1σ : σ ≤ A−1σ : σ + θ2(µ1 + κ1)(κ1 − κ2)(σ1 + σ2)2

4κ1[κ2(µ1 + κ1) + θ1µ1(κ1 − κ2)] ;

(iii) if
θ1κ1(µ2 − µ1)|σ2 − σ1| ≥ (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|, (2.144)

then
A∗−1σ : σ ≤ A−1σ : σ + θ2(µ1 − µ2)(µ1 + κ1)(σ1 − σ2)2

4µ1[µ2(µ1 + κ1) + θ1κ1(µ1 − µ2)] .

Cases (i) − (iii) are disjoint, and the union of all (σ1, σ2) ∈ R2 which satisfy one of the
conditions (2.142), (2.143) and (2.144), equals R2.
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Proof. It is easy to see that (2.63) is equivalent to

A∗−1σ : σ ≤ A−1σ : σ − θ2 max
η∈Sym

[2σ : η − (A−1 − B−1)−1η : η + θ1Aη : η − θ1gA(η)].
(2.145)

Similarly as for the lower Hashin-Shtrikman bound on the complementary energy, the
problem is equivalent to maximizing the concave function

F (η1, η2) =2(σ1η1 + σ2η2)− 2µ1µ2

µ2 − µ1
(η2

1 + η2
2)−

(
µ1µ2

µ1 − µ2
− κ1κ2

κ1 − κ2

)
(η1 + η2)2+

+ 2θ1µ1(η2
1 + η2

2) + θ1(κ1 − µ1)(η1 + η2)2 − θ1gA(η1, η2),

over all real numbers η1 and η2. Note that the function F is quadratic by parts, with
minus sign.

Due to the expression (2.128) for gA, we shall consider several cases (note that gA is
differentiable everywhere except on the lines λ1 = λ2 and λ1 = −λ2, i.e. η1 = η2 and
η1 = −η2, respectively).

I If |λ1| > |λ2|, after solving the system of equations

∂F

∂η1
= 0 & ∂F

∂η2
= 0,

we obtain that

η1 = (κ2 − κ1)µ1[µ2(µ1 + κ1)− 2θ1(µ2 − µ1)κ1](σ1 + σ2)
4µ1κ1(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1)+

+ (µ2 − µ1)κ1[κ2(µ1 + κ1)− 2θ1(κ2 − κ1)µ1](σ1 − σ2)
4µ1κ1(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1) (2.146)

η2 =(µ1 + κ1)[(κ2 − κ1)µ1µ2(σ1 + σ2)− (µ2 − µ1)κ1κ2(σ1 − σ2)]
4µ1κ1(µ1µ2κ1θ1 + µ2κ1κ2θ2 + µ1µ2κ2θ2 + µ1κ1κ2θ1) .

If maximum is attained in this case, the upper bound is given by

A∗−1σ : σ ≤ (θ1A−1 + θ2B−1)σ : σ− (2.147)

− θ1θ2
[µ1µ2(κ1 − κ2)(σ1 + σ2) + κ1κ2(µ2 − µ1)(σ1 − σ2)]2
4µ1µ2κ1κ2[θ2µ2κ1κ2 + µ1(θ1κ1κ2 + µ2(θ2κ2 + θ1κ1))] .

This bound is asserted if and only if the solution (2.146) satisfies |λ1| > |λ2|, i.e. if

θ1µ1(κ2 − κ1)(σ1 + σ2) > (θ1µ1κ1 + θ2µ1κ2 + κ1κ2)(σ1 − σ2),
θ1κ1(µ2 − µ1)(σ1 − σ2) > (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)(σ1 + σ2), (2.148)
σ1 − σ2 < 0 & σ1 + σ2 < 0
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or

θ1µ1(κ2 − κ1)(σ1 + σ2) < (θ1µ1κ1 + θ2µ1κ2 + κ1κ2)(σ1 − σ2),
θ1κ1(µ2 − µ1)(σ1 − σ2) < (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)(σ1 + σ2), (2.149)
σ1 − σ2 > 0 & σ1 + σ2 > 0.

II The case |λ1| < |λ2| is symmetric to the previous one, and one only has to change the
roles of σ1 and σ2 in (2.147), (2.148) and (2.149).

Cases I and II can jointly be written as: the bound (2.63) is equivalent to

A∗−1σ : σ ≤ (θ1A−1 + θ2B−1)σ : σ−

− θ1θ2
[µ1µ2(κ1 − κ2)|σ1 + σ2|+ κ1κ2(µ2 − µ1)|σ1 − σ2|]2

4µ1µ2κ1κ2[θ2µ2κ1κ2 + µ1(θ1κ1κ2 + µ2(θ2κ2 + θ1κ1))]

if and only if σ1 and σ2 satisfy

θ1µ1(κ2 − κ1)|σ1 + σ2| < (θ1µ1κ1 + θ2µ1κ2 + κ1κ2)|σ2 − σ1| & (2.150)
θ1κ1(µ2 − µ1)|σ2 − σ1| < (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|.

Note that this corresponds to the case (i) in the statement of the theorem.

III If condition (2.150) is not satisfied, then the maximum of F is attained on one of the
lines λ1 = λ2 or λ1 = −λ2, which is equivalent to η1 = η2 or η1 = −η2, respectively.

(ii) If η := η1 = η2, an easy calculation gives us that the maximum of F is reached
for

η = (κ2 − κ1)(µ1 + κ1)(σ1 + σ2)
4κ1[κ2(µ1 + κ1) + θ1µ1(κ1 − κ2)] . (2.151)

If maximum is attained in this case, the corresponding bound is

A∗−1σ : σ ≤ A−1σ : σ + θ2(µ1 + κ1)(κ1 − κ2)(σ1 + σ2)2

4κ1[κ2(µ1 + κ1) + θ1µ1(κ1 − κ2)] . (2.152)

(iii) If η := η1 = −η2, the maximum of F is attained when

η = (µ2 − µ1)(µ1 + κ1)(σ1 − σ2)
4µ1[µ2(µ1 + κ1) + θ1κ1(µ1 − µ2)] . (2.153)

If F attains its maximum on the line η1 = −η2, the explicit Hashin-Shtrikman
bound is given by

A∗−1σ : σ ≤ A−1σ : σ + θ2(µ1 − µ2)(µ1 + κ1)(σ1 − σ2)2

4µ1[µ2(µ1 + κ1) + θ1κ1(µ1 − µ2)] . (2.154)
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By using the inequality

θ2
1µ1κ1(µ2−µ1)(κ2−κ1) < (θ2κ2µ1 + θ1µ1κ1 +κ1κ2) · (θ2µ2κ1 + θ1µ1κ1 +µ1µ2),

it is easy to check that the maximum is attained on the line η1 = η2 if and only
if

θ1µ1(κ2 − κ1)|σ1 + σ2| ≥ (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1|.

Conversely, the maximum is attained on the line η1 = −η2 if and only if

θ1κ1(µ2 − µ1)|σ2 − σ1| ≥ (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|.

�

It remains to explicitly describe the optimal microstructures for which the upper
Hashin-Shtrikman bound on the complementary energy is saturated. Theorem 31 assures
that the upper Hashin-Shtrikman bound on the complementary energy is optimal and that
optimality is achieved by a finite-rank sequential laminate. The optimality condition for
the maximization problem on the right-hand side of (2.145) can be derived analogously
as for (2.60):

σ − (A−1 − B−1)−1η + θ1

[
Aη −

p∑
i=1

miA
(ei ⊗ ei)⊗ (ei ⊗ ei)
A(ei ⊗ ei) : (ei ⊗ ei)

Aη
]

= 0, (2.155)

where mi ≥ 0,
p∑
i=1

mi = 1 and each ei is extremal for (2.127). If gA is differentiable at the

optimal η then the optimality condition simplifies to

σ − (A−1 − B−1)−1η + θ1

[
Aη − A (e⊗ e)⊗ (e⊗ e)

A(e⊗ e) : (e⊗ e)Aη
]

= 0,

where e is an extremal for (2.127). In this case optimality is achieved by a rank-one
laminate with the lamination direction e. This corresponds to the first case in Theorem
40, i.e. when the maximum in (2.63) is achieved for |λ1| 6= |λ2|. It remains to specify the
microstructures in the cases λ1 = λ2 and λ1 = −λ2, i.e. η1 = η2 and η1 = −η2, respectively.

a) Let η := η1 = η2, p = 2 and note that η = ηI2, where η is given by (2.151). Every unit
vector is an eigenvector of η and it is also an extremal vector for function (2.127).
Thus, for the direction of lamination we can arbitrarily choose unit eigenvectors v1

and v2 of σ, since η and σ are simultaneously diagonalizable, and we conclude that
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(2.155) is equivalent to
 σ1 0

0 σ2

+
(

2θ1κ1η + 2ηκ1κ2

κ1 − κ2

) 1 0
0 1

 =

2θ1κ1ηm1

µ1 + κ1

 µ1 + κ1 0
0 κ1 − µ1

+ 2θ1κ1ηm2

µ1 + κ1

 κ1 − µ1 0
0 µ1 + κ1

 .
This determines m1 and m2:

m1 = 2θ1µ1(κ2 − κ1)σ2 + κ2(µ1 + κ1)(σ1 − σ2)
2θ1µ1(κ2 − κ1)(σ1 + σ2) ,

m2 = 2θ1µ1(κ2 − κ1)σ1 + κ2(µ1 + κ1)(σ2 − σ1)
2θ1µ1(κ2 − κ1)(σ1 + σ2) ,

and it is easy to check that m1 +m2 = 1 and m1, m2 ≥ 0, as a consequence of the
condition

θ1µ1(κ2 − κ1)|σ1 + σ2| ≥ (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1|

which defines this regime. In this case, the bound is obviously achieved by a second
rank laminate in the following way: we first layer B with A in volume fractions
ρ = 1− θ1m1 and 1− ρ respectively, in direction of lamination v1, to get composite
C. After that, we layer C with A in volume fractions ρ′ = θ2

1− θ1m1
and 1 − ρ′,

respectively, in direction of lamination v2, to get composite A∗ which achieves
equality in the upper Hashin-Shtrikman bound on the complementary energy.

b) Let η1 = −η2, p = 2 and v1, v2 the associated unit eigenvectors of η, such that they
are also eigenvectors of σ. Additionally, these vectors are extremal for function
(2.127). Denoting η := η1 = −η2, we have that η is given by (2.153).

Using the fact that σ and η are simultaneously diagonalizable, we conclude that
(2.155) is equivalent to

 σ1 0
0 σ2

+
(

2θ1µ1η −
2ηµ1µ2

µ2 − µ1

) 1 0
0 −1

 =

2θ1µ1ηm1

µ1 + κ1

 µ1 + κ1 0
0 κ1 − µ1

− 2θ1µ1ηm2

µ1 + κ1

 κ1 − µ1 0
0 µ1 + κ1

 .
This determines m1 and m2:

m1 = 2κ1θ1(µ2 − µ1)σ2 − µ2(µ1 + κ1)(σ1 + σ2)
2κ1θ1(µ2 − µ1)(σ2 − σ1) ,
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m2 = −2κ1θ1(µ2 − µ1)σ1 + µ2(µ1 + κ1)(σ1 + σ2)
2κ1θ1(µ2 − µ1)(σ2 − σ1) .

It is easy to check that m1 + m2 = 1 and m1, m2 ≥ 0, as a consequence of the
condition

θ1κ1(µ2 − µ1)|σ2 − σ1| ≥ (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|

which defines this regime. Now, one can conclude that the bound is achieved by a
second rank laminate in an analogous way as for η1 = η2.

The following theorem summarizes the previous results.

Theorem 41 Let σ1 and σ2 be the eigenvalues of σ, and θ1 := θ, θ2 := 1− θ.

(i) If

θ1µ1(κ2 − κ1)|σ1 + σ2| < (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1| &
θ1κ1(µ2 − µ1)|σ2 − σ1| < (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|,

then the optimal microstructure for which the bound (2.63) is saturated is a simple
laminate with layers orthogonal to the eigenvector associated with an eigenvalue of
the largest absolute value, of the extremal η in (2.63).

(ii) If
θ1µ1(κ2 − κ1)|σ1 + σ2| ≥ (θ2µ1κ2 + θ1µ1κ1 + κ1κ2)|σ2 − σ1|,

then the optimal microstructure for which the bound (2.63) is saturated is a rank-2
laminate with directions of lamination given by eigenvectors v1 and v2 of σ, and
corresponding lamination parameters

m1 = 2θ1µ1(κ2 − κ1)σ2 + κ2(µ1 + κ1)(σ1 − σ2)
2θ1µ1(κ2 − κ1)(σ1 + σ2) ,

m2 = 2θ1µ1(κ2 − κ1)σ1 + κ2(µ1 + κ1)(σ2 − σ1)
2θ1µ1(κ2 − κ1)(σ1 + σ2) .

(iii) If
θ1κ1(µ2 − µ1)|σ2 − σ1| ≥ (θ1µ1κ1 + θ2µ2κ1 + µ1µ2)|σ1 + σ2|,

then the optimal microstructure for which the bound (2.63) is saturated is a rank-
2 laminate with directions of lamination given with eigenvectors v1 and v2 of the
extremal η in (2.63) (which are also eigenvectors of ξ), and corresponding lamination
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parameters

m1 = 2κ1θ1(µ2 − µ1)σ2 − µ2(µ1 + κ1)(σ1 + σ2)
2κ1θ1(µ2 − µ1)(σ2 − σ1) ,

m2 = −2κ1θ1(µ2 − µ1)σ1 + µ2(µ1 + κ1)(σ1 + σ2)
2κ1θ1(µ2 − µ1)(σ2 − σ1) .
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Let us first introduce some general notation used in the thesis. In the sequel, by U, W
we denote open subsets of Rd.

We say that W is compactly embedded in U and write W b U , if W ⊆ ClW ⊆ U and
ClW is compact.

• C(U) denotes vector space of continuous functions defined on U , while Ck(U) denotes
vector space of k-times continuously differentiable functions defined on U .

• Cc(U), Ck
c (U), Lpc(U), etc. denote vector spaces of functions in C(U), Ck(U), Lp(U),

etc. with compact support.

• Lploc(U) := {f : U → R : (∀W b U) f ∈ Lp(W )}.

Analogously, one could define functions Hk
loc(U), Hk

c (U), etc. We refer the interested
reader to [19].

Let R : X → Y , where X, Y are Banach spaces. We write R(h) := o(‖h‖X), if

lim
h→0

‖R(h)‖Y
‖h‖X

= 0.

In the following two definitions [32], by X we denote a locally compact Hausdorff space
(a topological space is called locally compact if every point has a compact neighbourhood).

Definition 14 Let µ be a Borel measure on X and E a Borel subset of X. The measure
µ is called outer regular on E if

µ(E) = inf{µ(U) : E ⊂ U, U open}

and inner regular on E if

µ(E) = sup{µ(K) : K ⊂ E, K compact}.

If µ is outer and inner regular on all Borel sets, µ is called regular. For example, the
Lebesgue measure λ on Rd is regular.
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Definition 15 A Radon measure on X is a Borel measure that is finite on all compact
sets, outer regular on all Borel sets and inner regular on all open sets. By M(X) we
denote the space of Radon measures on X.

The connection between strong and pointwise convergence is given in the following
lemma.

Lemma 16 [2, p. 17, Lemma 1.2.3] Let Ω be a bounded open set in Rd. For 1 < p ≤ +∞,
let (un) be a bounded sequence in Lp(Ω) such that

un(x) −→ u(x) a. e. in Ω.

Then the sequence (un) converges strongly to u in any Lq(Ω) with 1 ≤ q < p.

Lemma 17 [2, p. 18, Lemma 1.2.6] (Rellich theorem) Let Ω be a bounded open set in Rd,
and (un) a bounded sequence in W 1,p(Ω), 1 ≤ p <∞. Then, there exists a subsequence,
still denoted by n, and a limit u ∈ W 1,p(Ω), such that, for this subsequence, (un) converges
strongly to u in Lp(Ω).

Theorem 42 [30, p. 732, Theorem 6] Let f ∈ L1
loc(Rd).

(i) Then for a. e. point x0 ∈ Rd

∫
−

B(x0,r)
f(x) dx −→ f(x0) as r −→ 0.

(ii) For a. e. point x0 ∈ Rd

∫
−

B(x0,r)
|f(x)− f(x0)| dx −→ 0 as r −→ 0. (2.156)

A point x0 at which (2.156) holds is called a Lebesgue point of f .

Remark 13 [30, p. 733] If f ∈ Lploc(Rd) for some 1 ≤ p <∞, then for a. e. point x0 ∈ Rd

we have ∫
−

B(x0,r)
|f(x)− f(x0)|p dx −→ 0 as r −→ 0.

The following lemma is widely used in the case of periodic homogenization.

Lemma 18 [24, p. 33, Theorem 2.6] Let f ∈ Lp#(Y ), 1 ≤ p ≤ +∞. The sequence (fn),
defined by

fn(x) := f(nx),

converges weakly in Lploc(Rd) to the average
∫
Y

f(y)dy (weakly-∗ if p = +∞).

Let us recall the following well known, but also elementary results.
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Proposition 3 [14, p. 37, Proposition 2.3.1] Let V be a vector space, L : V → R a linear
form and a : V × V → R a bilinear, symmetric, coercive form. Then the following two
statements are equivalent for u ∈ V :

(i) a(u,v) = L(v), v ∈ V,

(ii) J(u) ≤ J(v), v ∈ V,

where J(v) := 1
2a(v,v)− L(v).

Theorem 43 [14, p. 67, Theorem 3.1.1](Riesz) Let V be a Hilbert space and L ∈ V ′ a
linear continuous form on V . Then

(∃! f ∈ V ) L(v) = (f ,v), v ∈ V.

Theorem 44 [14, p. 69, Theorem 3.1.2](Lax-Milgram) Let V be a Hilbert space with the
scalar product (·, ·) and ‖ · ‖V =

√
(·, ·) the associated norm. Let a : V × V → R be a

bilinear form which satisfies:

(i) a is continuous:

(∃M ∈ R+) |a(u,v)| ≤M‖u‖V · ‖v‖V , u,v ∈ V ;

(ii) a is coercive:
(∃α > 0) a(v,v) ≥ α‖v‖2

V , v ∈ V.

Then for any L ∈ V ′ there exists a unique u ∈ V such that

a(u,v) = L(v), v ∈ V.

A useful tool for dealing with periodic functions is the Fourier series. Therefore, we
introduce some basic facts of Fourier analysis on the torus T . Recall that the d-dimensional
torus T is the cube [0, 1]d with opposite sides identified. Functions on T are defined as
functions f on Rd that satisfy f(x + m) = f(x), x ∈ Rd, m ∈ Zd [37, p. 162-163].

Definition 16 For a complex-valued function f ∈ L1(T ) and k ∈ Zd, we define

f̂(k) :=
∫
T

f(x)e−2πik·x dx.

We call f̂(k) the k-th Fourier coefficient of f . The Fourier series of f at x ∈ T is the series

∑
k∈Zd

f̂(k)e2πik·x.
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Let us denote by f the complex conjugate of the function f , and by f̃ the function
f̃(x) := f(−x), x ∈ T .

Proposition 4 [37, p. 164, Proposition 3.1.2] Let f, g ∈ L1(T ). Then for all k,m ∈ Zd,
λ ∈ C and y ∈ T we have:

(i) f̂ + g (k) = f̂(k) + ĝ(k),

(ii) λ̂f(k) = λf̂(k),

(iii) f̂(k) = f̂(−k),

(iv) ̂̃
f(k) = f̂(−k),

(v) f̂(0) =
∫
T

f(x) dx,

(vi) sup
k∈Zd

|f̂(k)| ≤ ‖f‖L1(T ).

Proposition 5 [37, p. 170, Proposition 3.1.16] The following are valid for f, g ∈ L2(T ):

(i) (Plancherel’s identity)
‖f‖2

L2(T ) =
∑

k∈Zd

|f̂(k)|2.

(ii) (Parseval’s relation) ∫
T

f(x)g(x) dx =
∑

k∈Zd

f̂(k)ĝ(k).

Now, we summarise some elementary facts about fourth-order tensors, which are
necessary for better understanding this thesis.

Let Sym := {A = AT ∈ Md(R)} be the set of real symmetric matrices, and by
L(Sym, Sym) we denote the space of linear operators A : Sym → Sym. The product of
A, B ∈ L(Sym, Sym) is defined by the composition:

(AB)η = A(Bη), η ∈ Sym.

It is easy to see that L(Sym, Sym) can be identified with the space of fourth-order tensors
whose entries satisfy the symmetry condition: aijkl = ajikl = aijlk, 1 ≤ i, j, k, l ≤ d, with

[Aη]ij =
∑

1≤k,l≤d
aijklηkl, η ∈ Sym

and
[AB]ijkl =

∑
1≤m,n≤d

aijmnbmnkl.
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Furthermore,
Sym4 := {A ∈ L(Sym, Sym) : aijkl = aklij}

is the set of real symmetric fourth-order tensors acting on symmetric matrices. We also
consider fully symmetric fourth-order tensors, which are symmetric tensors with additional
symmetry aijkl = akjil. Note that every permutation of the indices {i, j, k, l} gives the
same entry aijkl of fully symmetric fourth-order tensor.

The transpose of A ∈ L(Sym, Sym), defined with Aη : ξ = η : ATξ, ξ, η ∈ Sym, has
entries which satisfy

[AT ]ijkl = [A]klij.

The identity operator I4 ∈ L(Sym, Sym), defined by I4η = η, η ∈ Sym, has entries given
by

[I4]ijkl =


1, if i = j = k = l
1
2 , if i 6= j, (k, l) ∈ {(i, j), (j, i)}
0, otherwise,

while I2 denotes identity matrix in Md(R).

For ξ,η ∈ Sym the standard inner product is defined as

ξ : η =
∑

1≤i,j≤d
ξijηij.

If a,b ∈ Rd, their tensor product is defined as d× d matrix whose entries are given by

[a ⊗ b]ij = aibj.

The tensor product of two matrices A,B ∈Md(R) is the fourth-order tensor with entries

[A⊗B]ijkl = aijbkl.

For a,b, c,d ∈ Rd, ξ,η,ρ,σ ∈ Sym and A ∈ L(Sym, Sym), the following identities hold:

[(a ⊗ b)(c⊗ d)]ij = (b · c) aidj,

A(ξ ⊗ η) = (Aξ)⊗ η,

(ξ ⊗ η)A = ξ ⊗ ATη,

(ξ ⊗ η)(ρ⊗ σ) = (η : ρ)ξ ⊗ σ.

If the columns of S ∈ Md(R) are denoted by Sj, j = 1, . . . , d, then div S is a vector
with entries

(div S)j = div Sj, j = 1, . . . , d.
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Let R ∈ SO(Rd) be a rotation matrix. The general rule for applying the rotation to
a fourth-order tensor C is the following: we obtain a tensor C′ with components

c′mnop =
∑

1≤i,j,k,l≤d
rmirnjrokrplcijkl.

For simplicity of notation, we denote C′ = R (R,C), where R : SO(Rd)×L(Sym, Sym)→
L(Sym, Sym) (see [62] for details).
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